
Linear Algebra (Math 338) Midterm Exam 1

Date: March 1, 2007 Professor Ilya Kofman

1. Justify answers and show all work for full credit, except for Problem 1.

2. No symbolic calculators allowed on this exam.

3. Answer the questions in the space provided on the question sheet. If you run
out of room for an answer, continue on back of the page.
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Problem 1. (10 pts.) State whether the following statements are Always true,
Sometimes true, or Never true. Please circle one of A, S, N below.

(a) If A and B are diagonal matrices then AB = BA.

A S N

(b) If A and B are n× n matrics and A is singular,
then (AB) is singular.

A S N

(c) If A2 = In, then A = In or A = −In.

A S N

(d) Let O be the zero matrix. If rref(A) = O, then A = O.

A S N

(e) A homogeneous system with more variables than equations
has a finite number of solutions.

A S N
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Problem 2. (15 pts.) Justify three out of the following four statements with a short
general argument. (Do all four for a bonus.)

(a) If A−1 = AT then det
(
A−1

)
= ±1.

(b) If A is any n× n matrix then (A + AT ) is symmetric.

(c) If det(A) 6= 0 then Ax = b has a unique solution.

(d) If Ax = b has solutions u1 =

 2
2
2

 and u2 =

 4
4
4

 then u3 =

 3
3
3

 is also

a solution.
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Problem 3. (15 pts.)

(a) Give an example of a 3 × 4 matrix in reduced row-echelon form (rref) that has
one row [0 0 0 1] and has two entries “ 2”.

(b) Solve the following linear system:

 1 0 0 2
0 1 0 0
0 0 1 −1




x
y
z
w

 =

 0
4
3



(c) If A is an invertible matrix such that A2 = A, compute the determinant |A|.
Show your work!
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Problem 4. (15 pts.) Evaluate the following determinants:

(a)

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 6
0 0 0 0 5 6
0 0 0 4 5 6
0 0 3 4 5 6
0 2 3 4 5 6
1 2 3 4 5 6

∣∣∣∣∣∣∣∣∣∣∣∣
(b) If A, B are 3× 3 matrices with |A| = 2 and |B| = 3, compute |2AB|.

(c) If A, B are 3× 3 matrices with |A| = 2 and |B| = 3, compute |A4BT A−1|.

5



Problem 5. (15 pts.) Consider the following linear system:
x1 − x2 + x4 = 2

x1 − x3 + 2x4 = 0

−x2 + x3 + x4 = −6

.

(a) Write its associated augmented matrix.

(b) Reduce the matrix to its reduced row-echelon form (rref).

(c) Use this procedure to solve the system.
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Problem 6. (15 pts.)

A =

 1 −1 0
1 0 −1
0 a 2


(a) For which values of a is A invertible?

(b) Use elementary operations to find the inverse of A when a = −1.
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Problem 7. (15 pts.) Use Cramer’s rule to solve the following linear system:
x− z = −3

2x + y = 2

−2y − z = −1

.
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