Calculus I (Math 231) Exam 1

September 26, 2007

Professor Ilya Kofman

Justify answers and show all work for full credit.

NAME: \qquad

Problem 1. Compute these limits. For an infinite limit, write $+\infty$ or $-\infty$. Otherwise, if a limit does not exist (DNE), you must justify. Show all work!
(a) $\lim _{x \rightarrow-1} \frac{x^{2}-4 x}{x^{2}-3 x-4}$
(b) $\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1+x}-1}{x}$
(c) $\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}$
(d) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$

Problem 2. Compute and explain these limits. For an infinite limit, write $+\infty$ or $-\infty$. You must justify - show all work!
(a) $\lim _{x \rightarrow 0} \frac{\sin (7 x)}{3 x}$
(b) $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{2 \pi}{x}\right)$
(c) $\lim _{x \rightarrow 0}\left(\frac{1}{x \sqrt{1+x}}-\frac{1}{x}\right)$
(Bonus) Suppose $2 x-1 \leq f(x) \leq x^{2}$ for $0<x<3$. Find $\lim _{x \rightarrow 1} f(x)$.

Problem 3. Compute and explain these limits. For an infinite limit, write $+\infty$ or $-\infty$. You must justify - show all work!
(a) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}+4 x+1}{5 x-3 x^{2}}$
(b) $\lim _{x \rightarrow \infty} \frac{(x+2)^{2}}{1+3 x^{2}}$

Problem 4. Determine whether the function $f(x)$ is continuous at $x=2$.

$$
f(x)=\left\{\begin{array}{cc}
\frac{6}{x} & 0<x \leq 2 \\
x^{2}-\cos (\pi x) & x>2
\end{array}\right.
$$

Problem 5. For what value of the constant c is $g(x)$ everywhere continuous?

$$
g(x)= \begin{cases}c x^{2}+2 x & x<2 \\ x^{3}-c x & x \geq 2\end{cases}
$$

