Date: December 17, 2007

Professor Ilya Kofman

NAME:

Problem 1. Evaluate the following limits:

(a)
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

(b)
$$\lim_{x \to 0} \frac{8x}{\sin 2x}$$

(c)
$$\lim_{x \to -\infty} \frac{-5x^3 + 1}{17x^3 + 7x - 11}$$

Problem 2. Compute the first derivative for each of these functions: (a) $f(x) = \frac{e^{3x}}{x^2 + 5}$

(b)
$$g(x) = \ln(6x)\sqrt{x^3 + 7x}$$

Problem 3. Evaluate

(a)
$$\int \left(\frac{7}{x^4} + 3\sqrt{x} + e^{2x}\right) dx$$

(b)
$$\int_{1}^{3} \left(6x^2 + \frac{4}{x} + 5 \right) dx$$

Problem 4. Let f(x) be the function defined by the following graph,

Make sure your sketches are clearly labeled above!

BONUS: $\lim_{x \to \infty} f'(x) =$ and $\lim_{x \to \infty} f''(x) =$.

Problem 5. Sketch the graph of a differentiable function f(x) with all of the properties below.

- The domain of f is $(-\infty, -2) \cup (-2, \infty)$.
- f(-6) = 1, f(-4) = -1, and f(3) = 0.
- $\lim_{x \to -2} f(x) = \infty$.
- $\lim_{x \to -\infty} f(x) = 1$ and $\lim_{x \to \infty} f(x) = -\infty$.
- f'(x) > 0 for -4 < x < -2.
- f'(x) < 0 for x < -4 and for x > -2.
- f''(x) > 0 for -6 < x < -2 and for -2 < x < 3.
- f''(x) < 0 for x < -6 and for x > 3.

Label all horizontal and vertical asymptotes, local extrema, and inflection points.

Problem 6. Find the values of the constants m and b such that the following function is differentiable everywhere:

$$h(x) = \begin{cases} x^3 - 6x & \text{if } x \le 2\\ mx + b & \text{if } x > 2 \end{cases}$$

Problem 7. Answer questions below as True or False. (No explanation is needed.)

(a) _____ The function $p(x) = \frac{|x|}{x}$ has a removable discontinuity at x = 0. (b) _____ The function $q(x) = 2x^5 - 10x$ has a zero in the interval (1, 2). (c) _____ The function $r(x) = x^{1/3}$ has a vertical tangent line at the origin. (d) _____ If s'(2) = 0 then x = 2 is a local max or min of s(x). (e) _____ A rational function can have at most two vertical asymptotes. (f) _____ $\int_0^5 f(x) dx = -\int_{-5}^0 f(x) dx$ for all integrable f(x). (g) _____ $\frac{d}{dx} \left(\int_0^x t^{\sqrt{2}} dt \right) = x^{\sqrt{2}}$. (h) _____ $\int_0^{2\pi} |\sin x| dx = 2 \int_0^{\pi} \sin x dx$. (i) _____ $\int_0^{\pi} \sin^2 x dx = \int_{\pi}^{2\pi} \sin^2 x dx$. (j) _____ $\int_{-4}^4 (x^5 + 7x)^{13} dx = 0$.

CHOOSE ANY TWO PROBLEMS ON THIS PAGE

Problem 8. A paper cup in the shape of a circular cone has radius r = 2 cm and height h = 4 cm. Water is poured into the cup at a rate of $2 \text{ cm}^3/\text{sec}$. Find the rate at which the water level is rising when the water is 3 cm deep. (Hint: $V = \frac{1}{3}\pi r^2 h$)

Problem 9. An open box with a total surface area of 300 in^2 and with a square base is to be made from sheet metal. Find the dimensions of the box that will maximize its volume.

Problem 10. Consider the curve described by the relation $x^4 + y^4 = 32$. Find the equation of the tangent line to the curve at the point (-2, 2).