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Graphs on surfaces and Khovanov homology

ABHIJIIT CHAMPANERKAR
ILyA KOFMAN
NEAL STOLTZFUS

Oriented ribbon graphs (dessins d’enfant) are graphs embedded in oriented surfaces. A
quasi-tree of a ribbon graph is a spanning subgraph with one face, which is described
by an ordered chord diagram. We show that for any link diagram L, there is an
associated ribbon graph whose quasi-trees correspond bijectively to spanning trees
of the graph obtained by checkerboard coloring L. This correspondence preserves
the bigrading used for the spanning tree model of Khovanov homology, whose
Euler characteristic is the Jones polynomial of L. Thus, Khovanov homology can
be expressed in terms of ribbon graphs, with generators given by ordered chord
diagrams.

57M25, 57M15; 05C10

In memory of Xiao-Song Lin

1 Introduction

A ribbon graph is a multi-graph (loops and multiple edges allowed) that is embedded in
a surface, such that its complement is a union of 2—cells. In the case when the surface
is oriented, the embedding determines a cyclic order on the edges at every vertex, which
is called an orientation for the ribbon graph. Other terms for oriented ribbon graphs
include: combinatorial maps, fat graphs, cyclic graphs, graphs with rotation systems,
and dessins d’enfant (see Bollobds and Riordan [1]). In this paper, all ribbon graphs
will be oriented.

The Jones polynomial of any link can be obtained as a specialization of the Bollobas-
Riordan-Tutte polynomial of a ribbon graph obtained from the link diagram (see
Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [4]). The Jones polynomial also has
an expansion in terms of spanning trees of the Tait graph, obtained by checkerboard
coloring the link diagram. Moreover, with an appropriate bigrading, these spanning
trees generate Khovanov homology, whose bigraded Euler characteristic is the Jones
polynomial (see Champanerkar and Kofman [2]).
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We show that there is a one-to-one correspondence between spanning trees of the
Tait graph and guasi-trees, which are spanning ribbon subgraphs with one face. We
translate the data used to define the bigrading for spanning trees to the language of
ribbon graphs using ordered chord diagrams. The Khovanov homology results in [2]
are then expressed in terms of ribbon graphs and ordered chord diagrams. This leads to
the question: Do any of the algebraic structures known for chord diagrams carry over
to Khovanov homology?

This project was inspired by Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [3] and
Manturov [7], and the correspondence we establish implies some of their results. For
example, we give a new proof that the thickness of Khovanov homology has a bound
in terms of the Turaev genus.

The first author was supported by by National Science Foundation grant DMS-0455978,
the second author by National Science Foundation grant DMS-0456227 and PSC-
CUNY grant 60046-3637, and the third author by National Science Foundation grant
DMS-0456275.

2 Quasi-trees and spanning trees

Let D be a connected link diagram. A checkerboard coloring of D determines the Tait
graph G. An edge of G is positive if the shaded regions of its endpoints are joined by
A-smoothing the corresponding crossing of D. Otherwise, the edge is negative. We
take either G or its planar dual so that £4(G) = E_(G).

Let G be the all-A ribbon graph of D as defined in [4]. Let V(G) be the number of
vertices of &, which is the number of components in the all-A4 state of D. A ribbon
subgraph H C G is called a spanning subgraph if V(H) = V(G). Let F(H) be the
number of faces of H, which is the number of complementary regions in the orientable
surface of minimal genus on which H embeds. The genus of this surface is called the
genus of H, g(H), so if H has & components, V(H) — E(H) + F(H) = 2k —2g(H).
A quasi-tree @Q is a spanning subgraph of G with F(Q) = 1 (see [3, Definition 3.1]).

Theorem 2.1 Quasi-trees of G are in one-one correspondence with spanning trees of
G:

Qi< Ty, where v+ j=231(V(G)+EL(G)-V(G))
Qj denotes a quasi-tree of genus j, and T, denotes a spanning tree with v positive
edges.
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The proof will use the following lemma. Any state s of D corresponds to a unique map
s: Edges(G) — {4, B}. Let |s| denote the number of components in that smoothing
of D. In [4, Section 4], the ribbon graph G(s) was defined such that V(G(s)) = |s].
We now define a different correspondence between states of D and ribbon graphs:

Lemma 2.2 Spanning subgraphs H C G are in one-one correspondence with states s
of D, such that s(H)(e) = B iff e € H. Thus, F(H) = |s| and V(H) = V(G).

Proof For any state s of D, let Dy denote the following link diagram:

D. — A—smoothing ate if 5(e) =4
T D—crossing at e if s5(e) =B

Let G4(Dy) and Gg(D;s) denote the all-A and all- B ribbon graphs of Dy, respec-
tively. For any state s of D, define H(s) = G4(Dy). If we identify s with 5, then
s =85(H(s)) and H = H(s(H)).

The ribbon graphs H(s) = G4(Ds) and Gg(Dys) are dual in the sense of Dasbach,
Futer, Kalfagianni, Lin and Stoltzfus [4, Lemma 4.1]. By the duality, F(H(s)) =
V(GB(Dy)) = |s]. Also, V(H(s)) = V(G4(Dy)) = V(G). O

A Jordan trail of a connected link diagram is a choice of smoothings at each crossing
that results in a simple closed curve (see Kauffman [5, page 2]). There is a one-one
correspondence between Jordan trails of D and spanning trees of the Tait graph G
[5, page 56]. In particular, the Jordan trail of a spanning tree 7' bounds a planar
neighborhood of 7.

Proof of Theorem 2.1 In the table below, let 7, ¢, 7,7 denote a positive edge in T, a
positive edge in G—T', anegative edge in 7', and a negative edge in G — T, respectively.
The Jordan trail of T is then given by the smoothings of D shown in the second row.
By Lemma 2.2, each Jordan trail corresponds to a spanning subgraph of G with one
face, which is a quasi-tree. Let Q be the quasi-tree that corresponds to 7. If Q € Q
and ¢ € (G—Q), then s(Q), given in Lemma 2.2, determines the correspondence:

T 3

A

Q & A
'

t
B
0
To prove the numerical claim, for any 7" in G, v(T) = #t and E(Q) = # + #7.
J=11-V(@ + E@) = (1 -V(G) + # + #7)
vt j = %(2(#77) +1-V(G) +# +#7) = %(V(G) + EL(G)—-V(G))
since #1 +#7 = E(T) = V(G) — 1 and #t + # = E+(G). O

S
S
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3 Quasi-tree complex for Khovanov homology

To construct the spanning tree chain complex in Champanerkar—Kofman [2], every
spanning tree T  of the Tait graph G was given a bigrading (#(7"), v(7)). By Theorem
2.1, the v—grading, which is the number of positive edges in 7', is determined by the
genus of the corresponding quasi-tree (0. The u—grading, which was defined using
activities in the sense of Tutte, also has a quasi-tree analogue in terms of the ordered
chord diagram for Q.

If D has n ordered crossings, let G be given by permutations (09,07, 0,) of the
set {1,...,2n}, such that the ith crossing corresponds to half-edges {2i — 1,2i},
which are marked on the components of the all-A state of D. For an example, see
Figure 2 in Section 4. We give the components of the all- A state of D the admissible
orientation for which outer ones are oriented counterclockwise (see Dasbach, Futer,
Kalfagianni, Lin and Stoltzfus [4]). In this way, every component has a well-defined
positive direction.

The orbits of o form the vertex set. In particular, oy is given by noting the half-edge
marks when going in the positive direction around the components of the all-A state
of D. The other permutations are given by o, = ]_[;'=1 (2i —1,2i) and 03 = 0100, 1

Let an ordered chord diagram denote a circle marked with {1,...,2n} in some order,
and chords joining all pairs {2i — 1, 2i}.

Proposition 3.1 Every quasi-tree Q corresponds to the ordered chord diagram Cg
with consecutive markings in the positive direction given by the permutation:

O’(i)= O'()(i) lﬁ/@
o, (i) i€Q

Proof Since Q is a quasi-tree, yg is one simple closed curve. If we choose an
orientation on S(G), we can traverse yg along successive boundaries of bands and
vertex discs, such that we always travel around the boundary of each disc in a positive
direction (i.e., the disc is on the left). If a half-edge is not in @, yg will pass across
it travelling along the boundary of a vertex disc to the next band. If a half-edge is in
Q, yg traverses along one of the edges of its band. On yg, we mark a half-edge not
in @ when yg passes across it along the boundary of the vertex disc and we mark a
half-edge in @ when we traverse an edge of a band in the direction of the half-edge. If
the half-edge i is not in Q, travelling along the boundary of a vertex disc, the next
half-edge is given by oy . If the half-edge 7 is in Q, traversing the edge of its band to
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Figure 1: Ribbon graph G, quasi-tree Q@ = (12)(56) with curve yg, chord
diagram Cg

the vertex disc and then along the boundary of that disc, the next half-edge is given by
0001 =0, !, For example, see Figure 1.

As @ is a quasi-tree, each of its half-edges must be in the orbit of its single face, while
the complementary set of half-edges are met along the boundaries of the vertex discs.
As we mark all half-edges traversing yq, the chord diagram Cg parametrizes yg. O

Note that if G is the all- A ribbon graph of a connected link diagram D, by the proof
of Theorem 2.1, following yg along an edge of Q is given by the B—smoothing of
that crossing of Dy (q). Therefore, the chord diagram Cq parametrizes both yg and
the Jordan trail for 7", which is the all- B state of Dy(q).

To compute the genus g(Q) from Cg, let C be the sub-chord diagram of chords that
correspond to edges in Q. Then g(Q) is half the rank of the adjacency matrix of the
intersection graph of C (see Bollobds and Riordan [1]).

Definition 3.1 Using min(i, 01(i)), there is an induced total order on the chords of
Cg. A chord is live if it does not intersect lower-ordered chords, and otherwise it is
dead. For any quasi-tree Q, an edge e is live or dead when the corresponding chord
of Cg is live or dead.

In Figure 1, we show Cg such that the only edge live with respect to Q@ is (12).

For every spanning tree 7" of G, each edge e € G has an activity with respectto 7',
as originally defined by Tutte. If e € T', cut(T, e) is the set of edges that connect
T\e.If f&T, cyc(T, f) is the set of edges in the unique cycle of T U f. Note
f ecut(T,e) if and only if e € cyc(T, f). Anedge e € T (resp. e &€ T) is live if it
is the lowest edge in its cut (resp. cycle), and otherwise it is dead.

Lemma 3.2 If T corresponds to Q, as in Theorem 2.1, then the i th edge of G is live
with respect to Q if and only if the i th edge of G is live with respect to T .
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Proof In Cg, the ith and j th chords intersect if and only if going around the Jordan
trail for 7' in some direction, we see cyclic permutations of the marks (2i — 1,2 —
1,2i,2j) or (2i—1,27,2i,2j—1). Now, e; € cut(T, ej) or e; € cyc(T, ej) if and only
if the Jordan trail becomes disconnected when the jth smoothing is changed, and is
re-connected when the 7 th smoothing is changed (see Kauffman [6]). Equivalently, Cg
becomes disconnected when unzipped along the jth chord, and becomes re-connected
when unzipped along the 7 th chord, which occurs if and only if the 7 th and j th chords

intersect:
D~ -

Therefore, ¢; is live with respect to 7" exactly when the i th chord does not intersect
lower-ordered chords. |

Definition 3.3 For any quasi-tree Q of G, we define
u(Q) = #{live edges not in Q} — #{live edges in @} and v(Q)=—g(Q)
Define C(G) = ®4,,C5(G), where Ch(G) =Z(Q C G|u(Q) =u, v(Q) =v)

Theorem 3.4 For a knot diagram D, there exists a quasi-tree complex C(G) =
{C¥(G), 3} with 8: C% — C"~| that is a deformation retract of the reduced Khovanov

complex. In particular, the reduced Khovanov homology a"’ (D; 7) is given by
H"(D;7) ~ H*(C(6): 2)
with the indices related as follows:
u=j—i—w(D)+1 and v=j/2—i+ V(G)—c4+(D))/2

where w(D) is the writhe, c4 (D) is the number of positive crossings of D, and V(G)
is the number of components in the all-A state of D, which is the number of vertices
of G.

Proof The result follows from Champanerkar—-Kofman [2, Theorem 5] and Theorem
2.1, once we establish for a spanning tree 7" corresponding to a quasi-tree (Q that their
bigradings are related as claimed.

By Lemma 3.2, edges of Q and T are live exactly when they correspond. From
[2], u(T) =#L —#{ —#L + #{. By the proof of Theorem 2.1, {L, {}—edges of T
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correspond to live edges not in @, and {£, L}—edges of T correspond to live edges in
Q. Therefore,

u(Q) = #{live edges not in Q} —#{live edges in Q} =u(T)=j—i —w(D) +1

By [2, Theorem 5] and Theorem 2.1,
V(G)+ EL(G)—-V(G)

V(@) =—g(@ =v(T) -

2
_ (i i w(D)—k(D) —2) V(G + EL(G)-V(G)
- \2 4 2
_J_, wDHEG) V) _j . V(G)=cx(D)
2 4 2 2 2
where we used that w(D) + E(G) = w(D) + ¢(D) = 2¢4+ (D). |

Remark Similarly, for any knot diagram D there exists a quasi-tree complex that is
a deformation retract of the (unreduced) Khovanov complex. Let C:fj;f(@) =CH(G).
Let UCYH(G) = (Cf,’ (G)+ C”IIZ(G), 8). By [2, Theorem 6] and the rest of the proof of

v

Theorem 3.4, H"/ (D;7) =~ H}(UC(G); Z), with the indices related as above.

Let G(D) be the all-A ribbon graph of a connected link diagram D. As defined by
Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [4], for any link L, the Turaev genus
g7 (L) is the minimum value of g(G(D)) among all connected diagrams D of L. The
following bound for the thickness of Khovanov homology in terms of Turaev genus
was obtained by Manturov [7]:

Corollary 3.1 For any knot K with Turaev genus g7 (K), the thickness of the reduced
Khovanov homology of K is less than or equal to g7 (K) + 1. The thickness of the
(unreduced) Khovanov homology of K is less than or equal to g7 (K) + 2.

Proof Let D be any diagram of K and G its all-A4 ribbon graph. For any quasi-tree
Q of G, —g(G) = v(Q) < 0. Therefore, C(G) has g(G) + 1 rows, so H!(C(G); Z)
has at most g(G) + 1 rows. Similarly, by the Remark above, H)(UC(G); Z) has at
most g(G) + 2 rows. Hence the bound follows from the definition of Turaev genus. O

Corollary 3.1 is stronger than [2, Theorem 13(ii)] because, for instance, knots with
Turaev genus one are a much richer class than 1-almost alternating knots. (For example,
see Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [3, Lemma 4.3].) However, by the
correspondence in Theorem 2.1, the two proofs are the same: Since 0 < j < g(G),

G) = T)— min v(T
g2(6) rTnCaév() ;nclg,v()
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Corollary 3.2 The Turaev genus of (3, q¢)—torus knots is unbounded.

Proof The rational Khovanov homology of (3, ¢)-torus links was computed by
Turner [8]. From this work, the thickness of the Khovanov homology of torus knots
of type (3,3N + 1) and (3,3N +2) is exactly N + 2. By Corollary 3.1, the Turaev
genus of these torus knots is at least V. |

4 Example

As an example, we use a 4—crossing diagram of the trefoil. In Figure 2, we show the
diagram D, the Tait graph G, the all-A4 ribbon graph G and its surface, given by
oo = (15724863), o1 = (12)(34)(56)(78) and 0, = (14)(2835)(67).

Figure 2: The 4—crossing trefoil, the Tait graph G, the all-A ribbon graph
G and its surface

The ordered chord diagram for each quasi-tree is given by Proposition 3.1. This order
can be seen from the corresponding Jordan trail, which is shown for the quasi-tree Q;
with edges (12) and (56):

6

(|5
.
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Below we show the correspondence between the spanning trees of G' and the chord
diagrams for the quasi-trees of . The circled numbers indicate edges in G — ().
The activities follow the convention: capital letters for edges in the spanning tree or
quasi-tree, bar for negative edges, L or £ for live, D or d for dead.

@CD@

O] ®

&) ®
®

Q;=LdDd | Qu=Ld{D | Qy=(DDd | Q4=(D¢D |Qs=~(tdd

T, =£{DDd T, ={DLD Ty = LdDd Ty=Ld{D |Ts=LLdd
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