NAME: \qquad

Problem 1. Evaluate the following limits:
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}$
(b) $\lim _{x \rightarrow 0} \frac{8 x}{\sin 2 x}$
(c) $\lim _{x \rightarrow-\infty} \frac{-5 x^{3}+1}{17 x^{3}+7 x-11}$

Problem 2. Compute the first derivative for each of these functions:
(a) $f(x)=\frac{e^{3 x}}{x^{2}+5}$
(b) $g(x)=\ln (6 x) \sqrt{x^{3}+7 x}$

Problem 3. Evaluate
(a) $\int\left(\frac{7}{x^{4}}+3 \sqrt{x}+e^{2 x}\right) d x$
(b) $\int_{1}^{3}\left(6 x^{2}+\frac{4}{x}+5\right) d x$

Problem 4. Let $f(x)$ be the function defined by the following graph,

(a) $f^{\prime}(x)<0$ for which x ?
$f^{\prime}(x)>0$ for which $x ?$
(b) $\lim _{x \rightarrow \infty} f(x)=$ \qquad and $\lim _{x \rightarrow-\infty} f(x)=$ \qquad -
(c) Sketch a graph of $f^{\prime}(x)$ on the figure.
(d) Label the approximate locations of all points of inflection of $f(x)$.
(e) Sketch a graph of $f^{\prime \prime}(x)$ on the figure.

Make sure your sketches are clearly labeled above!

BONUS: $\lim _{x \rightarrow \infty} f^{\prime}(x)=$ \qquad and $\lim _{x \rightarrow \infty} f^{\prime \prime}(x)=$ \qquad

Problem 5. Sketch the graph of a differentiable function $f(x)$ with all of the properties below.

- The domain of f is $(-\infty,-2) \cup(-2, \infty)$.
- $f(-6)=1, f(-4)=-1$, and $f(3)=0$.
- $\lim _{x \rightarrow-2} f(x)=\infty$.
- $\lim _{x \rightarrow-\infty} f(x)=1$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$.
- $f^{\prime}(x)>0$ for $-4<x<-2$.
- $f^{\prime}(x)<0$ for $x<-4$ and for $x>-2$.
- $f^{\prime \prime}(x)>0$ for $-6<x<-2$ and for $-2<x<3$.
- $f^{\prime \prime}(x)<0$ for $x<-6$ and for $x>3$.

Label all horizontal and vertical asymptotes, local extrema, and inflection points.

Problem 6. Find the values of the constants m and b such that the following function is differentiable everywhere:

$$
h(x)= \begin{cases}x^{3}-6 x & \text { if } x \leq 2 \\ m x+b & \text { if } x>2\end{cases}
$$

Problem 7. Answer questions below as True or False. (No explanation is needed.)
(a) The function $p(x)=\frac{|x|}{x}$ has a removable discontinuity at $x=0$.
(b) The function $q(x)=2 x^{5}-10 x$ has a zero in the interval $(1,2)$.
(c) The function $r(x)=x^{1 / 3}$ has a vertical tangent line at the origin.
(d) If $s^{\prime}(2)=0$ then $x=2$ is a local max or min of $s(x)$.
(e) \qquad A rational function can have at most two vertical asymptotes.
(f)
$\mp \int_{0}^{5} f(x) d x=-\int_{-5}^{0} f(x) d x$ for all integrable $f(x)$
$(\mathrm{g}) \longrightarrow \frac{d}{d x}\left(\int_{0}^{x} t^{\sqrt{2}} d t\right)=x^{\sqrt{2}}$.
(h) $\quad \int_{0}^{2 \pi}|\sin x| d x=2 \int_{0}^{\pi} \sin x d x$.
(i)
$=\int_{0}^{\pi} \sin ^{2} x d x=\int_{\pi}^{2 \pi} \sin ^{2} x d x$.
$(\mathbf{j})=\int_{-4}^{4}\left(x^{5}+7 x\right)^{13} d x=0$.

CHOOSE ANY TWO PROBLEMS ON THIS PAGE

Problem 8. A paper cup in the shape of a circular cone has radius $r=2 \mathrm{~cm}$ and height $h=4 \mathrm{~cm}$. Water is poured into the cup at a rate of $2 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate at which the water level is rising when the water is 3 cm deep. (Hint: $V=\frac{1}{3} \pi r^{2} h$)

Problem 9. An open box with a total surface area of $300 \mathrm{in}^{2}$ and with a square base is to be made from sheet metal. Find the dimensions of the box that will maximize its volume.

Problem 10. Consider the curve described by the relation $x^{4}+y^{4}=32$. Find the equation of the tangent line to the curve at the point $(-2,2)$.

