Linear Algebra (Math 338) Midterm Exam 2

Date: April 19, 2007
Justify answers and show all work for full credit, except for Problem 1.

NAME: \qquad

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
Σ \qquad

Problem 1. (10 pts.) SHORT ANSWERS - NO PARTIAL CREDIT
(a) Circle one: A linearly independent set in \boldsymbol{R}^{n} that is NOT a basis has how many vectors?
AT LEAST $n / A T$ LEAST $n+1 / A T \operatorname{MOST} n-1 / A T M O S T n$
(b) Circle one: A spanning set in \boldsymbol{R}^{n} that is NOT a basis has how many vectors? AT LEAST $n /$ AT LEAST $n+1 / A T \operatorname{MOST} n-1 / A T \operatorname{MOST} n$
(c) Circle one: For $A_{7 \times 4}$, if the columns of A are linearly independent, then $A x=0$ has $0 / 1 / \infty$-many solutions.
(d) If the rows of $A_{3 \times 5}$ are linearly independent, what is $\operatorname{nullity}(A)$?
(e) If $\operatorname{Im}\left(A_{3 \times 5}\right)$ is the plane $x-4 y+z=0$, what are $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$?

Problem 2. (15 pts.)

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
4 & 7 & 1 \\
2 & 5 & -1
\end{array}\right]
$$

(a) Find the reduced row-echelon form, $\operatorname{rref}(A)$.
(b) Find the rank and nullity of A. Justify!
(c) Find a basis for the column space of A.

Problem 3. (15 pts.) $\quad A=\left[\begin{array}{ccccc}1 & 3 & -2 & 1 & 1 \\ 2 & 6 & -1 & -1 & 2 \\ 2 & 6 & 1 & -3 & -1\end{array}\right] \quad \operatorname{rref}(A)=\left[\begin{array}{ccccc}1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
(a) Find the rank and nullity of A.
(b) Find a basis for $\operatorname{Im}(A)$.
(c) Find a basis for $\operatorname{Ker}(A)$.

Problem 4. (15 pts.)
(a) Let $L: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{3}$ be the linear transformation defined by $L(\boldsymbol{x})=A \boldsymbol{x}$, where

$$
A=\left(\begin{array}{cc}
2 & 1 \\
3 & -2 \\
-1 & 3
\end{array}\right)
$$

Is the vector $(-1,-2,2)$ in the range of L? Justify.
(b) Let $L(x, y, z)=(5 x+3 y-2 z, 4 x-y+3 z)$.

Find the standard matrix that represents L.

Problem 5. (25 pts.) Let $S=\left\{u_{1}, u_{2}\right\}$ and $T=\left\{u_{1}, u_{3}\right\}$ be two bases for \boldsymbol{R}^{2}, where

$$
u_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], u_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], u_{3}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

(a) Verify that S is a basis.
(b) Find the coordinate vector of $v=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ with respect to the basis S.
(c) Find the coordinate vector of $v=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ with respect to the basis T.
(d) Find the transition matrix $P_{T \leftarrow S}$.
(e) Verify that $[v]_{S}$ and $[v]_{T}$ are related by the transition matrix.

Problem 6. (20 pts.)
(a) A student's scores are given as a vector \mathbf{u}, and each score is worth a certain percentage of the total, given by a vector \mathbf{v}. For example, $\mathbf{u}=(82,75,89,9,6,8,8,7,9)$ and $\mathbf{v}=(20,20,30,5,5,5,5,5,5)$. Write a general formula for the total student score $S(\mathbf{u}, \mathbf{v})$ out of 100 . (Use \mathbf{u} and \mathbf{v} in general, not just for this example!)
(b) Suppose \mathbf{u} is orthogonal to both \mathbf{v} and \mathbf{w}. Show that \mathbf{u} is orthogonal to any vector $(r \mathbf{v}+s \mathbf{w})$ for any scalars r and s.
(c) Write the matrix for a linear transformation of \boldsymbol{R}^{2} that makes a 90° rotation and doubles the length. (Hint: Draw a picture.)
(d) Write the matrix for a linear transformation of \boldsymbol{R}^{3} that makes a 90° rotation in the $x z$-plane.

