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Abstract. Almost-Fuchsian manifold is a class of complete hyperbolic three-

manifolds. A such three-manifold is a quasi-Fuchsian manifold that contains

a closed incompressible minimal surface with principal curvatures everywhere

in the range of (−1, 1). In such a manifold, the minimal surface is unique and

embedded, hence one can parametrize these hyperbolic three-manifolds by

their minimal surfaces. In this paper we obtain estimates on several geometric

and analytical quantities of an almost-Fuchsian manifold M in terms of the

data on the minimal surface. In particular, we obtain an upper bound for

the hyperbolic volume of the convex core of M , and an upper bound on the

Hausdorff dimension of the limit set associated to M . We also constructed a

quasi-Fuchsian manifold which admits more than one minimal surface, and it

does not admit a foliation of closed surfaces of constant mean curvature.

1. Introduction

Quasi-Fuchsian manifold is an important class of complete hyperbolic three-
manifolds. In hyperbolic geometry, quasi-Fuchsian manifolds and their moduli
space, the quasi-Fuchsian space QF(S), have been objects of extensive study in
recent decades. In particular, incompressible surfaces of small principal curva-
tures play an important role in hyperbolic geometry and low dimensional topology
([Rub05]). Analogs of these surfaces and three-manifolds are also a center of study
in anti-de-Sitter geometry ([KS07, Mes07]). In this paper, we mostly consider a
subspace of the quasi-Fuchsian space: almost-Fuchsian manifolds. They form a
subspace of the same complex dimension 6g−6 in QF(S), where g ≥ 2 is the genus
of any closed incompressible surface in the manifold ([Uhl83]). Understanding the
structures of the quasi-Fuchsian space is a mixture of understanding the geometry
of quasi-Fuchsian 3-manifolds, the deformation of incompressible surfaces, as well
as the representation theory of Kleinian groups. It is highly desirable to use infor-
mation on special surfaces (minimal or constant mean curvature) to obtain global
information on the three-manifold.

Let us make a definition:

Definition: We call M an almost-Fuchsian manifold if it is a quasi-Fuchsian
manifold which contains a closed incompressible minimal surface Σ such that the
principal curvatures of Σ are in the range of (−1, 1).
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Recall that we call a closed surface incompressible in M if the inclusion induces
an injection between fundamental groups of the surface and the three-manifold
M . Naturally, M is Fuchsian when Σ is actually totally geodesic. The notion of
almost-Fuchsian (term coined in [KS07]) was first studied by Uhlenbeck ([Uhl83]),
where she proved several key properties of almost-Fuchsian manifolds that will be
vital in this work: Σ is the only closed incompressible minimal surface in M , and
M admits a foliation of parallel surfaces from Σ to both ends. Around the same
time, Epstein ([Eps86]) used the parallel flow in H3 to study the quasiconformal
reflection problem.

Throughout the paper, all surfaces in M involved are assumed to be closed,
oriented, incompressible, of genus at least two. We also assume M is not Fuchsian,
or most theorems are trivial. One of our motivations is to use various techniques
in analysis to investigate geometric problems in hyperbolic three-manifolds.

Since the minimal surface is unique in an almost-Fuchsian manifold, we can
use minimal surfaces to parametrize the space of almost-Fuchsian manifolds. This
parametrization is in terms of the conformal structure of the minimal surface and
the holomorphic quadratic differential on the conformal structure which determines
the second fundamental form of the minimal surface in the three-manifold (see
[Uhl83, Tau04, HLar]). We will focus on instead obtaining topological and geo-
metric information about M from data of Σ in this paper. Among the quantities
associated to a quasi-Fuchsian manifold, the hyperbolic volume of the convex core
and the Hausdorff dimension of the limit set are perhaps the most significant. Esti-
mates on them in term of the geometry of the minimal surface in M are obtained in
this paper. Moreover, the foliation structure possessed by M allows us to investigate
a notion of renormalized volume for the almost-Fuchsian manifold.

The convex core of a quasi-Fuchsian manifold is the smallest convex subset of a
quasi-Fuchsian manifold that carries its fundamental group. From the point of view
of hyperbolic geometry, the convex core contains all the geometrical information
about the quasi-Fuchsian three-manifold itself (see for instance, [AC96, Bro03]).
As a direct application, when M is almost-Fuchsian, we obtain an explicit upper
bound for the hyperbolic volume of the convex core C(M), in terms of the maximum
principal curvature on the minimal surface Σ:

Theorem 1.1. If M is almost-Fuchsian, and let λ0 = max
x∈Σ
{|λ(x)|} be the maximum

of the principal curvature of the minimal surface Σ of M , then

Vol(C(M)) ≤ Ahyp

(
λ0

1− λ2
0

+
1
2

log
1 + λ0

1− λ0

)
= Ahyp

(
2λ0 +

4
3
λ3

0 +O(λ5
0)
)
,(1.1)

where Ahyp = 2π(2g − 2) is the hyperbolic area of Σ.

We immediately see quantitatively how the volume of C(M) goes to zero when
λ0 is close to zero. In [Bro03], Brock showed the hyperbolic volume of the convex
core is quasi-isometric to the Weil-Petersson distance between conformal infinities
of M in Teichmüller space.
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It is well-known that the Hausdorff dimension of the limit set for any quasi-
Fuchsian group is in the range of [1, 2), and identically 1 if and only if it is Fuchsian.
We also obtain an upper bound for the Hausdorff dimension of the limit set ΛΓ of
M , in terms of λ0 as well:

Theorem 1.2. If M = H3/Γ is almost-Fuchsian, and let λ0 = max
x∈Σ
{|λ(x)|}, then

the Hausdorff dimension D(ΛΓ) of the limit set ΛΓ for M satisfies

(1.2) D(ΛΓ) < 1 + λ2
0.

For λ0 close to zero, Theorems 1.1 and 1.2 measure how close M is to being
Fuchsian. In ([GHW10]), we related the foliation structure of an almost-Fuchsian
manifold to both Teichmüller metric and the Weil-Petersson metric on Teichmüller
space.

Given a quasi-Fuchsian manifold, it admits finitely number of minimal surfaces
([And83]). One expects the space of almost-Fuchsian manifolds is not the full
quasi-Fuchsian space, and indeed, the second named author ([Wan10]) showed
some quasi-Fuchsian manifolds that admit more than one minimal surface. A fur-
ther generalization is to consider closed surfaces of constant mean curvature in a
quasi-Fuchsian manifold. This is a vastly rich area where many analytical tech-
niques can be applied. A natural question (Thurston) is to ask, to what extent
that a quasi-Fuchsian manifold admits a foliation of closed (incompressible) sur-
faces of constant mean curvature. In the second part of this paper, we construct a
quasi-Fuchsian manifold which admits more than one minimal surface (hence not
almost-Fuchsian), such that it does not admit such a foliation, namely,

Theorem 1.3. There exists a quasi-Fuchsian manifold N which does not admit a
foliation of constant mean curvature surfaces.

One of our original motivations is to investigate whether almost-Fuchsian man-
ifolds are the appropriate subclass of quasi-Fuchsian manifolds that admit such a
foliation.

We conclude this introduction by the following note: our volume estimate can
be generalized to a possibly slightly larger class of quasi-Fuchsian manifolds than
almost-Fuchsian manifolds. In other words, one can define a notion of nearly Fuch-
sian manifolds: a class of quasi-Fuchsian manifolds that each admits a closed in-
compressible surface (not necessarily minimal) of principal curvatures in the range
of (−1, 1). One can similarly verify that a nearly Fuchsian manifold admits a folia-
tion by parallel surfaces of this fixed surface of small principal curvatures. It is not
known if these two classes of quasi-Fuchsian manifolds actually coincide, or if any
nearly Fuchsian manifold admit only one minimal surface.

Plan of the paper. After a brief section on the preliminaries, the rest of the pa-
per contains two parts: In §3, we prove several results on the geometry of almost-
Fuchsian manifolds, including the renormalized volume of M , Theorem 1.1 (volume
estimate) and Theorem 1.2 (Hausdorff dimension estimate). In §4, we prove Theo-
rem 1.3 by constructing an explicit quasi-Fuchsian manifold.
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2. Preliminaries

In this section, we fix our notations, and introduce some preliminary facts that
will be used later in this paper.

2.1. Quasi-Fuchsian manifolds. For detailed reference on Kleinian groups and
low dimensional topology, one can go to [Mar74] and [Thu82].

The universal cover of a complete orientable hyperbolic three-manifold is H3,
and the deck transformations induce a representation of the fundamental group of
the manifold in Isom(H3) = PSL(2,C), the (orientation preserving) isometry group
of H3. A subgroup Γ ⊂ PSL(2,C) is called a Kleinian group if Γ acts on H3 properly
discontinuously. For any Kleinian group Γ, ∀ p ∈ H3, the orbit set

Γ(p) = {γ(p) | γ ∈ Γ}

has accumulation points on the boundary ∂H3 = S2
∞ = Ĉ, and these points are the

limit points of Γ, and the closed set of all these points is called the limit set of Γ,
denoted by ΛΓ.

In the case when ΛΓ is contained in a circle S1 ⊂ S2, the quotient manifold
M = H3/Γ is called Fuchsian, and M is isometric to a (warped) product space
S × R. If the limit set ΛΓ lies in a Jordan curve, the quotient three-manifold
M = H3/Γ is called quasi-Fuchsian, and it is topologically S × R, where S is a
closed surface of genus g at least two. It is clear that a quasi-Fuchsian manifold is
quasi-isometric to a Fuchsian manifold. The space of such three-manifolds QF(S),
the quasi-Fuchsian space of genus g surfaces, is a complex manifold of dimension
of 6g − 6, which has very complicated structures.

Finding minimal surfaces in negatively curved manifolds is a problem of fun-
damental importance. The basic results are due to Schoen-Yau ([SY79]) and
Sacks-Uhlenbeck ([SU82]), and their results can be applied to the case of quasi-
Fuchsian manifolds: any quasi-Fuchsian manifold contains at least one incompress-
ible minimal surface. In the case of almost-Fuchsian, the minimal surface is unique
([Uhl83]). On the other hand, there are quasi-Fuchsian manifolds that admit many
minimal surfaces ([Wan10]).

An essential problem in hyperbolic geometry and complex dynamics is to study
the Hausdorff dimension D(ΛΓ) of the limit set ΛΓ associated to M . This problem
is also intimately related to understanding the lower spectrum theory of hyperbolic
three-manifold ([Sul87, BC94]). In the case of Fuchsian manifolds, ΛΓ is a round
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circle and D(ΛΓ) = 1. When M is quasi-Fuchsian but not Fuchsian, as is through-
out this paper, it is known that 1 < D(ΛΓ) < 2 ([Bow79, Sul87]). There is a rich
theory of quasiconformal mapping and its distortion on Hausdorff dimension, area
and other quantities (see for instance [GV73, LV73]).

2.2. Almost-Fuchsian manifolds. We now assume that M is an almost-Fuchsian
manifold: the principal curvatures of the minimal surface Σ are in the range of
(−1, 1). It is clear that for any closed embedded surface S in M , one can define
a regular parallel surface S(r) which is fixed (hyperbolic) distant r from S, for
sufficiently small r. A remarkable property for M is that when taking S to be the
minimal surface, the parallel surface S(r) is nonsingular for all r ∈ R.

To be more precise, using isothermal coordinates, the induced metric on a closed
incompressible surface S is given by gij(x) = e2v(x)δij , where v(x) is a smooth func-
tion on S, and while the second fundamental form is denoted by A(x) = [hij ]2×2,
where hij is given by, for 1 ≤ i, j ≤ 2,

hij = 〈∇eiν, ej〉,

where we choose {e1, e2} as an orthonormal basis on S, and ν is the unit normal
field on S, and ∇ is the Levi-Civita connection of (M, ḡαβ). Here, we add a bar on
top for each quantity or operator with respect to (M, ḡαβ).

Let λ1(x) and λ2(x) be the eigenvalues of A(x). They are the principal curvatures
of S, and we denote H(x) = λ1(x) + λ2(x) as the mean curvature function of S.
In classical differential geometry, the second fundamental form indicates how a
hypersurface immerses into the ambient manifold. Zero second fundamental form
is equivalent to say that the hypersuface is totally geodesic. Therefore, principal
curvatures are natural quantities to investigate in this type of problems.

Let S(r) be the family of equidistant surfaces with respect to S, i.e.

S(r) = {expx(rν) | x ∈ S} , r ∈ (−ε, ε) .

The induced metric on S(r) is denoted by g(x, r) = [gij(x, r)]1≤i,j≤2, and the second
fundamental form is denoted by A(x, r) = [hij(x, r)]1≤i,j≤2. The mean curvature on
S(r) is thus given by H(x, r) = gij(x, r)hij(x, r). Uhlenbeck calculated the induced
metric on S(r) in terms of the induced metric on S and the second fundamental
form of S, and found

Lemma 2.1 ([Uhl83]). The induced metric g(x, r) on S(r) has the form

(2.1) g(x, r) = e2v(x)[cosh(r)I + sinh(r)e−2v(x)A(x)]2 ,

where r ∈ (−ε, ε).

Any point on the parallel surface S(r) in M can now be represented by a pair
(x, r), where x ∈ S and r ∈ (−ε, ε). Direct computation shows that the principal
curvatures of S(r) are given by

(2.2) µj(x, r) =
tanh r + λj(x)

1 + λj(x) tanh r
, j = 1, 2 .
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Hence the mean curvature (the sum of principal curvatures) is given by

(2.3) H(x, r) =
2(1 + λ1λ2) tanh r + (λ1 + λ2)(1 + tanh2 r)

1 + (λ1 + λ2) tanh r + λ1λ2 tanh2 r
.

Since M is almost-Fuchsian, we now choose S = Σ to be the unique minimal
surface in M . From the explicit nature of the Lemma 2.1, one concludes that,
when |λj(x)| < 1 for j = 1, 2 and x ∈ Σ, the induced metrics g(x, r) are of no
singularity for all r ∈ R and therefore parallel surfaces of Σ form a foliation on M ,
called the equidistant foliation or the normal flow. We also observe all principal
curvatures {µj(x, r)} on the parallel surfaces are in the range of (−1, 1). We denote
the equidistant foliation from the minimal surface Σ by {Σ(r)}r∈R.

3. Geometry of Almost-Fuchsian Manifolds

In this section, we wish to obtain information about the almost-Fuchsian mani-
fold M via its unique minimal surface Σ. We derive several geometrical properties
on the equidistant foliation {Σ(r)}r∈R in §3.1. The calculations in this subsection
will set up the stage for later applications. In §3.2, we obtain explicit upper bounds
for the hyperbolic volume of the convex core of M , and compute explicitly the
renormalized volume of M . In §3.3, we establish the estimate for the Hausdorff
dimension of the limit set associated to the almost-Fuchsian manifold M .

3.1. Some estimates on the parallel surfaces. In this subsection, we provide
several estimates that will be used later. First, let us record a few quantities that
will be involved:

(1) The principal curvatures of the minimal surface Σ are ±λ(x), where x ∈ Σ
and we have 0 ≤ λ(x) < 1;

(2) λ0 is the maximum of λ, hence the maximal principal curvature on Σ;
(3) |S| is the area for any closed incompressible surface S (with respect to the

induced metric);
(4) Ahyp = 2π(2g− 2) is the hyperbolic area of any closed Riemann surface S;
(5) J(r) is the determinant of the Jacobian between Σ and the parallel surface

Σ(r) via the pullback. Note that Σ(r) is regular if and only if J(r) > 0;
(6) K(r) is the Gaussian curvature on Σ(r). In particular, K(0) = K(Σ) is the

Gaussian curvature on the minimal surface Σ;
(7) M(±r), r > 0, is the region in M bounded by surfaces Σ(−r) and Σ(r);
(8) Lastly, M(r), r > 0, is the region in M bounded between the minimal

surface Σ and the parallel surface Σ(r).

We start with a well-known estimate which implies the area of the minimal
surface under the induced metric from the ambient space is comparable to that of
the hyperbolic area, with universal constants. We only include a proof for the sake
of completeness, and it is very short.

Proposition 3.1. Ahyp
2 < |Σ| < Ahyp.
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Proof. We apply the Gauss equation:

K(Σ) = −1 + det(A) = −1− λ2

Thus we have

−K(Σ) = 1− det(A) = 1 + λ2.

We integrate this on the surface Σ, and apply the Gauss-Bonnet theorem, since Σ
is closed, to find

|Σ| < |Σ|+
∫

Σ

λ2 = Ahyp < 2|Σ|.

We next want to estimate the area of each parallel surface in the equidistant
foliation {Σ(r)}r∈R. We can see that they grow at a rate of sinh2(r), which is as
expected. The explicit formula in Lemma 2.1 indicates, for large |r|, the metric for
M behaves like the warped product metric.

Proposition 3.2. For all −∞ < r < +∞, we have

(2|Σ| − Ahyp) sinh2(r) < |Σ(r)| < |Σ| cosh2 r < Ahyp cosh2 r

Proof. The area element of Σ(r) is given by

(3.1) dµ(r) = (cosh2 r − λ2(x) sinh2 r)dµ,

where dµ is the area element for the minimal surface Σ.
We can now compute the surface area:

|Σ(r)| =
∫

Σ

(cosh2 r − λ2(x) sinh2 r)dµ

= |Σ| cosh2 r − sinh2 r

∫
Σ

λ2(x)dµ

= |Σ| cosh2 r − (Ahyp − |Σ|) sinh2 r(3.2)

= |Σ|(cosh2 r + sinh2 r)−Ahyp sinh2 r

= |Σ|+ (2|Σ| − Ahyp) sinh2 r(3.3)

Here we used the identity

(3.4)
∫

Σ

λ2 = Ahyp − |Σ|.

The estimates then follows from the Proposition 3.1, formulas (3.2) and (3.3).

As a consequence of the formula (3.1), we find that the determinant of the
Jacobian between Σ and Σ(r) is

(3.5) J(r) = cosh2(r)− λ2(x) sinh2(r).

From this, clearly, |λ| < 1 implies that J(r) > 0 for all r ∈ R. We also have the
following version of the Gauss-Bonnet formula:
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Proposition 3.3. The product of J(r) and K(r) is a function of x ∈ Σ, indepen-
dent of r. In other words,

(3.6) J(r)K(r) = K(0) = −1− λ2.

Proof. Let us conduct this computation. The formulas for the principal curvatures
of Σ(r) are given by (2.2). Therefore we have

K(r) = −1 + µ1(r)µ2(r)

= −1 +
tanh2(r)− λ2

1− λ2 tanh2(r)

=
(λ2 + 1)(sinh2(r)− cosh2(r))

J(r)

= − (λ2 + 1)
J(r)

.

We conclude this subsection with the following remark that the identity (3.6)
holds more generally. If S is a closed surface with principal curvatures {λ1(x), λ2(x)},
and r ∈ R is a real number such that S(r) is a nonsingular parallel surface of S.
Then the identity (3.6) shows that what must happen geometrically when S(r) is
developing a singularity: the Gaussian curvature of S(r) must blow up. This was
also observed in [Eps84].

3.2. The convex core volume and the renormalized volume. We obtain an
upper bound for the hyperbolic volume of the convex core C(M) in this subsection,
in terms of the maximum, λ0, of the principal curvature on the minimal surface
Σ. The idea and actual computation are somewhat simple: we take advantage of
the foliation structure of the almost-Fuchsian manifold M , and note that, from the
formula (2.2), the principal curvatures of the surface Σ(r), µ1(x, r) and µ2(x, r) are
increasing functions of r for any fixed x ∈ Σ, and they approach ±2 as r → ±∞.
When any of the parallel surfaces becomes convex (all positive principal curvatures
or all negative principal curvatures), they lie outside of the convex core.

Naturally, we are particularly interested in two critical cases: the values of r
when µ1(x, r) = 0 or µ2(x, r) = 0. Elementary algebra shows:

Proposition 3.4. If we denote

r0 =
1
2

log
1 + λ0

1− λ0
,

where λ0 = max
x∈S
{λ(x)}, then r0 is the least value of r such that µ1(r, x) > 0 for

all r > r0 and x ∈ Σ, while −r0 is the largest value for µ2(r, x) < 0 such that
µ2(r, x) < 0 for all r < −r0 and x ∈ Σ.

This Proposition tells us when the parallel surfaces in the equidistant foliation
{Σ(r)}r∈R become convex, hence by the definition of the convex core, provides an
upper bound for the size of the convex core.
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Recalling that we denote the region of M bounded between surfaces Σ(−r0) and
Σ(r0) by M(±r0), and then the convex core C(M), is contained in M(±r0). Since
{Σ(r)}r∈R foliates M , we can compute the hyperbolic volume of the region M(±r0)
by the following:

Vol(M(±r0)) =
∫ r0

−r0
|Σ(r)|dr

= 2r0|Σ|+ (2|Σ| − Ahyp)
∫ r0

−r0
sinh2 rdr

= 2r0|Σ|+ (2|Σ| − Ahyp)
(

1
2

sinh(2r0)− r0

)
= |Σ| sinh(2r0)−Ahyp

(
1
2

sinh(2r0)− r0

)
(3.7)

Applying the Proposition 3.2, we obtain the following:

Theorem 3.5. The hyperbolic volume of C(M) is bounded by:

Vol(C(M)) ≤ Ahyp(cosh r0 sinh r0 + r0)

= Ahyp

(
λ0

1− λ2
0

+
1
2

log
1 + λ0

1− λ0

)
.(3.8)

When r0 = 0, or equivalently, λ(x) = 0 for all x ∈ Σ, this is the case of M being
Fuchsian, and the hyperbolic volume of the convex core C(M) is zero. We want
to measure how the hyperbolic volumes vary for small λ0 via the following Taylor
series expansion:

Corollary 3.6. For small λ0, we have the following expansion:

Vol(C(M)) ≤ Ahyp

(
2λ0 +

4
3
λ3

0 +O(λ5
0)
)
.

Any quasi-Fuchsian manifold is complete, hence has infinite volume. It is classical
in conformal geometry to define a notion of renormalized volume ([FG85, PP01])
to obtain some conformal invariant. The foliation structure of an almost-Fuchsian
manifold allows one to derive a simple quantity as the renormalized volume. We
adapt the following notion: the renormalized volume of M with respect to the
foliation {Σ(r)}r∈R is given by

(3.9) RV (M) = RV (M, {Σ(r)}) = 2 lim
r→∞

{
Vol(M(r))− 1

2
|Σ(r)| − Ahyp

2
r

}
,

where we recall that M(r) is the region bounded by Σ and Σ(r). Note here any
quasi-Fuchsian manifold has two ends and we take advantage of our situation of the
obvious symmetry of the foliation {Σ(r)}r∈R with respect to the minimal surface
Σ. One of the applications from computing the volume of M(r) is to determine
this limit:

Proposition 3.7. When M is almost-Fuchsian, the renormalized volume (with
respect to the foliation {Σ(r)}r∈R) is

RV (M) = 2π(1− g).
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Proof. We will collect and organize terms in the limit. Firstly, using (3.7), we have
the following:

Vol(M(r)) =
1
2

Vol(M(±r)) =
1
4

sinh(2r)(2|Σ| − Ahyp) +
Ahyp

2
r.

Secondly, we apply (3.3) to find

1
2
|Σ(r)| = 1

2
|Σ|+ (2|Σ| − Ahyp)

sinh2(r)
2

.

Combining these terms, we have

Vol(M(r))− 1
2
|Σ(r)| − Ahyp

2
r = (2|Σ| − Ahyp)

(
1− e−2r

4

)
− 1

2
|Σ|

= −Ahyp

4
+

2|Σ| − Ahyp

4
e−2r.

Now the statement holds after taking the limit for r →∞ and using (3.9).

This limit, as a volume, may sound unnatural for it is negative in this case. This
is however typically the case when one try to get a finite quantity out of a diverging
sequence: one expands the (unbounded) quantity with respect to a parameter, and
obtain the desired finite quantity from the constant term in the expansion. In
our case, the renormalized volume is the constant term in the series expansion of
Vol(M(r)) in terms of r for large r > 0. One can regard this as the mass is negative
for the almost-Fuchsian manifolds.

Also note that H(r) → 2 as r → ∞, in other words, the parallel surfaces Σ(r)
are close to constant mean curvature surfaces as r gets large. Therefore one might
attempt to use the integral

∫
Σ(r)

H(r) to replace the term |Σ(r)| in (3.9). This offers
an alternative interpretation for the renormalized volume of M : it is the limit of
half of the total difference of the mean curvature H(r) and 2 (the constant mean
curvature of the infinity), on Σ(r), for large r:

Corollary 3.8. (also [KS08])

(3.10) RV (M) =
1
2

lim
r→∞

{∫
Σ(r)

(H(r)− 2)

}
.

Proof. This follows from the following identity: for r > 0,

(3.11) Vol(M(r)) =
1
4

∫
Σ(r)

H(r) +
r

2
Ahyp.

This identity can be easily verified by the following:∫
Σ(r)

H(r) =
∫

Σ

(µ1(r) + µ2(r))J(r)dµ

= sinh(2r)(2|Σ| − Ahyp).

More generally, the renormalized volume for quasi-Fuchsian manifolds was inves-
tigated in [KS08], where they obtained more general identities than (3.11) relating
the renormalized volume and the total mean curvature of parallel surfaces.
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3.3. Hausdorff dimension of the limit set. A quasi-Fuchsian manifold is deter-
mined by a subgroup Γ of PSL(2,C). It is a natural question to ask how much one
knows about the group Γ when the resulting quasi-Fuchsian manifold M = H3/Γ is
almost-Fuchsian. In this subsection, we attempt to investigate this connection. A
critical question is to understand the limit set of Γ, and in our case, to determine
its Hausdorff dimension via a geometric quantity. We obtain two estimates. One is
a straightforward application of our prior volume estimate for the convex core and
a theorem of Burger-Canary ([BC94]), and the other approach is more technical,
but with a much simpler answer.

We proceed with the first approach. We denote C1(M) the hyperbolic radius
one neighborhood of the convex core C(M) in M . An easy calculation from (3.7)
and Proposition 3.1 show us:

Vol(C1(M)) ≤ 2 Vol(M(r0 + 1)) ≤ Ahyp

(
1
2

sinh(2r0 + 2) + r0 + 1
)
,

where r0 = 1
2 log 1+λ0

1−λ0
. Therefore we have

(3.12) Vol(C1(M)) ≤ Ahyp

(
1
2

sinh
(

log
1 + λ0

1− λ0
+ 2
)

+
1
2

log
1 + λ0

1− λ0
+ 1
)
.

Since quasi-Fuchsian manifolds are geometrically finite and of infinite volume, and
we assume M is not Fuchsian, a direct application of the main theorem from Burger-
Canary ([BC94]) gives:

Proposition 3.9. Let M be almost-Fuchsian, and µ0(M) be the bottom of the L2-
spectrum of −∆ on M , and D(ΛΓ) be the Hausdorff dimension of the limit set ΛΓ

of M . Then we have

(1)

(3.13) µ0(M) ≥ K3

A2
hyp

(
1
2 sinh(log 1+λ0

1−λ0
+ 2) + 1

2 log 1+λ0
1−λ0

+ 1
)2 .

(2)

(3.14) D(ΛΓ) ≤ 2− K3

A2
hyp

(
1
2 sinh(log 1+λ0

1−λ0
+ 2) + 1

2 log 1+λ0
1−λ0

+ 1
)2 .

Here K3 can be chosen such that K3 > 10−11.

We note that while the volume estimate of the convex core of M (Theorem
3.5) is effective for small maximal principal curvature λ0 of the minimal surface Σ,
above estimates on µ0(M) and D(ΛΓ) are not as effective. To obtain an estimate
only depending on the minimal surface, we switch to a different approach: we
consider the limit set ΛΓ of M as a k-quasicircle (an image of a circle under a
k-quasiconformal mapping), and our task is reduced to estimate k in terms of λ0.

A k-quasiconformal mapping f is a homemorphism of planar domains, locally in
the Sobolev class W 1

2 such that its Beltrami coefficient µf = ∂̄f
∂f has bounded L∞

bound: ‖µf‖ ≤ k < 1. One can visualize f infinitesimally maps a round circle to an
11



ellipse with a bounded dilatation K = 1+k
1−k , where k ∈ [0, 1). Clearly, the mapping

f is conformal when k = 0.
We now prove the Theorem 1.2, which we re-state here:

Theorem 3.10. Let M be almost-Fuchsian, then the Hausdorff dimension D(ΛΓ)
of the limit set ΛΓ for M = H3/Γ satisfies

D(ΛΓ) < 1 + λ2
0.

Proof. This estimate relies on the foliation structure of the almost-Fuchsian mani-
fold M in an essential way. Our strategy is the following: we construct a Fuchsian
manifold N from the minimal surface Σ ⊂ M (assigning the warped product met-
ric), and it is quasi-isometric to M . We then lift this quasi-isomorphism to H3 and
estimate the quasi-conformal constant in the cover.

Since the normal bundle over Σ in M is trivial, i.e., the geodesics perpendicular
to Σ are disjoint from each other. Therefore, any point p ∈ M can be represented
by the pair p = (x, r), here x is the projection of p to Σ along the geodesic which
passes through p and is perpendicular to Σ, and r is the (signed) distance between
p and x. Now we can construct a Fuchsian manifold N = Σ×R as follows: suppose
that the induced metric on Σ ⊂M is given by g(x) = e2v(x)I, here v(x) is a smooth
function defined on Σ and I is the 2× 2 identity matrix. Let g̃(x) be the (unique)
hyperbolic metric in the conformal class of g(x), then the (warped product) metric
ρ̄ on N is given by

ρ̄(x, r) =
(

cosh2(r)g̃(x) 0
0 1

)
,

or ρ̄(x, r) = cosh2(r)g̃(x) + dr2. Note that the surface Σ × {0} is totally geodesic.

Similarly, any point q ∈ N can be represented by q = (y, s), here y is the projection
of q to Σ× {0} and s is the distance between q and y.

Now we may define a map ϕ : N → M by ϕ(x, r) = (x, r) for (x, r) ∈ N . By
the result in [Uhl83, p. 162], the map ϕ is a quasi-isometry. We lift ϕ to the map
ϕ̃ : H3 → H3, then ϕ̃ is also a quasi-isometry. By the results in [Geh62, Theorem
9], [Mos68, Theorem 12.1], [Thu82, Corollary 5.9.6] and [MT98, Theorem 3.22],
the map ϕ̃ can be extend to an automorphism

(3.15) ϕ̆ : H3 ∪ Ĉ→ H3 ∪ Ĉ

such that the restriction ϕ̆|Ĉ =: f is a quasi-conformal mapping. In particular, f
maps S2

± to Ω±(Γ), where S2
± = S2

∞ \ S1 are hemispheres such that ∂S2
+ = S1 =

∂S2
−, and f(S1) = ΛΓ, respectively.
We claim that f |S2

+
: S2

+ → Ω+(Γ) is a k-quasiconformal mapping, with the
dilatation K = 1+k

1−k , and

(3.16) K <
1 + λ0

1− λ0
.

To see this, we let Π be the lift of the totally geodesic surface Σ × {0} ⊂ N , and

Σ̂ be the lift of the surface Σ ⊂ M . Recall that the identity map between Π and
Σ̂ is an isometry, and we can define hyperbolic Gauss maps G′+ : Π → S2

+ and
12



G′′+ : Σ̂ → Ω+(Γ) (as in [Eps86]) such that we have the following commutative
diagram

S2
+

f−−−−→ Ω+(Γ)

G′+

x xG′′+
Π id−−−−→ Σ̂

Since G′+ is a conformal mapping, and id is an isometry, we therefore find that
G′′+ ◦ f is also a conformal mapping. By Proposition 5.1 and Corollary 5.3 in
[Eps86], (G′′+)−1 is a k-quasiconformal mapping, and so is f . In particular, ΛΓ =
f(S1) is a k-quasicircle.

Recently, Smirnov ([Smi10]) proved Astala’s conjecture ([Ast94]): the Haus-
dorff dimension of a k-quasicircle is at most 1 +k2. Now combining with (3.16), we
have

k =
K − 1
K + 1

< λ0.

Now our estimate follows easily.

Note that this estimate partially answers a question raised by Uhlenbeck, see
[Problem 5, Page 160, [Uhl83]].

4. Non-foliation for non-almost-Fuchsian manifolds

Foliations of closed surfaces of constant mean curvature play important role in
three-dimensional geometry ([Thu82]) and physics (for instance [AMT97]). Re-
cently Mazzeo-Pacard ([MP07]) showed the existence of such a foliation near either
end of a quasi-Fuchsian manifold. Note that, every AdS space-time admits such a
foliation ([BBZ07]), so a natural question (given the analog from the AdS space-
time) is to ask whether a quasi-Fuchsian manifold admits a global such foliation.
In this section, we answer this question negatively. We construct a quasi-Fuchsian
manifold does not admit a foliation of closed surfaces of constant mean curvature,
and we stress that this example is not almost-Fuchsian since our construction ad-
mits at least two closed minimal surfaces.

4.1. Preparation. The main scheme consists of the following three steps:

(1) we construct a quasi-Fuchsian manifold M obtained from H3 modulo a
quasi-Fuchsian group generated by reflections about some circles on the
Riemann sphere S2

∞ (see §4.2).
(2) For a given foliation of closed surfaces of constant mean curvature on M ,

we lift it up to H3 where this foliation becomes a foliation of hypersurfaces
of constant mean curvature which share the same asymptotic infinity. But
for these circles on S2

∞, one can construct cylinder-like minimal surfaces
which serve as barriers to force two leaves Lt1 and Lt2 of the foliation of
H3 become minimal (see §4.3).

(3) In the region of H3 bounded by Lt1 and Lt2 , we find a leaf Lt3 of small
mean curvature H0 = 2 tanh(ε). Then we use two disks D1(ε) and D2(ε),
both of constant mean curvature H0, to push the leaf Lt3 to self-intersect.

13



We will work in the ball model of H3, i.e.,

H3 = {(x, y, z) ∈ R3 | x2 + y2 + z2 < 1},

equipped with metric

ds2 =
4(dx2 + dy2 + dz2)

(1− r2)2
,

where r =
√
x2 + y2 + z2.

The hyperbolic space H3 has a natural compactification: H3 = H3 ∪ S2
∞, where

S2
∞ = Ĉ is the Riemann sphere. Suppose X is a subset of H3, we define ∂∞X by

∂∞X = X ∩ S2
∞ ,

the asymptotic boundary of X, where X is the closure of X in H3.
In anticipation of the barrier surfaces that we will use later, we need some results

of Gomes and López (see [Gom87, Lóp00]). Let us first make some definitions:
Suppose G is a subgroup Isom(H3) which leaves a geodesic γ ⊂ H3 pointwisely

fixed. We call G the spherical group of H3 and γ the rotation axis of G. A surface
in H3 invariant under G is called a spherical surface. For two circles C1 and C2

in H3, if there is a geodesic γ, such that each of C1 and C2 is invariant under the
group of rotations that fixes γ pointwisely, then C1 and C2 are said to be coaxial,
and γ is called the rotation axis of C1 and C2.

Let P1 and P2 be two disjoint geodesic plane in H3, then P1∪P2 divides H3 into
three components. Let X1 and X2 be the two of them with ∂Xi = Pi for i = 1, 2.
Given two subsets A1 and A2 of H3, we say P1 and P2 separate A1 and A2 if one
of the following cases occurs ([Lóp00]):

(1) if A1, A2 ⊂ H3, then Ai ⊂ Xi for i = 1, 2;
(2) if A1 ⊂ H3 and A2 ⊂ S2

∞, then A1 ⊂ X1 and A2 ⊂ ∂∞X2;
(3) if A1, A2 ⊂ S2

∞, then Ai ⊂ ∂∞Xi for i = 1, 2.

Then we may define the distance between A1 and A2 by

(4.1) d(A1, A2) = sup{dist(P1, P2) | P1 and P2 separate A1 and A2} ,

where dist(P1, P2) is the hyperbolic distance between P1 and P2. We need the
following result of Gomes to ensure the existence of a minimal surface with C1∪C2

as its asymptotic boundary. Namely,

Lemma 4.1 ([Gom87]). There exists a finite constant d0 > 0 such that for two
disjoint circles C1, C2 ⊂ S2

∞, if d(C1, C2) ≤ d0, then there exists a minimal surface
Π which is a surface of revolution with asymptotic boundary C1 ∪ C2.

We will call the minimal surface Π in Lemma 4.1 a minimal catenoid.
Next we need a similar result for surfaces of constant mean curvature. To do

this, we let C1 and C2 be two disjoint circles on S2
∞, and let P1 and P2 be two

geodesic planes whose asymptotic boundaries are C1 and C2, respectively. Suppose
C ′1 ⊂ P1 and C ′2 ⊂ P2 such that C ′1 and C ′2 are two coaxial circles with respect to
the rotation axis of C1 and C2. The following result is due to López:

14



Lemma 4.2 ([Lóp00]). Given a constant H ∈ (−2, 2), there exists a constant
dH , depending only on H such that if d(C1, C2) ≤ dH , then there exists a compact
smooth surface Π′ such that ∂Π′ = C ′1 ∪ C ′2 and the mean curvature of Π′ is equal
to H with respect to the inward normal vector, i.e., the normal vector pointing to
the domain containing the rotation axis of C1 and C2.

Remark 4.3. In Lemma 4.2, when H < 0, then there is no such a surface Π′ of
constant mean curvature if we replace C ′i by Ci for i = 1, 2 (see [Pal99]). For the
compact surface Π′ in Lemma 4.2, it might not be a surface of revolution according
to the discussion in [Lóp00, p. 234]. But it is sufficient for our goals.

4.2. The Construction. In this subsection, we complete the first step mentioned
in §4.1, namely, we construct a quasi-Fuchsian manifold by using groups of reflec-
tions about circles on S2

∞.
Let ε > 0 be a sufficiently small number such that ε � d0/2, here d0 is the

constant in Lemma 4.1, and let

(4.2) H0 = 2 tanh ε .

Consider H3 as a unit ball in R3 and consider S2
∞ as a unit sphere in R3. We pick

up four circles {Ci}i=1,...,4 on S2
∞ and four geodesic planes {Di}i=1,...,4 in H3 as

follows (see Figure 1).

(1) Let C1 and C2 be the circles on the horizontal planes z = tanh ε and
z = − tanh ε respectively. It’s easy to verify that d(C1, C2) = 2ε, where
d(·, ·) is the distance defined by (4.1).

(2) Let C3 and C4 be two disjoint circles between the horizontal planes z =
tanh ε and z = − tanh ε such that
• C3 and C4 have the same size with respect the spherical metric on the

asymptotic boundary S2
∞, and

• the distance between C3 and C4 with respect the spherical metric is
sufficiently small so that d(C3, C4)� min{dH0 , d0}.

(3) Let Di be the geodesic plane in H3 that is asymptotic to Ci, i.e., ∂∞Di = Ci
for i = 1, . . . , 4.

By the above construction, d(C1, C2) = dist(D1, D2) and d(C3, C4) = dist(D3, D4).
Let Λ be a closed piecewise smooth curve on S2

∞ which disconnect C1 ∪C2 from
C3 ∪ C4 (see Figure 1), then we cover Λ by finitely many disks {Bl ⊂ S2

∞}l=1,...,N

with small radii such that

(1) each circle ∂Bl is invariant under the rotation along the geodesic connecting
the origin O and the center of the disk Bl, which locates at Λ;

(2) the radii of disks are small enough such that Bl ∩ Ci = ∅ for l = 1, . . . , N
and i = 1, . . . , 4; and

(3) for each l ≡ 1 ( mod N), ∂Bl intersects both ∂Bl−1 and ∂Bl+1 perpendic-
ularly and no other circles,

then we obtain a torsion free group Γ which is the subgroup of orientation pre-
serving transformations in the group generated by N reflections about the circles
∂B1, . . . , ∂BN . It is well-known that such a subgroup is quasi-Fuchsian ([Ber72,
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Page 263]). Therefore the hyperbolic three-manifold M = H3/Γ is a quasi-Fuchsian
manifold. The limit set of the quasi-Fuchsian group Γ, denoted by ΛΓ, is around
the curve Λ. Let S2

∞ \ ΛΓ = Ω±, where Ω− contains C1 ∪ C2 and Ω+ contains
C3 ∪ C4 (See Figure 1).

C1

C2C3

C4

Λ

Figure 1. Four Circles and a “narrow bridge”

4.3. The Proof. We will first recall the Hopf’s maximum principle for tangential
hypersurfaces in Riemannian geometry, which will be used in the proof of the
Theorem 4.6. We will actually only compare hypersurfaces in H3 which are of
constant mean curvature.

Lemma 4.4 ([Hop89]). Let S1 and S2 be two hypersurfaces in a Riemannian
manifold which intersect at a common point tangentially. If S2 lies in positive side
of S1 around the common point, then H1 ≤ H2, where Hi is the mean curvature of
Si at the common point for i = 1, 2.

For our particular situation, we need a corollary of the maximum principle that
will be used later.

Corollary 4.5. Let Σ ⊂ H3 be a disk-type surface whose asymptotic boundary is
a Jordan curve and its mean curvature is a constant H ∈ (−2, 2). Let D be a
totally geodesic plane in H3, and let D(r) be one of the components of the boundary
of Nr(D) for r = tanh−1(|H|/2), then D(r) is a disk-type surface with the same
constant mean curvature as that of Σ, here Nr(D) denotes the r-neighborhood D.
Suppose that the normal vectors on Σ and D(r) are in the same direction. If
∂∞D ∩ ∂∞Σ = ∅, then D(r) ∩ Σ = ∅.

Proof. Let ∂∞D = C and ∂∞Σ = Λ. By a Möbius transformation, we may assume
that C is on the horizontal plane z = 0, i.e. C = {(x, y, 0) ∈ R3 | x2 + y2 = 1} and
that Λ is above the the horizontal plane z = 0. Besides, we also assume that the
normal vectors on D(r) and Σ are downward, i.e. the normal vectors point to the
domains which are below the surfaces D(r) and Σ respectively.
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Let W be the subdomain of H3 which is below D(r). Note that the surface D(r)
has constant principal curvature. Using the translations along the z-axis, we may
foliate W by disk-type surfaces {Dt(r)}−∞<t<0 whose asymptotic boundaries are
circles and whose mean curvatures are the same as that of D(r) with respect to
the downward normal vectors. If D(r) ∩ Σ 6= ∅, then some interior points of Σ are
contained in W , so from bottom to top, there is a surface Dt touches Σ for the
first time, here t ∈ (−∞, 0), therefore H(Dt(r)) > H(Σ) by the maximal principle,
here H(·) denotes the mean curvature of the surface with respect to the downward
normal vectors. This is impossible, since they are supposed to be equal. Thus D(r)
must be disjoint from Σ.

Now we are ready to show:

Theorem 4.6. The quasi-Fuchsian manifold M = H3/Γ constructed above can not
be foliated by closed surfaces of constant mean curvature.

Proof. We will argue by contradiction and we follow the scheme outlined in the
beginning of §4.1. Let us assume that our construction M is foliated by surfaces
of constant mean curvature, where each surface is closed and incompressible. We
lift this foliation to the universal covering space H3, then we obtain a foliation of
H3 such that each leaf is a disk of constant mean curvature and all disks share the
same asymptotic boundary ΛΓ.

Step (2): Existence of two minimal leaves Lt1 and Lt2 .

Notice that any disk-type surface in H3 with asymptotic boundary ΛΓ divides
H3 into two parts, one of them contains Ω−, the other contains Ω+. We choose
the normal vector field on the disk-type surface so that each normal vector points
to the domain containing Ω−. Assume that there is a constant mean curvature
foliation F = {Lt} of H3, with a parameter t ∈ (−∞,∞) such that the leaves are
convergent to Ω± as t→ ±∞ respectively. In other words, we have

(4.3) lim
t→±∞

H(Lt) = ±2 ,

where H(Lt) denotes the mean curvature of the leaf Lt with respect to the normal
vectors pointing to the domain containing Ω−. Here we just need to assume that
H(Lt) is a continuous function of the parameter t ∈ (−∞,∞).

Since d(C3, C4) � min{dH0 , d0}, there exists a minimal catenoid Π1 whose
asymptotic boundary is C3 ∪ C4 by Lemma 4.1. Starting from Ω− to Ω+, there is
a leaf Lt′ ∈ F which touches Π1 for the first time, then the mean curvature of the
leaf Lt′ must be positive by the maximal principle (Lemma 4.4). Because of the
limiting behavior in (4.3), there exists t1 ∈ (−∞, t′) such that the mean curvature
of Lt1 is zero, i.e. the leaf Lt1 is a disk type minimal surface (see the left figure
in Figure 2). Besides, we may choose t1 small enough such that H(Lt) < 0 for all
t ∈ (−∞, t1); this can be done since all leaves in F which are minimal must be
contained in the convex hull of ΛΓ.

Similarly, since d(C1, C2) � d0, there exists a minimal catenoid Π2 whose as-
ymptotic boundary is C1∪C2 by Lemma 4.1. Starting from Ω+ to Ω−, there exists
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a leaf Lt′′ ∈ F which touches Π2 for the first time, then the mean curvature of the
leaf Lt′′ must be negative (Lemma 4.4 again). Because of the limiting behavior in
(4.3), there exists t2 ∈ (t′′,∞) such that the mean curvature of Lt2 is zero, i.e. the
leaf Lt2 is a disk type minimal surface (see the right figure in Figure 2). We may
choose t2 big enough such that H(Lt) > 0 for all t ∈ (t2,∞).

Lt1

Lt2

Figure 2. Two Minimal Disks

By the construction, Lt1 6= Lt2 . Besides, Lt1 is close to Ω− and Lt2 is close to
Ω+, so we must have t1 < t2. Note that we obtain two distinct closed minimal
surfaces in the quotient manifold M , and hence M can not be almost-Fuchsian.

Step (3): Some leaf Lt3 must self-intersect.

Let X ⊂ H3 be the region bounded by leaves Lt1 and Lt2 , then by assumption
X is foliated by {Lt}t1≤t≤t2 , i.e.

X =
⋃

t1≤t≤t2

Lt .

Let
W1 =

⋃
−∞<t≤t1

Lt and W2 =
⋃

t2≤t<∞

Lt .

Clearly we have H3 = W1 ∪X ∪W2, W1 ∩W2 = ∅ and X ∩Wi = Lti for i = 1, 2.
Recall that both D3 and D4 are totally geodesic planes, and ∂∞Di ∩ ΛΓ =

Ci ∩ ΛΓ = ∅ for i = 3, 4, so both D3 and D4 are disjoint from Lt2 by Corollary
4.5 (In fact, Di ⊂ W2 for i = 3, 4). We choose two circles C ′3 ⊂ D3 and C ′4 ⊂ D4

such that C ′3 and C ′4 are coaxial with respect to the rotation axis of C3 and C4.
By the Lemma 4.2, there is a compact surface Π0 of constant mean curvature −H0

with respect to the inward normal vectors, i.e., the normal vectors pointing to the
domain containing the rotation axis of C ′3 and C ′4.

We claim that Π0 ∩W1 = ∅. Since Di ⊂ W2 for i = 3, 4, then C ′i ⊂ W2 for
i = 3, 4. Therefore, if Π0 ∩W1 6= ∅, then any point in Π0 ∩W1 must be the interior
point of Π0. Starting from Ω− to Lt1 , let Lt be the leaf contained in W1 which
touches Π0 for the first time, then H(Lt) > H0, here the normal vector at the
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common point points to the domain containing Ω−, which is the outward normal
vector on Π0. This is impossible since H(Lt) ≤ 0 for all t ∈ (−∞, t1].

In particular, we have Lt1 ∩ Π0 = ∅ and Lt2 ∩ Π0 6= ∅. Therefore, starting from
Lt1 to Lt2 , there exists t∗ ∈ (t1, t2) such that the leaf Lt∗ touches Π0 for the first
time, then H(Lt∗) > H0 by the maximal principle, here the normal vector at the
common point points to the domain containing Ω−. So there exists t3 ∈ (t1, t∗)
such that H(Lt3) = H0. Notice that Lt3 is close to Lt1 , so its shape is similar to
that of Lt1 , one may imagine that Lt3 consists of two disks connected by a narrow
bridge. Besides, Lt3 is still contained in X.

We now complete the step (3), namely, the leaf Lt3 must self-intersect. To see
this, let D1(ε) be the component of ∂Nε(D1) that is below the geodesic plane D1,
here Nε(D1) is the (hyperbolic) ε-neighborhood of D1, then D1(ε) is a surface with
constant mean curvature H0 with respect to the upward normal vectors, i.e. the
normal vectors pointing to domain not containing C2. It is well known that the
equidistant surface from a totally geodesic disk in H3 is of constant mean curvature.
Similarly, let D2(ε) be the component of ∂Nε(D2) that is above the geodesic plane
D2, then D2(ε) is a surface with constant mean curvature H0 with respect to the
downward normal vectors, i.e. the normal vectors pointing to domain not containing
C1. One can see D1(ε) as a dome below D1, while D2(ε) as a dome above D2.

Since ∂∞Di∩∂∞Lt3 = Ci∩ΛΓ = ∅ for i = 1, 2, neither D1(ε) nor D2(ε) intersects
Lt3 by Corollary 4.5. Recall that the shape of Lt3 is similar to that of Lt1 , i.e., Lt3
consists of two disks connected by a narrow bridge. The two disks of Lt3 must be
below D1(ε) and above D2(ε). Recall that the (hyperbolic) distance between D1

and D2 is 2ε, therefore D1(ε) ∩ D2(ε) = {O}, where O ∈ H3 is the origin, so Lt3
must self intersect. Now the theorem follows easily.
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