Calculus III (Math 233) Exam 3

December 8, 2010
Professor Ilya Kofman
Justify answers and show all work for full credit.

NAME: ______________________________

Problem 1. Let C be the triangle in \mathbb{R}^2 with vertices $(0, 0)$, $(1, 0)$, $(1, 3)$. Use Green’s Theorem to evaluate

$$\int_C \sqrt{1 + x^3} \, dx + 2xy \, dy$$

Problem 2. Let $F(x, y, z) = (ze^{xz}, 0, xe^{xz})$. Let C be one turn of the helix,

$$C = \{ (\cos t, \sin t, t) \mid 0 \leq t \leq 2\pi \}.$$

(a) Find $f(x, y, z)$ such that $F = \nabla f$.

(b) Compute $\int_C F \cdot ds$.

Problem 3. Let $F(x, y, z) = (y^2, x, z^2)$. Let S be the part of the paraboloid $z = x^2 + y^2$ that lies below the plane $z = 1$, with normal oriented upward. Verify that Stokes’ Theorem is true in this case by directly evaluating both integrals.

Problem 4. Let E be the solid cylinder $x^2 + y^2 \leq 1$; $0 \leq z \leq 3$. Let $F(x, y, z) = (x, y, -z)$.

(a) Directly evaluate the surface integral $\int_{\partial E} F \cdot dS$.

Note: ∂E consists of the cylindrical side as well as the flat top and bottom. It may help to parametrize the side by $T(\theta, z) = (\cos \theta, \sin \theta, z)$.

(b) Verify the answer above by applying one of our theorems.

Problem 5. An open bottle B lies on the xy-plane. Its volume is 750 ml. Its lip (or boundary) is the circle $\{ x^2 + (z-1)^2 = 1; y = 10 \}$. Let $F(x, y, z) = (2x + y^2, 3, x^2 + 4)$. Compute $\int_B F \cdot dS$.
Problem 6. Suppose that F is a vector field in \mathbb{R}^3 that is everywhere perpendicular to a surface S with boundary C. Show that
\[\iint_S (\nabla \times F) \cdot dS = 0. \]

Problem 7. (Bonus) If C is the ellipse $x^2 + 4y^2 = 4$ oriented counterclockwise, compute (and justify)
\[\int_C \frac{-y \, dx + (x - 1) \, dy}{(x - 1)^2 + y^2}. \]