Date: May 15, 2007

Professor Ilya Kofman

NAME:

Problem 1. Let $S = \{u_1, u_2, u_3\}$ be a basis for \mathbb{R}^3 , where

	1		0		[0]
$u_1 =$	-1	$, u_2 =$	-1	$, u_3 =$	1
	2		1		1

- (a) Start the Gram-Schmidt Process with $v_1 = u_1$. Find v_2 and v_3 .
- (b) What are the vectors $\{w_1, w_2, w_3\}$ of the orthonormal basis?

Problem 2.

- (a) Let $V = \text{span}\{(-1, 1, 2), (2, 4, -2)\}$ be a subset of \mathbb{R}^3 . Find a basis for V^{\perp} . Hint: Use a matrix.
- (b) If $A^2 = A^T$, what are the possible real eigenvalues of A? Justify.

Problem 3. $A = \begin{bmatrix} 3 & 1 \\ -5 & -3 \end{bmatrix}$

- (a) Find the eigenvalues of A.
- (b) Diagonalize A (i.e, find P and D such that $P^{-1}AP = D$).
- (c) Use part (b) to find the exact formula for A^k .