Calculus I (Math 231) Exam 1

Date: February 21, 2006
Professor Ilya Kofman
Justify answers and show all work for full credit. No calculators allowed.

NAME: \qquad

Problem 1. Compute these limits. For an infinite limit, write $+\infty$ or $-\infty$. Otherwise, if a limit does not exist (DNE), you must justify. Show all work!
(a) $\lim _{x \rightarrow-5} \frac{x^{2}+9 x+20}{x+5}$
(b) $\lim _{x \rightarrow 9^{-}} \frac{\sqrt{x}-3}{x-9}$
(c) $\lim _{x \rightarrow 8} \frac{|x-8|}{x-8}$
(d) $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x-4}}{x+1}$

Problem 2. Compute these limits. For an infinite limit, write $+\infty$ or $-\infty$. Otherwise, if a limit does not exist (DNE), you must justify. Show all work!
(a) $\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{3 \tan (2 \theta)}$
(b) $\lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{6 \theta}$
(c) $\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}$

Problem 3. Compute these limits. For an infinite limit, write $+\infty$ or $-\infty$. Otherwise, if a limit does not exist (DNE), you must justify. Show all work!
(a) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}-18}{x^{3}-27}$
(b) $\lim _{x \rightarrow \infty}\left(\frac{1}{1+x}-\frac{1}{1-x}\right)$
(c) $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{1+x}-\frac{1}{1-x}\right)$

Problem 4. Find constants a and b such that $f(x)$ is everywhere continuous.

$$
f(x)= \begin{cases}2 x^{3}-1 & x \leq-1 \\ a x+b & -1<x<0 \\ \frac{\sin \sqrt{x}}{\sqrt{x}} & x \geq 0\end{cases}
$$

