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Mean curvature flows of closed

hypersurfaces in warped

product manifolds
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We investigate the mean curvature flows in a class of warped prod-
ucts manifolds with closed hypersurfaces fibering over R. In partic-
ular, we prove that under some natural conditions on the warping
function and Ricci curvature bound for the ambient space, there ex-
ists a large class of closed initial hypersurfaces, as geodesic graphs
over the totally geodesic hypersurface N , such that the mean cur-
vature flow starting from S0 exists for all time and converges to N .

1. Introduction

1.1. Motivation and Main Theorem

The study of the mean curvature flow equation has attracted major atten-
tions in geometric analysis over the past decades. The flow has the following
formulation:

(1.1)


∂

∂t
F (x, t) = −H(x, t)ν(x, t) ,

F (·, 0) = F0 ,

where H(x, t) and ν(x, t) are the mean curvature and unit outward normal
vector respectively at F (x, t) of the evolving surface S(t), and our convention
of the mean curvature is the sum of the principal curvatures. All other terms
will be made transparent later.

A fundamental theorem of Huisken ([10]) in the theory of mean curva-
ture flow states that any mean curvature flow of a closed and strictly convex
initial hypersurface Nn−1 ⊂ Rn (with n ≥ 3) stays strictly convex, and de-
velops singularity in finite time. This was generalised to several classes of
Riemannian manifolds ([11]). Since then there are extensive studies in the
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field to understand the singularity formulation in various settings and for
various mean curvature flows, see for instance [5, 6, 12, 13, 15] and many
others.

We consider a topic similar to that in [10], namely, under what (natu-
ral) conditions, a mean curvature flow of closed hypersurfaces in some Rie-
mannian manifolds may converge to some canonical objects. A prototype
is a class of hyperbolic three-manifolds ([9]) where negative curvature and
special topology (preventing large balls to appear) help to keep a graphical
mean curvature flow staying graphical and converging to the totally geodesic
surface.

In this paper, we consider a much wider class of warped product man-
ifolds as the ambient space. To describe our setting more precisely, let’s
first fix notations. Throughout this paper, we use N to denote a closed Rie-
mannian manifold of dimension n− 1, where n ≥ 3. We always assume N
satisfies the following condition:

(C0) RicN ≥ (n− 1)ρgN ,

for some constant ρ. Note that here ρ is different from the one in [4] for
simplicity in calculations. The ambient manifold in the current work is Mn =
Nn−1 × (−r̄, r̄) for r̄ ∈ (0,∞], and the warped product metric is

(1.2) g = gM = dr ⊗ dr + h2(r)gN ,

with the warping function h(r) : (−r̄, r̄)→ (0,∞). Geometrically M has the
structure of closed hypersurfaces fibering over the real line. The warping
function h(r) is assumed to satisfy the following conditions:

(C1) h(0) = 1 and h′(0) = 0;

(C2) h′(r) > 0 for all r ∈ (0, r̄) and h′(r) < 0 for all r ∈ (−r̄, 0);

(C3) for c = max{0, ρ} and any r ∈ (−r̄, r̄),

(1.3) h(r)h′′(r)− h′(r)2 + ρ ≥ c.

The above conditions might seem artificial at the first look, and so let’s
motivate them below.

Conditions (C1–2) are natural geometrical conditions. As a consequence,
N is totally geodesic in M , and the unique such hypersurface which is also
fixed by the mean curvature flow. The case of h being even provides a natural
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class of examples in practice. The choice of h(0) = 1 is just for convenience
and certainly not essential.

Condition (C3) allows negative Ricci curvature on the hypersurface N
for suitable warping function. Moreover, Condition (C3) ensures the func-
tion |h′(r)/h(r)| is non-decreasing in r, which is important in the proof of
Theorem 3.7. For r = 0, by (C1), (1.3) becomes h′′(0) + ρ ≥ c, and so it is
easy to generate examples with a proper r̄ value satisfying all the conditions.

Notice that M is not required to be complete as the mean curvature
flow in our study stays local in M by the barrier argument as discussed
in Lemma 3.3. Of course, there are still plenty of examples of complete
M, for instance, the one studied in [9]. Simply speaking, if we choose N
to be a closed hyperbolic surface of constant curvature −1, then n = 3,
h(r) = cosh(r), and c = 1

2 , then we have M is the Fuchsian manifold, a
complete hyperbolic three-manifold as a warped product. All the conditions
described above are satisfied. The authors in [9] used the special structure
of the Fuchsian manifold and initiated the study on how graphical mean
curvature flows behave in that setting.

Furthermore, these conditions are comparable with but different from
Brendle’s in his work on constant mean curvature hypersurfaces ([4]), where
such interval like [0, r̄) is considered from general relativity perspective. In-
deed, our argument can be applied without any change to the Brendle’s
setting of M = N × [0, r̄) and Conditions (C1–3) will simply be restricted
to [0, r̄) ⊂ (−r̄, r̄). Hence just as in [4], our main result Theorem 1.2 can be
applied to the de Sitter-Schwarzschild manifold which is of great interest in
general relativity.

Let’s now fix some notions for the purpose of this paper.

Definition 1.1. A hypersurface S is called a graph overN or starshaped,
if the angle function Θ = 〈n,ν〉 > 0, where n = ∂

∂r , and ν is the unit normal
to S. Clearly by definition we have Θ ∈ [0, 1], and in particular if Θ ≡ 1, we
call S is parallel (or equidistant) to N .

In this work, we generalize this phenomenon of converging mean cur-
vature flow of closed hypersurfaces in [9] to a much more general class of
Riemannian manifolds, namely, those satisfying Conditions (C0–3). More
precisely, the following result is proved.

Theorem 1.2. Let Mn be a warped product manifold satisfying Conditions
(C0–3) and S0 a smooth closed hypersurface which is a geodesic graph over
the unique totally geodesic hypersurface N in Mn. Then for any a0 > 0, if
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S0 lies in distance no more than a0 to N , and the initial angle satisfies

(1.4) min
p∈S0

Θ(p) ≥

√
1− 1

h2(a0)
,

the mean curvature flow (1.1) with the initial hypersurface S0 exists for all
time, remains as geodesic graph over N and converges continuously to N .
Moreover, the convergence is smooth if the above inequality is strict.

Note that the warped product structure in our work is hypersurface fiber-
ing over the line. One may also define a type of warped product manifolds
as line bundles fibering over hypersurfaces, and some remarkable results of
the behaviors of the mean curvature flows in such manifolds were obtained
in [3]. In that setting, graphs are equidistant graphs, not geodesic graphs. In
general we do not expect a geodesic graph stays graphical along the mean
curvature flow. One can also define the mean curvature flow of higher co-
dimensions, as well as warped product manifolds where the base manifold
is of higher dimensions, and we will not pursue these generalisations here.
There are many other interesting papers on various flows in several classes
of warped product manifolds (see for example [8, 17, 18] and others).

1.2. Outline of the paper

In Section 2, we discuss important equations and estimates used in the proof
of the main result, including the evolution equations for the height and angle
functions along the mean curvature flow with a general warped Riemannian
manifold as the ambient space. The main result is then proved in Section 3.

2. Preliminaries

In this section, we fix the notations and introduce some preliminary facts
that will be used later in this paper.

2.1. Mean curvature flow

For completeness, we start by collecting and deriving a number of evolution
equations for geometric quantities on S(t), t ∈ [0, T ), which are involved in
our calculations. Let S0 be an embedded closed hypersurface in Mn, and F0
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be the local diffeomorphism representing the embedding:

F0 : U ⊂ Rn−1 → F0(U) ⊂ S0 ⊂M.

We consider the mean curvature flow, i.e. a family of maps F (·, t) satis-
fying (1.1): 

∂

∂t
F (x, t) = −H(x, t)ν(x, t) ,

F (·, 0) = F0 .

We denote S(t) as the evolving hypersurface which is the image of the map
F (·, t). Here H(·, t) is the mean curvature function of S(t) and ν is the
correspondingly chosen unit normal of S(t). The short time existence of the
mean curvature flow was established, and it was further shown that the flow
can be extended as long as the norm of the second fundamental form is
controlled ([10, 11]).

As we are primarily working with the graphical case, let’s set two func-
tions on S(t): height function u(x, t), which records the distance, with re-
spect to the metric gM , between any point x ∈ S(t) and the fixed reference
hypersurface N , and the angle function (or the gradient function) Θ(x, t)
as defined in Definition 1.1. Of course, we always have Θ(x, t) ∈ [0, 1], and
it is clear that the hypersurface S(t) is a geodesic graph over N if Θ > 0
everywhere on S(t) with properly chosen ν. The general evolution equations
for these two functions are as follows.

Theorem 2.1. ([1, 7, 9]) The evolution equations of u and Θ have the
following form:

∂

∂t
u = −HΘ,(2.1) (

∂

∂t
−∆

)
Θ = (|A|2 +RicM (ν,ν))Θ + n(Hn)−H

〈
∇νn ,ν

〉
(2.2)

where n(Hn) is the variation of mean curvature function of S(t) under the
deformation vector field n.

In practice the equation for Θ is difficult to work with, especially the
term n(Hn). In the case of Fuchsian manifolds, a much simplified and explicit
equation was derived ([9]), using special hyperbolic geometry of a Fuchsian
manifold. In the current situation, we no longer assume the ambient warped
product manifold M has constant curvature, and so the evolution equation
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for Θ will be more involved. We start with curvature properties in both M
and N .

2.2. Ricci curvature in warped product manifolds

We denote the covariant derivatives of S(t) (induced metric) and M by ∇
and ∇, respectively. The relationship between the Ricci curvatures on M
and N is given by the following well-known formula:

Lemma 2.2. [4] Let h = h(r) be the warping function, then

(2.3) RicM = RicN − (hh′′ + (n− 2)h′2)gN − (n− 1)
h′′

h
dr ⊗ dr.

Proof. This follows from the calculations in [2]. Let {e1, . . . , en−1} be a local
orthonormal frame on N such that gN (ei, ej) = δij . Then one gets

RicM (ei, ej) = RicN (ei, ej)− (hh′′ + (n− 2)h′2)δij

RicM (ei,n) = 0, RicM (n,n) = −(n− 1)h
′′

h .(2.4)
�

Using vectors n = ∂
∂r and ν, it is standard to decompose vector fields

into tangential and normal components, with respect to either n or ν, as
follows.

Definition 2.3. For any vector field X in M , we define

Xν = X − 〈X ,ν〉ν,
Xn = X − 〈X ,n〉n.

With these notations, we have the following decompositions:

νn = ν −Θn,(2.5)

nν = n−Θν =

n−1∑
k=1

〈n , ek〉 ek.(2.6)

Clearly, νn is perpendicular to n and nν is perpendicular to ν. When Θ = 1,
we have n = ν and νn = 0. We further normalize νn by the metric gN to
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set

(2.7) ~v =


νn
|νn|gN

if νn 6= 0

0 if νn = 0.

Now we derive the following technical lemma.

Lemma 2.4. We have

(2.8) RicM (ν,nν) = −Θ(1−Θ2)

h2
{(n− 2)(hh′′ − (h′)2) +RicN (~v,~v)}.

Proof. Let us assume νn 6= 0 or the assertion is trivial. We will omit M in
RicM for simplicity of notation. By (2.5) and (2.6), we apply (2.4) to have

Ric(ν,nν) = Ric(Θn + νn, (1−Θ2)n−Θνn)

= Θ(1−Θ2)Ric(n,n)−ΘRic(νn,νn)

= −(n− 1)Θ(1−Θ2)
h′′

h
−ΘRic(νn,νn).(2.9)

Since νn is tangential to N , we find

Ric(νn,νn) = RicN (νn,νn)− (hh′′ + (n− 2)h′2)gN (νn,νn)

= (1−Θ2)
RicN (~v,~v)

h2
− (1−Θ2)

h2
(hh′′ + (n− 2)h′2).(2.10)

Now the conclusion follows by putting everything above together. �

Another useful fact for our warped product manifold M is that all slices
are umbilic. Namely, let N(a) be the equidistant hypersurface (with signed
constant distance a) to N , and then N(a) is umbilic with constant principal

curvature h′(a)
h(a) .

2.3. Elliptic equations for height and angle

One of the most beautiful geometric properties for warped product manifolds
is the existence of the following special vector field which we denote by V ,

(2.11) V = h(r)
∂

∂r
= h(r)n.

For any tangential vector field X in M , we have ([16]):

(2.12) ∇XV = h′(r)X.
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As an application, we immediately have

(2.13) ∇Xn =
h′(r)

h(r)
(X − 〈X ,n〉n).

for any tangential vector field X in M . We also calculate the Laplace of
the height function r restricted to the evolving hypersurface S(t) which is
denoted by u.

Proposition 2.5. Let ∆ be the Laplace operator on the hypersurface S(t).
Then we have:

(2.14) ∆u =
h′(u)

h(u)
(n− 2 + Θ2)−HΘ.

Proof. For any point x ∈ S = S(t), we choose {e1, . . . , en−1} (with en = ν)
to be a local normal frame of S at x. Without loss of generality, we assume
that u(x) ≥ 0. Then at x, we have

∆u =

n−1∑
i=1

∇ei∇eiu

=

n−1∑
i=1

∇ei〈n, ei〉

=

n−1∑
i=1

ei 〈n , ei〉

=

n−1∑
i=1

〈h
′(u)

h(u)
(ei − 〈n, ei〉n), ei〉+

n−1∑
i=1

〈n, ∇̄eiei〉

= (n− 1)
h′(u)

h(u)
− h′(u)

h(u)
(1−Θ2)−HΘ

=
h′(u)

h(u)
(n− 2 + Θ2)−HΘ,(2.15)

where we used (2.13) for the fourth equality. �

An immediate consequence is:

Corollary 2.6. Using (2.1), we have the evolution equation for the height
function u of S(t) along the mean curvature flow :

(2.16) ut −∆u = −h
′

h
(n− 2 + Θ2).
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We now derive the main technical tool in this work, the calculation for
the Laplacian of the angle function Θ.

Theorem 2.7. We have

∆Θ = 〈∇H ,n〉−|A|2Θ+
h′(r)

h(r)
{H(Θ2+1)−2 〈n ,∇Θ〉}−(n−1)

h′(r)2

h2(r)
Θ

− Θ(1−Θ2)

h2(r)
[(n− 1)(h(r)h′′(r)− h′(r)2) +RicN (~v,~v)],

where ~v is defined in (2.7).

Proof. We first work with the auxilliary function:

(2.17) η = 〈V ,ν〉 = h(r)Θ.

We still use the local normal frame {e1, . . . , en−1} (with en = ν) at any point
x ∈ S = S(t) such that at this point x, we have

∇eiek(x) = 0(i 6= k), ∇eiei(x) = −aiiν.

where A = (aij) is the second fundamental form of the hypersurface S.
We then have the following computation at x:

∆η =

n−1∑
i=1

∇ei∇ei 〈V ,ν〉

=

n−1∑
i=1

〈
∇ei∇eiV ,ν

〉
+ 2

〈
∇eiV ,∇eiν

〉
+
〈
V ,∇ei∇eiν

〉
=

n−1∑
i=1

〈
∇ei(h′(u)ei) ,ν

〉
+ 2

n−1∑
i,k=1

h′(u) 〈ei , aikek〉+

n−1∑
i,k=1

〈
V ,∇ei(aikek)

〉
= −h′(u)H + 2h′(u)H +

n−1∑
i,k=1

aik
〈
V ,∇eiek

〉
+ aik,i 〈V , ek〉

= h′(u)H − |A|2η +

n−1∑
i,k=1

aik,i 〈V , ek〉

where we have made use of the properties of the normal frame at the point
x under investigation. Let’s examine the last summation more closely. First
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we use (2.6) to get

n−1∑
k=1

〈V , ek〉 ek = h(r)

n−1∑
k=1

〈n , ek〉 ek = h(r)nν .

Then recall the Codazzi equation for S ⊂M :

(2.18) ei(aik)− ek(aii) = R̄(ν, ei, ek, ei),

where R̄ is the curvature tensor on M . Thus, we have

n−1∑
i,k=1

aik,i 〈V , ek〉 =

n−1∑
i,k=1

ek(aii) 〈V , ek〉+ R̄(ν, ei, ek, ei) 〈V , ek〉

= 〈V ,∇H〉+

n−1∑
i,k=1

R̄(ν, ei, 〈V , ek〉 ek, ei)

= 〈V ,∇H〉+ h(r)

n−1∑
i=1

R̄(ν, ei,nν , ei)

= 〈V ,∇H〉+ h(r)RicM (ν,nν) .

Now we are in position to apply Lemma 2.4 and arrive at:

∆η = h′(r)H − |A|2η + 〈V ,∇H〉

− Θ(1−Θ2)

h(r)
[(n− 2)(h(r)h′′(r)− (h′(r))2) +RicN (~v,~v)].(2.19)

Since η = h(r)Θ, and applying Lemma 2.5, we have

∆η = h∆Θ + 2h′ 〈n ,∇Θ〉+ Θ(h′∆r + h′′|∇r|2)
= h∆Θ + 2h′ 〈n ,∇Θ〉+ Θ(h′∆r + h′′(1−Θ2))

= h∆Θ + 2h′ 〈n ,∇Θ〉+ Θ

[
h′2

h
(n− 2 + Θ2)− h′HΘ + h′′(1−Θ2)

]
.

Now the assertion follows by isolating ∆Θ on one side of the equation. �

3. Proof of Main Theorem

The key is to obtain a positive lower bound for the angle function Θ.



i
i

“8-Zhou” — 2019/11/18 — 11:35 — page 1403 — #11 i
i

i
i

i
i

MCFs in warped products 1403

3.1. Evolution equation for the angle function squared

In Theorem 2.7, we have derived the Laplacian of Θ. Now let us derive the
evolution equation.

Theorem 3.1. The angle function Θ(·, t) satisfies the following evolution
equation along the mean curvature flow (1.1):

Θt −∆Θ = |A|2Θ +
2h′(r)

h(r)
{〈n ,∇Θ〉 −H}+ (n− 1)

h′(r)2

h2(r)
Θ

+
Θ(1−Θ2)

h2(r)
{(n− 1)(h(r)h′′(r)− h′(r)2) +RicN (~v,~v)},(3.1)

where ~v is defined in (2.7).

Proof. For the mean curvature flow we have ([11]) ∂
∂t ν = ∇H. Then we have

∂Θ

∂t
=

∂

∂t
〈n ,ν〉 =

〈
∂

∂t
ν ,n

〉
+
〈
ν ,∇−Hνn

〉
= 〈∇H ,n〉 −H

〈
ν ,∇νn

〉
.

Using (2.13), we have

∇νn =
h′

h
(ν −Θn) =

h′

h
νn,

and so that

(3.2)
∂Θ

∂t
= 〈∇H,n〉 − Hh′

h
(1−Θ2).

Now the assertion follows from combining this with Theorem 2.7. �

It’s actually easier to work with Θ2. Let’s denote f(·, t) = Θ2 which
satisfies the following differential inequality.

Corollary 3.2. As long as f(·, t) = Θ2 > 0 and the inequality (1.3) holds,
we have

(3.3) ft −∆f ≥
〈

2h′(r)

h(r)
n− ∇f

2f
,∇f

〉
+G(f, r),

where

(3.4) G(f, r) =
2(n− 1)(1− f)

h2(r)
{cf − h′(r)2},
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and c is the constant from condition (C3).

Proof. A direct calculation from Theorem 3.1 shows that f satisfies the
following evolution equation:

ft −∆f = 2|A|2f +

〈
2h′(r)

h(r)
n− ∇f

2f
,∇f

〉
− 4h′(r)

√
f

h(r)
H + 2(n− 1)

h′(r)2

h2(r)
f

+
2f(1− f)

h2(r)
{(n− 1)(h(r)h′′(r)− h′(r)2) +RicN (~v,~v)}.(3.5)

By (1.3), we have

ft −∆f ≥ 2|A|2f +

〈
2h′(r)

h(r)
n− ∇f

2f
,∇f

〉
− 4h′(r)

√
f

h(r)
H

+ 2(n− 1)
h′(r)2

h2(r)
f +

2f(1− f)

h2(r)
{(n− 1)c},(3.6)

where the special case of ~v = 0 is taken care of by the factor 1− f in the
last term on the right hand side of (3.5) because f = Θ2 = 1 in this case.

Now the corollary follows from using the fact that |H| ≤
√
n− 1|A| and

completing the square. �

3.2. Barriers

In this subsection, we treat the model case, namely, the mean curvature flow
of initial hypersurface parallel (i.e equidistant) to N . By the well-known
avoidance principle in mean curvature flows of closed hypersurfaces, this
special mean curvature flow will serve as barriers to control the behavior of
our mean curvature flow for a more general class of initial hypersurfaces.

Lemma 3.3. Let N be a closed (n− 1)-dimensional Riemannian manifold
and M = N × R or N × [0,∞) the warped product manifold with the metric
given by (1.2) satisfying Conditions (C1–2). Then any mean curvature flow
(1.1) in M of initial hypersurface N(a), where N(a) is a hypersurface of
constant (signed) distance a ∈ R to N , exists for all time, stays umbilic and
converges smoothly to N as t→∞.

Proof. Since N(a) is parallel to N , the initial angle function Θ(0) ≡ 1, more-

over, N(a) is umbilic with principal curvature h′(a)
h(a) . By uniqueness of the
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mean curvature flow, we have Θ ≡ 1 and the evolving surface stays parallel
to N .

It’s trivial when a = 0. Let’s assume a > 0. Let R(t) be the height func-
tion of the evolving hypersurface at time t. Note that it is a function of t
only, since N(R) is parallel to N . Then by either (2.1) or (2.16), we have

(3.7)


dR(t)

dt
= −(n− 1)

h′(R(t))

h(R(t))

R(0) = a > 0 .

Since h is a positive function over R, the solution R(t) exists forever. In
light of the direction field of this ODE, mostly just the sign of derivative,
we know that R(t) decreases and stays positive. Assuming R(t)→ A ≥ 0 as

t→∞, one can easily rule out the case of A > 0 since h′(A)
h(A) > 0, so A = 0

and N(R) converges smoothly to N at time infinity. The case of a < 0 can
be treated in the same way. In the case of M = N × [0,∞), N = N × {0}
itself serves as the other barrier. This completes the proof. �

As a corollary, we obtain the convergence part of the main theorem.

Corollary 3.4. Let (1.1) be any mean curvature flow in the above warped
product manifold M with a closed initial hypersurface S(0). If it exists for
all time, then it converges continuously to N .

Proof. Since the initial hypersurface is closed, there is a constant a > 0 such
that S(0) is enclosed in the region between parallel hypersurfaces N(−a)
and N(a). The corollary follows from the fact that mean curvature flows of
initial hypersurfaces N(−a) and N(a) both converge to N and the avoidance
principle. �

We conclude this subsection by the following lemma which will be used
later to obtain the key estimate.

Lemma 3.5. Let R(t) > 0 be the solution for the initial value problem
(3.7), and f̄(t) be the solution to the initial value problem:

(3.8)


df̄(t)

dt
= −2(n− 1)(1− f̄)

h′(R(t))2

h2(R(t))

f̄(0) = f̄0 ∈ [0, 1] ,

Then we have the following identity:

(3.9) (1− f̄(t))h2(R(t)) = (1− f̄0)h2(a),
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for all t ≥ 0.

Proof. Let’s assume f̄0 < 1, otherwise the equation (3.8) forces f̄(t) = 1 and
we are done. Since we have both h(r) > 0 and h′(r) > 0 for all r > 0, then

df̄(t)

dt
= −2(n− 1)(1− f̄)

h′2(R(t))

h2(R(t))
< 0.

So the solution to (3.8) exists for all time. To prove the lemma, we set the
function Λ(t) = (1− f̄(t))h2(R(t)) and prove that it is actually independent
of t. We justify this by a direct calculation using both equations (3.7) and
(3.8):

dΛ(t)

dt
= −h2(R(t))

df̄(t)

dt
+ (1− f̄(t))(2h(R(t))h′(R(t))

dR(t)

dt
)

= 2(n− 1)(1− f̄)h′2(R(t)) + 2(1− f̄)hh′
(
−(n− 1)

h′(R(t))

h(R(t))

)
= 0.(3.10)

�

Remark 3.6. As an immediate consequence, we have the limit

(3.11) lim
t→∞

f̄(t) = 1− (1− f̄0)h2(a).

This is the only place that h(0) = 1 is used which can of course be easily
adjusted using any positive constant instead.

3.3. Gradient estimate

Now we apply the barriers established in the previous subsection and com-
parison equations to control the lower bound for Θ and establish the gradient
estimate. In particular, we prove:

Theorem 3.7. Let Mn be a warped product manifold satisfying Conditions
(C0–3) and S0 a smooth closed hypersurface which is a geodesic graph over
the unique totally geodesic hypersurface Σ in Mn, and suppose there is a
constant a0 > 0 such that S0 lies between Σ(±a0). Then if S0 satisfies

min
p∈S0

Θ(p) ≥

√
1− 1

h2(a0)
,

the mean curvature flow (1.1) with initial hypersurface S0 remains graphical
over Σ, namely, Θ(·, t) > 0 as long as the flow exists.
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Proof. Let us first recall the evolution inequality satisfied by f = Θ2 as in
Corollary 3.2:

ft −∆f ≥
〈

2h′(r)

h(r)
n− ∇f

2f
,∇f

〉
+G(f, r),

where

G(f, r) =
2(n− 1)(1− f)

h2(r)
{cf − h′(r)2},

and c is the constant from condition (C3). Let φ(t) be the spatial minimum
of f(·, t) on the evolving hypersurface S(t), namely,

φ(t) = min
S(t)

f.

We only have to establish φ ∈ (0, 1] for a priori estimate. At the spatial min-
imum of f , we have ∇f = 0 and ∆f ≥ 0, and so for t > 0 (using Hamilton’s
trick), we find:

dφ

dt
≥ ∂f

∂t
−∆f

≥ 2(n− 1)(1− f)

h2(r)
{cf − h′(r)2}

≥ −2(n− 1)(1− f)

h2(r)
{h′(r)2}

= −2(n− 1)(1− φ)

{
h′(r)

h(r)

}2

.

By our conditions on the warping function h(r), in particular (1.3), we have
h′(r)
h(r) is nondecreasing in |r|. Let R(t) > 0 be the solution to the initial value

problem (3.7), namely, the evolving distance of the mean curvature flow
with initial hypersurface N(a0) at any time t ≥ 0. Since our evolving hy-
persurfaces S(t) in the mean curvature flow (1.1) of initial hypersurface S0
is squeezed by the barriers N(R(t)), by Lemma 3.3, we have |r(t)| ≤ R(t),
and therefore

(3.12)


1

1− φ
dφ

dt
≥ −2(n− 1)

h′2(R(t))

h2(R(t))

φ(0) = φ0 ∈ (0, 1) .
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Recall that our comparison initial value problem (3.8) is equivalent to:
1

1− f̄
df̄(t)

dt
= −2(n− 1)

h′2(R(t))

h2(R(t))

f̄(0) = f̄0 ∈ [0, 1],

Choosing φ0 = f̄0, we find, for t > 0,

d

dt

(
log

1− f̄(t)

1− φ(t)

)
≥ 0,

which implies φ(t) ≥ f̄(t). Finally, by Lemma 3.5 and Remark 3.6, setting
a = a0, we have

φ(t) ≥ f̄(t) ≥ lim
t→∞

f̄(t) = 1− (1− f̄0)h2(a0).

where the second ≥ is strict unless the initial surface is N , for which there
is nothing to proof.

Now we apply the initial angle condition minp∈S0
Θ(p) ≥

√
1− 1

h2(a0)
,

and choose f̄0 to be (minp∈S0
Θ(p))2, we arrive at φ(t) > 0 as long as the

flows exists. This completes the proof. �

3.4. Completing the proof of the main result

Now we can assemble the ingredients and complete the proof of Theorem 1.2.

Proof. (of Theorem 1.2) We have shown in Theorem 3.7 that the mean
curvature flow (1.1) stays graphical as long as it exists. This provides the
gradient estimate for the mean curvature flow for any finite time interval.
By the classical theory of parabolic equations in divergent form (for instance
[14]), the higher regularity and a priori estimates of the solution follow in
the standard way. This yields the long time existence of the flow by Huisken
([11]). Thus, by Lemma 3.3 and the avoidance principle, the continuous
convergence of the flow also follows.

When the inequality in the assumption of the theorem is strict, the proof
of Theorem 3.7 gives a uniform positive lower bound of the angle for all
time, and so the higher order estimates are uniform for all time, providing
the smooth convergence. Hence, the proof of Theorem 1.2 is completed. �



i
i

“8-Zhou” — 2019/11/18 — 11:35 — page 1409 — #17 i
i

i
i

i
i

MCFs in warped products 1409

3.5. Applications and remarks

We begin by showing that the main result can be applied for the de Sitter-
Schwarzschild manifold from general relativity. The discussion is adjusted
from the same consideration in [4]. Usually in literature, such manifold is
described in the following setting: M = Sn−1 × (s, s) with the warped metric

g =
1

ω(s)
ds⊗ ds+ s2g

Sn−1

where Sn−1 is the unit (n− 1)-sphere, ω(s) > 0 in (s, s) ⊂ (0,∞) and smooth
up to s with ω(s) = 0. RicSn−1 = (n− 2)g

Sn−1 gives Condition (C0) with
ρ = n−2

n−1 . For the de Sitter-Schwarzschild manifold,

ω(s) = 1−ms2−n − κs2

where the mass constant m > 0, the cosmological constant κ can be either
non-positive in which case s =∞ or satisfy

nnm2κn−2 < 4(n− 2)n−2

so that ω(s) = 0 for 0 < s < s <∞. We then use the change of variable in
[4], r = F (s) with

dr

ds
= F ′(s) =

1√
ω(s)

, F (s) = 0.

The assumption on ω(s) makes sure that this is a legitimate change of vari-
able from s ∈ [s, s) to r ∈ [0, F (s)). This provides a natural way to extend
the manifold to s = s or r = 0.

Using the new warping variable r, we have

g = dr ⊗ dr + h2(r)g
Sn−1 ,

where h(r) = s = F−1(r). So we have

h′(r) =
ds

dr
=
√
ω(s)

which clearly satisfies Conditions (C1–2) except that h(0) = s which is not
a problem as described before. Moreover, we have

h′′(r) =
1

2
√
ω(s)

ω′(s)
ds

dr
=
ω′(s)

2
.
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Regarding Condition (C3), c = ρ > 0, we need

h(r)h′′(r)− h′2(r) =
1

2
s ω′(s)− ω(s) ≥ 0

and so at r = 0, i.e. s = s,

h(0)h′′(0)− h′2(0) =
1

2
s ω′(s).

For the de Sitter-Schwarzschild manifold,

ω′(s) = −m(2− n)s1−n − 2κs,

and so we have

h(r)h′′(r)− h′2(r) =
1

2
s ω′(s)− ω(s) =

1

2
mns2−n − 1.

Hence we need 1
2mns

2−n − 1 ≥ 0, and so

s ≤
(mn

2

) 1

n−2

.

Claim:
(
mn
2

) 1

n−2 ∈ (s, s).

Proof. There are two cases to deal with.
If κ ≤ 0, since N ≥ 3, it’s obvious that

h(0)h′′(0)− h′2(0) =
1

2
s ω′(s) > 0.

So
(
mn
2

) 1

n−2 ∈ (s,∞) = (s, s).

If κ > 0 and nnm2κn−2 < 4(n− 2)n−2, as s increases from 0 to ∞, it’s
clear that ω′(s) = −m(2− n)s1−n − 2κs strictly decreases from ∞ to −∞,
and so we know that ω(s) strictly increases (passing ω(s) = 0) from −∞ to
its positive maximum which is achieves at some S ∈ (s, s), and then strictly
decreases (passing ω(s) = 0) to −∞. So we clearly have ω′(s) > 0, and

h(0)h′′(0)− h′2(0) =
1

2
s ω′(s) > 0.

So
(
mn
2

) 1

n−2 >s. Meanwhile, at s=S where the maximum of ω(s) is achieved,

1

2
S ω′(S)− ω(S) = −ω(S) < 0,
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and so s > S >
(
mn
2

) 1

n−2 .
So the claim is justified. �

Now we can conclude that Condition (C3) is satisfied in Sn−1 ×
[s,
(
mn
2

) 1

n−2 ] as part of the de Sitter-Schwarzschild manifold, where we can
apply the main result of Theorem 1.2.

Finally, we would like to point out that there are examples where graph-
ical complete hypersurfaces of warped product manifolds fail to stay graph-
ical along the mean curvature flow after some finite time, for example, as
discussed in Appendix A of [19]. A priori it’s not clear whether this will
indicate the development of geometric singularities along the flow. We hope
to address this problem in future works.
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