Linear Algebra (Math 338) Midterm Exam 3

Date: May 15, 2007
Professor Ilya Kofman

NAME: \qquad

Problem 1. Let $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ be a basis for \mathbf{R}^{3}, where

$$
u_{1}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right], u_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], u_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

(a) Start the Gram-Schmidt Process with $v_{1}=u_{1}$. Find v_{2} and v_{3}.
(b) What are the vectors $\left\{w_{1}, w_{2}, w_{3}\right\}$ of the orthonormal basis?

Problem 2.

(a) Let $V=\operatorname{span}\{(-1,1,2),(2,4,-2)\}$ be a subset of \mathbf{R}^{3}. Find a basis for V^{\perp}. Hint: Use a matrix.
(b) If $A^{2}=A^{T}$, what are the possible real eigenvalues of A ? Justify.

Problem 3. $A=\left[\begin{array}{rr}3 & 1 \\ -5 & -3\end{array}\right]$
(a) Find the eigenvalues of A.
(b) Diagonalize A (i.e, find P and D such that $P^{-1} A P=D$).
(c) Use part (b) to find the exact formula for A^{k}.

