Calculus I (Math 231) Exam 3

Date: April 10, 2006
Professor Ilya Kofman
Justify answers and show all work for full credit. No symbolic calculators allowed.

NAME: \qquad

Problem 1. (1) Find the critical points, (2) Identify the absolute max and min.

$$
h(x)=x^{3}-6 x^{2}+15, \quad-5 \leq x \leq 5
$$

Problem 2. (1) Find the critical points, (2) Find intervals where it is increasing or decreasing, (3) Identify all relative extrema using the First Derivative Test.
(a) $f(x)=x^{4}-2 x^{2}-3$
(b) $g(x)=x^{2}-8 x+6 \ln (x), \quad x>0$

Problem 3. (1) Find the inflection points, (2) Find intervals where it is concave up or down, (3) Identify all relative extrema using the Second Derivative Test.
(a) $f(x)=x^{4}-2 x^{2}-3$
(b) $g(x)=x^{2}-8 x+6 \ln (x), \quad x>0$

Problem 4. Sketch $f(x)$ and $g(x)$ using your answers in Problems 2 and 3.

Problem 5. A cylindrical can with height h and radius r will hold 4ℓ of soup. The material for the top and bottom costs 2 cents per square cm , and the material for the side costs 1 cent per square cm . Find h and r to minimize the cost of materials.

Problem 6. The value of e is about 2.718. Use differentials to estimate $e^{0.9}$. Simplify your answer to be in terms of e (for example, $e / 2$).

Problem 7. Use Newton's Method to approximate the zero of $f(x)=x^{4}-x-1$ to one decimal place. Start with initial estimate $x=1$.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

