Linear Algebra (Math 338) Midterm Exam 1

Date: February 25, 2009
Professor Ilya Kofman
Justify answers and show all work for full credit. No symbolic calculators.

NAME: \qquad

Problem 1. 30 pts .
(a) Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{cccc}2 & 1 & 0 & 1 \\ -1 & 1 & 1 & 0 \\ 3 & 0 & -1 & 1\end{array}\right]$.

If possible, compute the matrix. Otherwise, write "Impossible".
$A B=$
$B A=$
$B^{T}=$
(b) Reduced row-echelon forms of the augmented matrices of four systems are shown.

Below each matrix, write how many solutions each system has.

$$
\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0
\end{array}\right]
$$

(c) Find one non-trivial solution for $A \mathbf{x}=\mathbf{0}$, where $A=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$.
(d) Solve the linear system: $\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]=\left[\begin{array}{c}6 \\ 0 \\ -5\end{array}\right]$.

Problem 2. 24 pts. Justify with a general argument for any $n \times n$ matrices A and B.
(a) If P is an invertible matrix such that $B=P^{-1} A P$, then $\operatorname{det} A=\operatorname{det} B$.
(b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ cannot be written in the form $A A^{T}$ for any 2×2 matrix A.
(c) If $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then $A^{5} \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Problem 3. 22 pts. Consider the following linear system:

$$
\left\{\begin{array}{l}
x_{1}+x_{2}-x_{3}+x_{4}=-2 \\
x_{1}+2 x_{2}+2 x_{4}=0 \\
x_{2}+x_{3}-x_{4}=-4
\end{array}\right.
$$

(a) Write its associated augmented matrix.
(b) Reduce the matrix to its reduced row-echelon form (rref).
(c) Use this procedure to solve the system.

Problem 4. 24 pts.

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 0 & a \\
0 & 1 & 2
\end{array}\right]
$$

(a) If $\left[\begin{array}{l}4 \\ 5 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}6 \\ 9 \\ -2\end{array}\right]$ are solutions to $A \mathbf{x}=\mathbf{b}$, find another solution. Justify.
(b) For which values of a is A invertible? (Hint: $\operatorname{det} A$.)
(c) Use elementary operations to find the inverse of A when $a=-2$.

