Calculus III (Math 233) Exam 1

Date: September 24, 2008

Professor Ilya Kofman

Justify answers and show all work for full credit.

NAME: ________________________________

Problem 1. Let \(\vec{u} = \langle 4, 4, 5 \rangle \) and \(\vec{v} = \langle 2, -1, 1 \rangle \).

(a) Find a unit vector in the direction of \(\vec{v} \).

(b) Find \(||\text{proj}_\vec{v} \vec{u}|| \).

(c) Express \(\vec{u} \) as the sum of \(\vec{m} = \vec{u}|| \) parallel to \(\vec{v} \), and \(\vec{n} = \vec{u}_\perp \) orthogonal to \(\vec{v} \).

Problem 2. Consider three points \(A(-2, 1, -1), B(1, 2, 2), C(1, 1, 5) \).

(a) Are the points \(A, B, C \) collinear? Justify your answer using the cross-product.

(b) Find the area of the triangle formed by \(A, B, C \).

(c) Find the equation of the plane that contains \(A, B, C \).

Problem 3. Consider two points \(E(1, 0, 1), F(-3, 2, 3) \).

(a) Find a parametric equation of the line through \(E \) and \(F \).

(b) Find the symmetric equation of the line through \(E \) and \(F \).

(c) Find the cylindrical coordinates for \(E \).

(d) Find the spherical coordinates for \(E \).

Problem 4.

(a) Find the angle between the planes \(x - y = 3 \) and \(-y + z = 1 \).
 (Hint: Angle between the planes is the angle between their normal vectors.)

(b) Find the equation of the plane that passes through the point \((1, 2, -1) \) and is perpendicular to the line \(x - 2 = \frac{y + 1}{2} = \frac{z}{4} \).
Problem 5. For each equation below, find the surface in \(\mathbb{R}^3 \) that matches it.

(a) \(x^2 + 4y^2 + 4z^2 = 16 \)

(b) \(4x^2 + y^2 + 4z^2 = 16 \)

(c) \(z = 9x^2 + 4y^2 \)

(d) \(z = 9x^2 - 4y^2 \)

(e) \(9x^2 + 4y^2 = 2z^2 + 72 \)

(f) \(9x^2 + 4z^2 = 2y^2 - 72 \)

(g) \(9x^2 + 4y^2 = 2z^2 \)

(h) \(9x^2 - 4y^2 = 72 \)