Problem 1. (10 pts.) State whether the following statements are Always true, Sometimes true, or Never true. Please circle one of A, S, N below.

(a) An invertible matrix can be written as a product of symmetric matrices.

(S) True for $I_n = I_n * I_n$. False, e.g., for upper triangular invertible matrices.

(b) A homogeneous 3×5 linear system has a nontrivial solution.

(A) by Theorem 1.8 on page 77.

(c) If det(A) = 0, then det(A + B) = det(B).

(S) Let O_n be the $n \times n$ zero matrix. True for $A = O_n$, $B = I_n$. False, e.g., for

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad then \quad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(d) If det(A) = 0, then det(BA) = 0.

(A) because det(BA) = (det(B))(det(A)) = 0.

(e) A square matrix which has two identical columns is invertible.

(N) If two columns are identical, the matrix is singular.

Problem 2. (15 pts.) Justify three out of the following four statements with a short general argument:

(a) If A is a non-singular $n \times n$ matrix then:

$$\det\left(A^{-1}\right) = \frac{1}{\det(A)}$$

 $\det(A)\det(A^{-1}) = \det(AA^{-1}) = \det(I_n) = 1$

(b) If A and B are non-singular $n \times n$ matrices, then AB is also non-singular.

 $det(AB) = det(A)det(B) \neq 0$ which implies that AB is non-singular.

(c) A non-singular matrix has a unique inverse.

If B and C are two inverses of A (i.e., $BA = AC = I_n$) then $B = BI_n = B(AC) = (BA)C = I_nC = C$

(d) If A and B are symmetric matrices, then AB is also symmetric.

This is only sometimes true – my mistake! For example, false for

$$\left(\begin{array}{rrr}1 & -1\\-1 & 1\end{array}\right)\left(\begin{array}{rrr}2 & 1\\1 & 1\end{array}\right) = \left(\begin{array}{rrr}1 & 0\\-1 & 0\end{array}\right)$$

Problem 3. (20 pts.) Write "impossible" or give an example of:

(a) $A \ 3 \times 3$ matrix with no zeros but which is not invertible.

$$\left(\begin{array}{rr}1 & 1\\ 1 & 1\end{array}\right)$$

(b) A system with two equations and three unknowns that is inconsistent.

$$x + y + z = 0$$
$$x + y + z = 1$$

(c) A system with two equations and three unknowns that has a unique solution.

Impossible

(d) A system with two equations and three unknowns that has infinitely many solutions.

$$x + y + z = 0$$
$$2x + y + z = 1$$

In this case, the solutions are x = -1, y = r, z = 2 - r, for any real number r.

Problem 4. (10 pts.) Consider the following linear system:

$$\begin{cases} 2x_1 - x_2 + x_4 = 0\\ -x_1 + 2x_2 - x_3 = 1\\ -x_2 + 2x_3 = 0 \end{cases}$$

.

Write its associated augmented matrix. Reduce the matrix to its row-echelon form. Use the procedure to solve the system.

Now, you have some choices how to reduce this augmented matrix to its row-echelon form. For example, you can multiply row 2 by -1, and replace row 1 with row 2. Then $add -2 \times row 1$ to row 2. Then multiply row 2 by $\frac{1}{3}$. Then add row 2 to row 3. Then multiply row 3 by $\frac{3}{4}$. This is (one of many possible) row-echelon form:

To solve the system using this row-echelon form: Start with the last row. Let $x_4 = r$ for any real number r.

$$x_{3} = -\frac{1}{4}r + \frac{1}{2}$$

$$x_{2} = \frac{2}{3}x_{3} - \frac{1}{3}x_{4} + \frac{2}{3} = -\frac{1}{2}r + 1$$

$$x_{1} = 2x_{2} - x_{3} - 1 = -\frac{3}{4}r + \frac{1}{2}$$

Problem 5. (25 pts.)

(a) Let:

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 0 & -1 & 5 \\ -4 & 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 3 \\ 5 & 1 & 0 \end{pmatrix}.$$

Compute A + B, AB, B^t , det(A), $det(A^t)$ and det(3A).

$$A + B = \begin{pmatrix} 4 & 1 & 3 \\ -1 & 0 & 8 \\ 1 & 3 & 1 \end{pmatrix}$$
$$AB = \begin{pmatrix} 18 & 4 & 3 \\ 26 & 4 & -3 \\ -5 & 3 & 6 \end{pmatrix}$$
$$B^{t} = \begin{pmatrix} 2 & -1 & 5 \\ 0 & 1 & 1 \\ 0 & 3 & 0 \end{pmatrix}$$

 $det(A) = det(A^t) = -54$ $det(3A) = (3^3)(-54)$

(b) Use elementary operations to find the inverse of:

$$C = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array}\right).$$

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 2 & 2 & | & 0 & 1 & 0 \\ 1 & 2 & 3 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 2 & -1 & 0 \\ 0 & 1 & 0 & | & -1 & 2 & -1 \\ 0 & 0 & 1 & | & 0 & -1 & 1 \end{pmatrix}$$

Therefore,

$$C^{-1} = \left(\begin{array}{rrrr} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1 \end{array}\right)$$

Problem 6. (10 pts.) Use Cramer's rule to solve the following linear system:

$$\begin{cases} 2x + y = 1\\ x + 2y + z = 0\\ y + 2z = 0 \end{cases}$$

$$\begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 4$$

$$x = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix}}{4} = \frac{3}{4}$$
$$y = \frac{\begin{vmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2 \end{vmatrix}}{4} = \frac{-2}{4} = -\frac{1}{2}$$
$$z = \frac{\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 0 \end{vmatrix}}{4} = \frac{1}{4}$$

Problem 7. (20 pts.)

(a) Let $L: \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation defined by $L(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 3 & 2 & 4 \end{pmatrix}.$$

Is the vector (1, 2, 3) in the range of L?

The question is the same as solving the system $A\boldsymbol{x} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$. This system has the solution $\boldsymbol{x} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$.

(b) Let $L : \mathbf{R}^2 \to \mathbf{R}^3$ be defined by L(x, y) = (2x + 3y, -2x + 3y, x + y). Find the standard matrix representing L.

$$A = \left(\begin{array}{cc} 2 & 3\\ -2 & 3\\ 1 & 1 \end{array}\right).$$

Then $L(\mathbf{x}) = A\mathbf{x}$, where $\mathbf{x} = (x, y)$.