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HOLOMORPHIC CUBIC DIFFERENTIALS AND MINIMAL
LAGRANGIAN SURFACES IN CH

2

Zheng Huang, John Loftin and Marcello Lucia

Abstract. Minimal Lagrangian submanifolds of a Kähler manifold represent a very

interesting class of submanifolds as they are Lagrangian with respect to the symplectic
structure of the ambient space, while minimal with respect to the Riemannian structure.
In this paper, we study minimal Lagrangian immersions of the universal cover of closed

surfaces (of genus g ≥ 2) in CH
2, with prescribed data (σ, tq), where σ is a conformal

structure on the surface S, and qdz3 is a holomorphic cubic differential on the Riemann
surface (S, σ). We show existence and non-uniqueness of such minimal Lagrangian im-
mersions. We analyze the asymptotic behaviors for such immersions, and establish the

surface area with respect to the induced metric as a Weil–Petersson potential function
for the space of holomorphic cubic differentials on (S, σ).

1. Introduction

The theory of minimal hypersurfaces (co-dimension one) in a Riemannian manifold
has been a field of both extraordinary depth and far-reaching width in mathemat-
ics. The situation of higher co-dimensional minimal submanifolds can be much more
complicated. In this paper, we aim to investigate some minimal submanifolds of co-
dimension two, motivated from mirror symmetry and “Lagrangian Plateau problem”
[SW99, SW01]. The minimal Lagrangian submanifolds in various ambient spaces can
be studied as a constrained variational problem (see for instance [Oh90, MW93]),
and there are many interesting analogs to the classical minimal surface theory in
Riemannian manifolds. In general, there are obstructions to the existence of minimal
Lagrangian submanifolds in a Riemannian manifold, even in the case of a Kähler
manifold [Bry87].

For a Kähler manifold M2n, one studies its minimal Lagrangian submanifolds:
Lagrangian with respect to the symplectic structure and minimal with respect to the
Riemannian structure of M2n. The obstructions in [Bry87] for existence do not occur if
M2n is a Kähler-Einstein manifold, but the general existence is still largely unknown.
In this paper we consider the existence and multiplicity of minimal Lagrangian immer-
sions of the universal cover of closed Riemann surfaces into the complex hyperbolic
plane CH

2, with prescribed data on the closed surface. Each such immersion is equi-
variant with respect to an induced representation of the fundamental group of the
surface into SU(2, 1).

It is well known that (for instance, [LJ70]), the second fundamental form of a
minimal surface in a three-dimensional space form is described as the real part of a
holomorphic quadratic differential. An analogous fact is true for minimal Lagrangian
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surfaces in CH
2, namely, such an immersion can be constructed from a conformal

structure on a closed surface and a holomorphic cubic differential on this confor-
mal structure. The space of holomorphic cubic differentials on closed Riemann sur-
faces is deeply related to the space of convex flat projective structures on the surface
[Lof01, Lab07].

Our perspective is to develop a moduli theory for minimal Lagrangian immer-
sions of (the covering spaces of) closed surfaces into CH

2. We are particularly in-
terested in the general existence and uniqueness properties of these immersions for
prescribed conformal structure and holomorphic cubic differential. Our method of
study relies on reducing the immersion problem to the solvability of the following
equation from [LM13]:

(1.1) Δu + 2− 2eu − 16t2‖q‖2e−2u = 0,

on a compact Riemann surface equipped with a background hyperbolic metric gσ,
holomorphic cubic differential q, and real positive parameter t. This equation is the
integrability condition of a minimal Lagrangian surface in CH

2 with induced metric
eugσ and the second fundamental form determined by tq.

More specifically, given the pair (σ, tq), a solution to equation (1.1) gives rise to
a Legendrian frame (see Section 2.2) from the universal cover Σ̃ to SU(2, 1), for a
minimal Lagrangian immersion ϕ from Σ̃ to CH

2. Note that the group of interest
SU(2, 1) is the triple covering of PU(2, 1), the holomorphic isometry group of CH

2.
Hence, we obtain a natural representation of the fundamental group of Σ into SU(2, 1)
for which the minimal Lagrangian immersion ϕ is equivariant. The perspective of
surface group representation theory is explored in more detail in the paper [LM13].

Note that the induced metric provides a conformal structure and a background
metric of constant curvature via the uniformization theorem. Since the deformation
of the conformal structures on a closed surface is described by Teichmüller theory, we
find extra tools for this problem, as well as applications to Teichmüller theory.

Let us fix some notation and basic assumptions that will be frequently used
throughout the paper.

(i) Let Σ be a smooth, closed, oriented surface of genus g ≥ 2, and σ be a
conformal structure on Σ, with local conformal coordinate z. Note that σ
is a point on Teichmüller space Tg of Riemann surfaces (here we do not
distinguish Teichmüller space and moduli space).

(ii) Let gσdzdz̄ be the hyperbolic metric (of constant curvature −1) on (Σ, σ),
and Δ is the Laplace operator for gσ.

(iii) Let C(σ) be the space of holomorphic cubic differentials of the form q(z)dz3

on (Σ, σ), where ∂q(z)
∂z̄ = 0. Note that by the Riemann–Roch theorem, the

complex dimension of C(σ) is 5g − 5 (see for example [FK80]).
(iv) We assign the following notation for a holomorphic cubic differential q(z)dz3

with respect to the hyperbolic metric gσ:

(1.2) ‖q‖ =
|q|

g
3/2
σ

.
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Therefore it generates a natural L2-pairing (the Weil–Petersson pairing) of
holomorphic cubic differentials in C(σ). We always assume q �≡ 0, but keep
in mind that the cubic differential q must necessarily have (finitely many)
zeros on Σ.

We are interested in understanding minimal Lagrangian surfaces in CH
2, in particular,

the existence, uniqueness and asymptotic behaviors of such immersions. Our main
result can be summarized into the following:

Theorem 1.1. Let Σ be a closed marked surface of genus g ≥ 2, σ ∈ Tg be a conformal
structure on Σ, and qdz3 ∈ C(σ) be a holomorphic cubic differential on this marked
surface (Σ, σ), then we have the following:

(i) There is a T0 = T0(σ, q) > 0 so that for any t ∈ (0, T0), there are at least
two immersed minimal Lagrangian immersions from Σ̃, the universal cover
of Σ, into CH

2, determined by (σ, tq);
(ii) There is a minimal Lagrangian immersion from Σ̃ into CH

2 determined by
(σ, T0q);

(iii) [LM13] There exists a T = T (σ, q) > 0 such that for any t > T , there is no
minimal Lagrangian immersion of Σ̃ into CH

2 determined by (σ, tq).

The most technical parts of Theorem 1.1 are the parts (i) and (ii). Our approach for
part (i) consists of two steps: we first (see Theorem 3.3) deploy the continuity method
to produce a solution curve to equation (1.1), and show corresponding solutions are
stable, then we produce an additional solution by the mountain pass theorem for
each stable solution obtained in Theorem 3.3. Part (ii) essentially determines the
asymptotic behavior of the solution curve on which the linearized operator is positive.
Proving part (ii) requires the closedness estimate in Theorem 3.7, i.e., the continuity
method extends to the endpoint T0. This estimate relies on the compactness of the
surface Σ. We also note an antecedent to part (i) is proved already in [LM13]: there is
a T̃0 ∈ (0, T0] so that there is a single solution of (1.1) for each t < T̃0 is Theorem 5.1
of [LM13].

As an application to Teichmüller theory, we show that

Theorem 1.2. The induced surface area (for a unique minimal Lagrangian immer-
sion corresponding to data (σ, qdz3)) is a potential function of the Weil–Petersson
norm in the space of holomorphic cubic differentials on σ ∈ Tg.

Understanding Lagrangian surfaces in CH
2 is an important ingredient in studying

representations in the complex hyperbolic quasi-Fuchsian space (see [PP06]). Note
that the pair (σ, q) provides a parameter space of real dimension 16g−16, which agrees
with the real dimension of complex hyperbolic quasi-Fuchsian space. Equation (1.1) is
one of several equations corresponding to immersing a closed surface (or the universal
cover) into other geometries. It is of great interest in higher Teichmüller theory to
understand the space of surface group representations into higher rank Lie groups,
and to integrate techniques of non-linear analysis with the representation theory.

It is also worth mentioning that the Lagrangian property is preserved under the
mean curvature flow in Kähler manifolds [Smo96], while minimal surfaces or surfaces
of constant mean curvature are often natural candidates for limiting submanifolds (if
exist) of various mean curvature flows. The understanding of existence and uniqueness
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of minimal Lagrangian immersions can provide important geometric insight for the
analysis of Lagrangian mean curvature flows in Kähler manifolds (see for instance
[Wan08]). Minimal Lagrangian submanifolds also play vital roles in the geometry
of calibrated submanifolds in Calabi–Yau manifolds [HL82], the SYZ conjecture in
mirror symmetry [SYZ96, LYZ05], and symplectic topology [Joy05], to name a few.

Plan of the paper. This paper is organized as follows: In Section 2, after recall-
ing the preliminaries of minimal Lagrangian submanifolds in CH

2, we set up the
structure equations and reduce the minimal Lagrangian immersion problem to the
solutions to equation (1.1) (Proposition 2.1), and we relate the second fundamental
form of the minimal Lagrangian immersion to the prescribed conformal structure and
holomorphic cubic differential (Proposition 2.2). We prove part (iii) of Theorem 1.1
in Section 3.1, and prove the existence of a solution curve γ in Section 3.2. In Sec-
tion 3.3, we derive a uniform estimate for the solutions on the solution curve away
from zero, and hence show the right endpoint T0 is in fact included on the solution
curve γ. We then complete the proof of Theorem 1.1 in Section 4, where we focus
on the non-uniqueness of minimal Lagrangian immersions with prescribed data. In
Section 5, since the solutions near the trivial solution γ(0) are unique, we are able to
define a functional on a subspace of the space of minimal Lagrangian immersions in
CH

2. As an application to Teichmüller theory, we show this functional is a potential
function of the Weil–Petersson norm of holomorphic cubic differentials.

2. Minimal Lagrangian submanifolds in CH
2

2.1. Complex hyperbolic space. Before we move to our main interest in CH
2,

let us briefly mention a few general facts on minimal Lagrangian submanifolds in a
Kähler manifold. Let (M2n, ω) be a Kähler manifold where ω is its Kähler form. Let
Nn be a submanifold of dimension n in M2n. The inclusion map i : Nn → M2n is
called Lagrangian if

i∗ω ≡ 0.

In other words, a Lagrangian submanifold is characterized by the vanishing of ω|N .
In terms of the Riemannian structure on M2n, the submanifold Nn is Lagrangian if
the tangent space TM restricted on Nn is an orthogonal direct sum as follows:

(2.1) TMN = TN ⊕ J · TN,

where J is the complex structure on M2n such that the Riemannian metric on M2n

is given by ω(X, JY ) for tangent vectors X and Y .
A Lagrangian submanifold Nn is minimal if its mean curvature vector is identically

zero. Similar to the minimal surface case, these minimal submanifolds are critical
points of the volume with respect to induced measure from M2n [Sim68].

We now consider the space CH
2, and use the projective model. Consider the inner

product 〈·, ·〉 on C
2,1 as follows:

(2.2) 〈v, w〉 = v1w̄1 + v2w̄2 − v3w̄3.
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We denote the cone W− = {v ∈ C
2,1 : 〈v, v〉 < 0}, and let P be the natural projection

C
2,1 \ {0} → CP

2. Then we define CH
2 as a complex manifold to be the image of

W− under this projection P . The space CH
2 carries a natural tautological S1-bundle:

the pseudo-sphere
S− = {u ∈W− : 〈u, u〉 = −1},

and −〈·, ·〉 induces a metric connection on the S1-bundle: π : S− → CH
2.

Note that CH
2 does not admit any real totally geodesic hypersurface, but there

are two kinds of totally geodesic co-dimension two subspaces (see [Gol99]), namely,
the complex line of constant curvature −1, and the real Lagrangian plane RH

2 of
constant curvature −1

4 . All minimal Lagrangian immersions we consider here are
from the universal cover of a closed surface into CH

2. Equation (1.1) has a trivial
solution, when t = 0, u = 0. This trivial solution corresponds to the totally geodesic
Lagrangian embedding of RH

2 in CH
2, and the corresponding representations of the

surface group are Fuchsian. Any solution (u(t), t) obtained near (0, 0) gives rise to
complex hyperbolic quasi-Fuchsian representations, as seen in [LM13]. The geometry
of representations for solutions (u(t), t) outside a neighborhood of (0, 0) is unclear.

2.2. The structure equation and the reconstruction. In this subsection, we
briefly recall the derivation and setup of the structure equations for minimal Lagrangian
surfaces in CH

2.
Let D = Σ̃ = {z ∈ C : |z| < 1} be the unit disk, the universal cover of the

surface Σ, then for any Lagrangian immersion ϕ : D → CH
2, it admits a horizontal

Legendrian lift f : Σ̃→ S−. This lift gives rise to a frame, for any z ∈ D:

(2.3) F = (fz/|fz| fz̄/|fz̄| f).

This frame F (z) lies in U(2, 1). Furthermore, it is shown in [LM13] that F lies in
SU(2, 1) if and only if ϕ is a minimal Lagrangian immersion.

Let ϕ be a conformal Lagrangian immersion of the unit disk D to CH
2. There is a

local Legendrian lift f : D → S− ⊂ C
2,1 so that

〈f, f〉 = −1, 〈f, fz〉 = 〈f, fz̄〉 = 0, 〈fz, fz̄〉 = 0,

and we write the first fundamental form 〈fz, fz〉 = 〈fz̄, fz̄〉 as s2, then 2s2|dz|2 is the
local expression of the metric on D. For a conformal map, the minimality of ϕ is just
the condition for it to be a harmonic map

〈fzz̄, fz〉 = 〈fzz̄, fz̄〉 = 0.

Define
q = 〈fzzz, f〉 = −〈fzz, fz̄〉,

and we may compute by taking z and z̄ derivatives of the above equations to find:

〈fzz, fz〉 = 2ssz, 〈fz̄z̄, fz̄〉 = 2ssz̄, 〈fz̄z̄, fz〉 = q̄.

The frame F = (fz/|fz| fz̄/|fz̄| f) lies in SU(2, 1), and we define the Maurer–
Cartan form

(2.4) α = F−1dF = Adz + Bdz̄,
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where

A = F−1Fz =

⎛
⎜⎝

(log s)z 0 s

−qs−2 −(log s)z 0
0 s 0

⎞
⎟⎠ ,

and

B = F−1Fz̄ =

⎛
⎜⎝
−(log s)z̄ q̄s−2 0

0 (log s)z̄ s

s 0 0

⎞
⎟⎠ .

The Maurer–Cartan equations dα + α ∧ α = 0 are equivalent to the following:

(2.5)

⎧⎨
⎩

qz̄ = 0
∂2

∂z∂z̄
log(s2) = |q|2s−4 + s2.

Now using Δ as the Laplacian of the hyperbolic metric gσ on (Σ, σ(z)), and

Δ =
4
gσ

∂2

∂z∂z̄
, −1 = − 2

gσ

∂2

∂z∂z̄
log(gσ).

Since eugσ = 2s2, the second equation of (2.5) becomes the local version of

(2.6) Δu + 2− 2eu − 16‖q‖2e−2u = 0.

Since the Maurer–Cartan equations are the integrability conditions for the frame
F , we have the following local characterization of minimal Lagrangian immersions
in CH

2:

Proposition 2.1. A conformal minimal Lagrangian immersion ϕ : D → CH
2 induces

a holomorphic cubic differential q and metric 2s2|dz|2 which satisfy (2.5). Conversely,
if σ is a conformal structure on Σ and q is a holomorphic cubic differential on (Σ, σ).
Then any solution u : Σ → R to (2.6) determines a Legendrian frame F : D = Σ̃ →
SU(2, 1) for a minimal Lagrangian immersion ϕ : D → CH

2 which is equivariant with
respect to some surface group representation from π1(Σ) into SU(2, 1). The immersed
minimal Lagrangian surface is unique up to holomorphic isometries of CH

2.

This Proposition provides the reconstruction scheme from solving (2.6): Given a
conformal structure σ on the closed surface Σ, and a holomorphic cubic differential
q on (Σ, σ), each solution u(z) of equation (2.6) corresponds to an induced metric
2s2|dz|2 on D. From the formula in (2.4), the 1-form α is therefore determined. As in
[LM13], one integrates the Maurer–Cartan equations F−1dF = α to obtain a frame
F = (fz/|fz| fz̄/|fz̄| f). The Lagrangian and minimal properties are encoded in
verifying F ∈ SU(2, 1). Therefore, we reduce the problem of obtaining surface group
equivariant minimal Lagrangian immersion of the disk D into CH

2 to the solvability
of equation (2.6) for data (σ, q).

2.3. The second fundamental form. For any immersion problem, the second fun-
damental form is a natural key object of the study, and they often give rise to the
concepts of principal curvatures. In the case of a minimal surface in a hyperbolic
three-manifold, the second fundamental form is described as the real part of a holo-
morphic quadratic differential. In this subsection, we show that an analogous fact is
true for minimal Lagrangian surfaces in CH

2, namely, we describe all the components
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of the second fundamental form in terms of real and imaginary parts of a holomorphic
cubic differential q.

To compute the second fundamental form, we consider for a conformal coordi-
nate z = x + iy the orthonormal basis of the tangent space of the immersed surface
given by E1 = fx/|fx|, E2 = fy/|fy|. Since the surface is Lagrangian, by (2.1),
(E1, E2, iE1, iE2) form an orthonormal basis in the tangent space of CH

2. For tan-
gent vector fields X, Y ∈ Γ(Tϕ(D)), the second fundamental form of the immersion
into CH

2 is given by

II(X, Y ) =
2∑

j=1

g(∇XY, iEj)iEj ,

where g(v, w) is the Riemannian metric on CH
2 inherited from the inner product (2.2)

on C
2,1, and ∇ is the Levi–Civita connection on CH

2, which is the projection of the
flat connection on C

2,1.
We find that there are three independent entries for the second fundamental form

II, which allows us to arrange them in a 2× 2 symmetric matrix:

Proposition 2.2. All the components of II are determined by the metric 2s2|dz|2 and
the cubic differential q. In particular, we have

II(E1, E1) = 2−
1
2 s−3(− Im q · iE1 − Re q · iE2),

II(E1, E2) = 2−
1
2 s−3(−Re q · iE1 + Im q · iE2),

II(E2, E2) = 2−
1
2 s−3( Im q · iE1 + Re q · iE2).

Proof. We compute only II(E1, E1), as the rest are similar. Since the Levi–Civita
connection on CH

2 is the projection of the flat connection on C
2,1, we can compute

∇XY as (XY )f . Therefore,

II(E1, E1) =
1

2s2
II(fx, fx)

=
2∑

j=1

1
2s2

g(fxx, iEj) · iEj

=
1

2
√

2 · s3
[g(fxx, ifx) · iE1 + g(fxx, ify) · iE2]

Now compute

g(fxx, ifx) = Re〈fzz + 2fzz̄ + fz̄z̄, ifz + ifz̄〉
= Re[−i(2ssz − q + q̄ + 2ssz̄)]
= −2 Im q.

We may similarly compute g(fxx, ify) = −2 Re q. So altogether,

II(E1, E1) =
1

2
√

2 · s3
[−2 Im q · iE1 − 2 Re q · iE2].
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3. General existence results

We now consider a family of equations (2.6) determined the ray tq (t ≥ 0) in the
space of holomorphic cubic differentials C(σ):

(3.1) Δu(z, t) + 2− 2eu(z,t) − 16t2‖q‖2e−2u(z,t) = 0.

Recall from (1.2) that ‖q‖2 = qq̄
g3

σ
.

It is an immediate consequence of the maximum principle that we have:

Proposition 3.1. Any solution u to (3.1) satisfies u ≤ 0.

Since C(σ) is a finite dimensional vector space, this approach allows us to fix q
and focus on finding interval of the parameter t for which solutions to (3.1) exists.
This setup is quite standard in non-linear analysis, where we have access to sev-
eral important techniques such as the continuity method and the variational method.
Equations (1.1) and (3.1) are very similar to the equations in the problem of mini-
mal immersions of closed surfaces into hyperbolic three-manifolds first introduced by
Uhlenbeck [Uhl83] and further studied in [HL12].

3.1. Nonexistence. In this subsection, we deal with (possibly) large values for
parameter t.

Theorem 3.2. There exists a constant T = T (q, σ) such that equation (3.1) does not
admit any solution for any t ≥ T .

Note that, the solvability of equation (3.1) is a necessary condition for the existence
of a minimal Lagrangian immersion of Σ into CH

2. This theorem is equivalent to
Proposition 5.8 in [LM13]. We include a proof here for the sake of completeness since
it is very short.

Proof. We integrate equation (3.1) with respect to the hyperbolic metric gσ:

(3.2) Aσ = 8t2
∫

Σ

‖q‖2e−2udAσ +
∫

Σ

eudAσ > 8t2
∫

Σ

‖q‖2e−2udAσ.

Meanwhile, we apply the Hölder’s inequality, and Proposition 3.1:∫

Σ

‖q‖2/3dAσ =
∫

Σ

‖q‖2/3e−2u/3e2u/3dAσ

≤
{∫

Σ

‖q‖2e−2udAσ

}1/3 {∫

Σ

eudAσ

}2/3

≤ A2/3
σ

{∫

Σ

‖q‖2e−2udAσ

}1/3

.

Applying above inequality to (3.2), and noting that the hyperbolic area of Σ is
Aσ = 2π(2g − 2), we find:

t <

{
2π(g − 1)∫

Σ
‖q‖2/3dAσ

}3/2

.

Now we can simply choose T =
{

2π(g−1)∫
Σ ‖q‖2/3dAσ

}3/2

.
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3.2. Existence. In this subsection, we take advantage of this variational setup to
apply the implicit function theorem to prove the solvability of equation (3.1) and
therefore the general existence of minimal Lagrangian immersion of Σ̃ into CH

2.
We consider the non-linear map F : W 2,2(Σ)× [0,∞)→ L2(Σ) defined by

(3.3) F (u, t) = Δu + 2− 2eu − 16t2‖q‖2e−2u,

where W 2,k(Σ) stands for the classical Sobolev space. At each t ≥ 0 fixed, the
linearized operator L(u, t) : W 2,2(Σ)→ L2(Σ) associated to F is given by

(3.4) L(u, t) = −Δ + 2e−2u
(
e3u − 16t2‖q‖2

)
.

It is easy to see that L(u, 0) > 0, since −Δ has non-negative eigenvalues. In standard
theory, the operator L(u, t) in (3.4) is crucial in order to apply the implicit function
theorem. In particular, when the linearized operator L has all positive eigenvalues,
the differential of the map F (u, t) in (3.3) is onto.

The existence of solutions for small t is implied by the following:

Theorem 3.3. There exists a constant T0 = T0(σ, q) > 0 and a smooth curve

γ : [0, T0]→W 2,2(Σ)× [0,∞) t �→ (u(t), t),

such that

(a) γ(0) = (0, 0) and F (γ(t)) = 0 for all t ∈ [0, T0].
(b) L(u(t), t) > 0 for all t ∈ [0, T0).
(c) Ker

(
L(u(T0), T0)

)
�= {0}.

(d) The family of solutions to F (u(t), t) = 0 is unique near γ(0) = (0, 0).

Proof. We follow closely the existence of solutions in [Uhl83].
We use the continuity method. Let E = {t ∈ [0,∞) : there is a unique smooth

solution γ(τ) with initial condition γ(0) = (0, 0) and which satisfies F (γ(τ)) = 0
and L(u(τ), τ) > 0 for all τ ∈ [0, t]}. Clearly E includes 0. E is open by the im-
plicit function theorem and since L(u(t), t) > 0. To see the closedness, apply Theo-
rem 3.7 below and standard elliptic theory to find that E contains any t ∈ Ē so that
Ker

(
L(u(t), t)

)
= {0}. Therefore the statements (a) (b) and (d) follow. Statement (c)

then follows by the estimate in Theorem 3.7.

Remark 3.4. (i) Note that by standard regularity theory, the solution u(t) obtained
above belongs to the class C∞(Σ).

(ii) One can show that for t2‖q‖2 ≤ 1
54 , a lower bound on u along γ from [LM13]

implies that L is a positive operator, and thus we find an alternate proof of
the existence result in [LM13].

3.3. Estimates for closedness. We start with a lemma that we will use later:

Lemma 3.5. For a ≥ 1 and b ≥ 0, we have

(3.5) ab ≤ H(a) + H∗(b),

where H(a) = 1
4a(log a)2 and H∗(b) = 1

2e−1+
√

1+4b(−1 +
√

1 + 4b).
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Proof. For a ≥ 1, H(a) is a convex function. Then we may compute

H∗(b) = sup
a≥1

[ab−H(a)]

as the Legendre transform of H. Indeed, we have

H ′(a) =
1
4
(log a)2 +

1
2

log a,

and consequently, for b = H ′(a),

H∗(b) = H∗
(

1
4
(log a)2 +

1
2

log a

)
= aH ′(a)−H(a) =

1
2
a log a.

It is then easy to solve for the formula of H∗(b).

We are left to show the following key estimate to complete the proof of Theorem 3.3,
namely, the solutions on t ∈ [0, T0) given by the implicit function theorem can be
extended to t = T0.

Remark 3.6. The following type of estimate is known to Uhlenbeck [Uhl83, p. 164],
but the proof is not included in [Uhl83].

Theorem 3.7. Let p ∈ (1,∞). Then there is a constant C = C(σ, q, p) such that for
every solution u of along the path γ in Theorem 3.3 from t = 0 satisfying F (u, t) = 0
and L(u, t) ≥ 0, we have

‖u‖W 2,p ≤ C.

Proof. By the implicit function theorem around t = 0, we may assume there is a fixed
ε > 0 so that t ≥ ε. Now we assume u is a solution on the solution curve γ with
L(u, t) ≥ 0, and we integrate both sides of (3.1) with respect to the hyperbolic metric
on Σ to find:

Aσ =
∫

Σ

eu + 8t2
∫

Σ

‖q‖2e−2u,

where we recall that Aσ = 2π(2g − 2) is the hyperbolic area of Σ.
Since t ≥ ε, we have for a positive constant C1 = C1(ε),

(3.6)
∫

Σ

e−2u‖q‖2 ≤ C1.

Since q is a prescribed holomorphic cubic differential on a closed surface (Σ, σ), it is
well-known that q has isolated zeros.

To derive an integral bound on u, let n be the largest order of all the zeros of q,
and let � < 1

n+1 , α = 1
� and β be the conjugate exponent of α (namely 1

α + 1
β = 1).

Now ‖q−2�‖β is finite, which allows us to apply Hölder’s Inequality:
∫

Σ

(e−2u)� ≤ ‖(e−2u‖q‖2)�‖α · ‖q−2�‖β < C2,

for some C2 = C2(σ, q, ε) > 0.
Since u ≤ 0 (Proposition 3.1), each |u|p is dominated by e−2�u, and we have uniform

Lp bounds, for any p > 1,

(3.7) ‖u‖p ≤ C3 = C3(σ, q, ε, p).
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Furthermore, since 〈L(u, t)u, u〉 ≥ 0, we have

〈L(u, t)u, u〉 =
∫

Σ

(−Δu + 2e−2u(e3u − 16t2‖q‖2)u)u

=
∫

Σ

|∇u|2 + 2euu2 − 32e−2ut2‖q‖2u2 ≥ 0.(3.8)

We then multiply equation (3.1) by u and integrate by parts to find:

(3.9)
∫

Σ

|∇u|2 =
∫

Σ

2u− 2ueu − 16t2‖q‖2ue−2u.

Applying (3.9) to the inequality (3.8), we have

(3.10)
∫

Σ

2u + 2eu(u2 − u)− 16t2‖q‖2e−2u(2u2 + u) ≥ 0.

Now the combination of u ≤ 0 and the Lp-bound (3.7) gives the following:

(3.11)
∫

Σ

16t2‖q‖2e−2uu2 ≤ C4,

for some uniform constant C4 = C4(σ, q, ε, p) > 0. We note the extra u2 in this
integral, together with the Green’s function representation of solutions to (3.1), will
be enough to prove uniform L∞-estimates on u.

To proceed, we define the following simplified notion for two functions f and g:
f = g + O(1) if |f − g| is uniformly bounded from above by some positive constant.

Let G(x, y) be the Green’s function for the hyperbolic Laplacian. We have

G(x, y) =
1
2π

log(d(x, y)) + O(1),

for d the hyperbolic distance.
Let ū be the average of u, which is bounded by the Lp-bound (3.7). We apply the

Green’s formula to find:

u(x) = ū +
∫

Σ

G(x, y)Δu(y) dV ol(y)

=
∫

Σ

G(x, y)[−2 + 2eu(y) + 16t2‖q(y)‖2e−2u(y)] dV ol(y) + O(1)

= 16t2
∫

Σ

G(x, y)‖q(y)‖2e−2u(y) dV ol(y) + O(1).

Now choose a complex normal coordinate disk D centered at x (so that x = 0),
and use the asymptotics of the Green’s function, together with (3.6), to find

u(0) =
8t2

π

∫

D
log |y|e−2u‖q‖2 dV ol(y) + O(1).
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We want to compare this integral to
∫

t2e−2uu2‖q‖2, for which we have a bound by
(3.11). We now choose a = e−2u and b =

∣∣ log |y|
∣∣. It is easy to verify that a ≥ 1 and

b =
∣∣ log |y|

∣∣ ≥ 0. Hence H(a) = u2e−2u and H∗(b) = 1
2e−1+

√
1+4b(−1+

√
1 + 4b). We

can now apply Lemma 3.5 to find:

|u(0)| ≤ 8t2

π

∫

D

∣∣ log |y|
∣∣ · e−2u · ‖q‖2 dV ol(y) + O(1)

≤ 8t2

π

∫

Σ

e−2uu2‖q‖2 +
8t2

π

∫

D
H∗(b)‖q‖2 dV ol(y) + O(1).

Both these terms are bounded, the first by (3.11), and the second by a direct compu-
tation. Since 0 = x ∈ Σ was arbitrary, we have a uniform bound

‖u‖L∞ ≤ C5

This bound can then be plugged into the equation F (u, t) = 0 to find uniform L∞

bounds on Δu. Thus standard Lp theory applies, and we have uniform W 2,p bounds
on u. Higher regularity is standard.

4. Non-uniqueness

In previous sections, we have proved parts (ii) and (iii) of Theorem 1.1. By the implicit
function theorem, the family of solutions to the structure equation is unique for the
family including γ(0). In this section, we address the issue of non-uniqueness for this
problem, i.e., we construct a mountain pass type solution for each parameter value t
on (0, T0). This will complete the proof of part (i).

4.1. New formulation. We start with a new formulation of the problem in order
to prove a compactness result. This is necessary because the original Euler–Lagrange
functional associated to the structure equation (3.1) does not satisfy a compactness
property that is required to apply the mountain pass theorem. Our approach is to
follow the strategy used in [HL12] for the minimal immersion problem in hyper-
bolic three-manifolds: we define a new functional and a new norm for the structure
equation (3.1), and show the critical points of the new functional coincide with the
solutions of (3.1), and in next subsection we prove a compactness theorem for the
new functional and norm, and finally apply the mountain pass theorem in [AR73] to
produce a second solution for each t on (0, T0).

To proceed, we need to capture the non-linearities arising from the structure equa-
tion (3.1), which now we recall:

Δu + 2− 2eu − V e−2u = 0,

where we set V = V (t, z) = 16t2‖q‖2.
Let H1(Σ) be the usual Sobolev space

H1(Σ) := {u ∈ L2(Σ) : ∇u ∈ L2(Σ)},

equiped with the norm

〈f, g〉H1 :=
∫

Σ

{
∇f∇g + fg

}
.
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Then for u ∈ H1(Σ), the Euler–Lagrange functional for (3.1) is

(4.1) I(u) :=
1
2

∫

Σ

|∇u|2 +
∫

Σ

(
2eu − 2u− V

e−2u

2

)
.

Note that this functional does not satisfy the Palais–Smale compactness condition.
We now explicitly construct smooth functions as follows:

(4.2) f1(s) :=

{
2− 2es if s ≤ 0
−θsθ−1 if s > 1

,

where θ > 2 is a constant and we require f1(s) < 0 for s > 0. Let

(4.3) f2(s) :=

{
s− e−2s if s ≤ 0
0 if s > 1.

In addition, it is easy to see that we can also require f2(s) < 0 for all s ∈ (0, 1).
With these functions, we can transfer equation (3.1) to a new equation which is

better suited for variational methods:

Lemma 4.1. The structure equation (3.1) is equivalent to the new equation

(4.4) −Δu + V u−
(
f1(u) + V f2(u)

)
= 0.

Proof. First, let u be a solution to equation (3.1). Then from Proposition 3.1, we
have u ≤ 0. In this case, from the explicit formulas in (4.2) and (4.3), we find that
f1(u) = 2− 2eu and f2(u) = u− e−2u.

We now verify that

−Δu + V u− f1(u)− V f2(u) = −Δu + V u− 2 + 2eu − V (z)u + V e−2u

= −Δu− 2 + 2eu + V e−2u

= 0.

Conversely, let u be a solution to equation (4.4). We now apply the maximum principle
to (4.4). At the maximum point p0 of u, we have Δu(p0) ≤ 0. Note that these functions
f1 and f2 enjoy the following properties:

f1(s) < 0 ∀s > 0, f2(s) ≤ min{0, s} ∀s ∈ R.

Therefore at p0, we have either u(p0) ≤ 0 or

V u(p0) ≤ f1(u(p0)) + V (z)f2(u(p0)) ≤ f1(u(p0)) + V u(p0).

This implies that f1(u(p0)) ≥ 0, and therefore u(p0) ≤ 0 by the definition (4.2) of f1.
Since p0 is the maximum of u, we have just showed u ≤ 0. It is then easy to see that
the sets of solutions of (3.1) and (4.4) coincide.

To define the functional for this new equation (4.4), we need to introduce an ap-
propriate norm on H1(Σ) as follows:

(4.5) 〈f, g〉V :=
∫

Σ

{
∇f∇g + V (z)fg

}
.

Lemma 4.2. The norms ‖ · ‖H1 , ‖ · ‖V on the Sobolev space H1(Σ) are equivalent.
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Proof. One direction is obvious, namely, since V ∈ L∞(Σ), we have ‖ · ‖V ≤ C‖ · ‖H1 .
To work in the opposite direction, we set ū := 1

Aσ

∫
Σ

u as the average of u on Σ, where
Aσ = 4π(g − 1) is the hyperbolic area of the surface.

We start with

(4.6) ‖u‖L2 ≤ ‖u− ū‖L2 + ‖ū‖L2 ,

and the first term on the right-hand side of (4.6) is taken care of by the Poincaré
inequality, namely, we have

(4.7) ‖u− ū‖L2 ≤ C‖∇u‖L2 .

For the second term, we use

|ū|2 ≤ 2u2 + 2|u− ū|2,
and apply Poincaré inequality again to find:

|ū|2
∫

Σ

V (z) ≤ 2
∫

Σ

{
V (z)|ū− u|2 + V (z)u2

}

≤ C

∫

Σ

{
|ū− u|2 + V (z)u2

}

≤ C

∫

Σ

{
|∇u|2 + V (z)u2

}

= C‖u‖2V .

Since
∫
Σ

V > 0, we also bound the second term in the right-hand side of (4.6), and
complete the proof.

We integrate from the formulas (4.2) and (4.3) to define new functions:

(4.8) F1(s) :=

{
2s− 2es + 2 if s ≤ 0
−sθ if s > 1,

and

(4.9) F2(s) :=

{
1
2 (s2 + e−2s) if s ≤ 0
0 if s > 1.

Note that the additive constant 2 in the formula of F1(s) when s ≤ 0 is designed
such that f1(s) = F ′

1(s) < 0 when s > 0. Using these functions, we can now define the
functional corresponding to the formulation in equation (4.4), on the Hilbert space
H1(Σ), as the following:

(4.10) F(u) :=
1
2

∫

Σ

{
|∇u|2 + V (z)u2

}
−

∫

Σ

{
F1(u) + V (z)F2(u)

}
, u ∈ H1(Σ),

This functional is well-defined by the Moser–Trudinger inequality, and it is clear
that it is continuously differentiable.

Remark 4.3. From this definition (4.10), the critical points of F are weak solutions
of (4.4), and hence solutions to the structure equation (3.1) by Lemma 4.1. Also by
Lemma 4.1, for each t ∈ (0, T0), Theorem 3.3 provides a critical point of F which
is stable. Our next subsection is to show for each stable critical point of F , there is
another solution (of mountain pass type) corresponding to the same t ∈ (0, T0).
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We end this subsection by the following easy observation:

Proposition 4.4. Let k be a negative constant, then we have

(4.11) lim
k→−∞

F(k) = −∞.

4.2. Strong non-uniqueness. One more step remains before we can prove the
(strong) non-uniqueness for the minimal Lagrangian immersion with (σ, tq), where
σ ∈ Tg(Σ) and q ∈ C(σ), for each t ∈ (0, T0), namely, we have to show a compactness
property for the functional F :

Theorem 4.5. The functional F in (4.10) satisfies the Palais–Smale compactness
condition.

Proof. Let us facilitate with the following notation. Let O(1) as before, and we call a
quantity |f | = o(1) if |f | tends to zero when an appropriate limit is taken. Using this
notation, the Palais–Smale compactness condition for the functional F is equivalent
to showing that any sequence of functions {un ∈ H1(Σ)} which satisfies

(4.12) |F(un)| = O(1), ‖F ′(un)‖H−1 = o(1),

admits a subsequence which converges strongly in H1(Σ).
Suppose {un ∈ H1(Σ)} is a sequence which satisfies (4.12), and we will prove the

theorem in two steps: first we show {un} is bounded, hence there is a weak limit in
H1(Σ), then we show this weak limit is actually strong.

Step one: ‖un‖V = O(1).
To see this, we deduce from the expressions of the functional F in (4.10), the norm

‖ · ‖V in (4.5), and the assumption that F(un) = O(1), we have

(4.13)
1
2
‖un‖2V ≤

∫

Σ

{F1(un) + V F2(un)}+ O(1).

It is not hard to verify, from the definitions of functions fj(s) and Fj(s), j = 1, 2,
by considering all three subintervals for s ∈ R: (−∞, 0), [0, 1] and (1,∞), that, for
θ > 2,

(4.14) Fj(s) ≤
s

θ
fj(s) + O(1), j = 1, 2.

On the other hand, in the direction of ξ, we have

F ′(u)(ξ) =
∫

Σ

(∇u∇ξ + V uξ)−
∫

Σ

ξ(f1(u) + V f2(u)).

We deduce from the assumption ‖F ′(un)‖H−1 = o(1) that

F(un)(un) = o(1)‖un‖V .

Therefore we have

(4.15) ‖un‖2V =
∫

Σ

un{f1(un) + V f2(un)}+ o(1)‖un‖V .
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We now continue from the estimate (4.13) to find

1
2
‖un‖2V ≤

∫

Σ

un

θ
{f1(un) + V f2(un)}+ O(1)

=
1
θ
‖un‖2V + O(1) + o(1)‖un‖V .

Step one is now completed since θ > 2 is a constant. Therefore, we obtain, up to a
subsequence, {un} converges weakly in H1(Σ) to some û.

Step two: {un} converges strongly to û, namely, ‖un − û‖H1 = o(1).
To complete our proof, by the equivalence of two norms (Lemma 4.2), we only have

to show ‖un − û‖2V = o(1). Meanwhile, we have

(4.16) ‖un − û‖2V =
∫

Σ

{(f1(un) + V f2(un))(un − û)}+ o(1).

From the expression of f1(s) in (4.2) and the fact that H1 is compactly included
in Lp for all p < ∞ shows that (perhaps going to a further subsequence) we have
{f1(un)} converges strongly to f1(û) in L2(Σ). Similarly, from the expression of f2(s)
in (4.3), and the Moser–Trudinger inequality, we find that {f2(un)} converges strongly
to f2(û) in L2(Σ). Now step two is completed from (4.16).

We now prove our main theorem of the section.

Theorem 4.6. For each t ∈ (0, T0), where T0 is defined in Theorem 3.3, for fixed
conformal structure σ ∈ Tg(Σ), and holomorphic cubic differential qdz3 ∈ C(σ), the
structure equation (3.1) admits at least two solutions.

Proof. Since equations (3.1) and (4.4) are equivalent, according to Lemma 4.1, and
F is the associated functional to equation (4.4), we only have to show F admits at
least two critical points for each t ∈ (0, T0).

From Theorem 3.3, we have F admits one critical point (u(t), t) such that the
linearized operator is positive. Therefore this (stable) solution u(t) obtained in The-
orem 3.3 is a local minimizer for the functional F in the Hilbert space H1(Σ). There
then exists a ball B(u(t), r) in H1(Σ) such that

inf
v∈∂B(u(t),r)

F(v) ≥ F(u(t)).

However, the limit in (4.11) indicates that there must be some function w ∈ H1(Σ)
such that

w �∈ B(u(t), r), F(w) < F(u(t)).

Since the Palais–Smale condition is satisfied by Theorem 4.5, the additional critical
point of F for any t ∈ (0, T0) is obtained by applying the Mountain Pass Theorem of
Ambrosetti–Rabinowitz [AR73].

Naturally, one is interested in these solutions when t goes to zero.
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Theorem 4.7. Let {un(tn)} be a sequence of solutions to the structure equation (3.1).
If tn → 0 as n→∞, then along a subsequence, we have

(i) un → 0 uniformly; or
(ii) ‖un‖∞ →∞.

Proof. From equation (3.1), we have

(4.17) −Δun = 2− 2eun − 16t2‖q‖2e−2un .

As tn → 0, possibly up to a subsequence, we have either ‖un‖H1 = O(1) or ‖un‖H1 →
∞. Let us assume that ‖un‖H1 = O(1) for the moment. In this case, un converges
weakly to some û. For any ξ ∈ C∞(Σ), and using (4.17), we find:

∫

Σ

∇û∇ξ ←
∫

Σ

∇un∇ξ =
∫

Σ

2ξ{1− eun − 8t2‖q‖2e−2un}

→
∫

Σ

2ξ{1− eû},

after taking n→∞. Since ξ ∈ C∞(Σ) is arbitrary, we have:

−Δû = 2(1− eû).

It is then easy to see via the maximum principle that û = 0. By the uniqueness of the
solution near γ(0) = (0, 0) in Theorem 3.3, {un} coincide with the solutions on γ as
tn → 0.

Now we consider the other possibility, namely, ‖un‖H1 → ∞. We need to show
‖un‖∞ →∞. If otherwise, assuming that ‖un‖∞ = O(1), we integrate from (4.17) to
obtain ∫

Σ

|∇un|2 =
∫

Σ

un{2− 2eun − V (z)e−2un} = O(1).

This contradicts the assumption that ‖un‖H1 →∞.

Remark 4.8. It is not in general clear whether the mountain-pass solutions we
produce in Theorem 4.6 form a continuous family. Indeed, both the openness and
closedness estimates along γ depend on the stability condition L > 0, which we expect
to fail for the mountain-pass solutions. We can say more near T0, as the continuous
family γ bifurcates there (one can use the implicit function theorem as in Uhlenbeck
[Uhl83, p. 157]). It is unclear whether the bifurcated solutions for t = T0 − ε coincide
with the mountain-pass solutions we construct.

5. The Weil–Petersson pairing

In this section, we use the uniqueness of the solution of F (u(t), t) on the solution
curve γ near γ(0) = (0, 0) to define a functional on a subspace of the space of minimal
Lagrangian immersions in CH

2. This functional turns out to have positive definite
second variation over Teichmüller space: a scalar multiple of the Weil–Petersson pair-
ing of holomorphic cubic differentials. In the case of closed minimal surface in a class
of quasi-Fuchsian manifolds, a similar functional is shown [GHW10] to be a poten-
tial function for the classical Weil–Petersson metric on Teichmüller space. This is
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also an analog of the fact that the second variation of the energy functional for har-
monic maps between closed surfaces yields the Weil–Petersson metric on Teichmüller
space [Wol89]. We recall that the Weil–Petersson pairing of holomorphic cubic differ-
entials q1dz3 and q2dz3 is defined as

(5.1) 〈q1, q2〉WP =
∫

Σ

q1q̄2

g3
σ

dAσ.

Let MLI(Σ) be the space of minimal Lagrangian immersions of (the covering of)
a closed surface Σ into CH

2 and MLIε(Σ) be the subspace of MLI(Σ) such that the
solution on γ is unique (ε- close to γ(0) = (0, 0)). We have the complex dimension of
MLIε(Σ) is equal to 8g − 8. Now the following functional is well-defined:

(5.2) A : MLIε(Σ)→ R, (σ, q) �→ −
∫

Σ

eu(t)dAσ,

i.e., it maps a minimal Lagrangian immersion to negative of the surface area associated
to the metric eugσ. We consider this family of functions A(t) = A(γ(t)) and its
variations.

Theorem 5.1. We have the following

(i) A(0) = 4π(1− g);
(ii) Ȧ = dA

dt |t=0 = 0;
(iii) Ä = d2A

dt2 |t=0 = 16
∫
Σ
‖q‖2dAσ.

Proof. (i) Since γ(0) = (0, 0), we have A(0) = −
∫
Σ

dAσ = 4π(1− g).
(ii) We denote u̇ = du

dt |t=0, and differentiate equation (3.1) with respect to t to
find:

(5.3) Δu̇− 32t‖q‖2e−2u + 32t2‖q‖2e−2uu̇− 2euu̇ = 0.

Now take value at γ(0), we have

(Δ− 2)u̇ = 0,

so u̇ = 0 from the maximum principle. The claim (ii) now follows immediately.
(iii) We denote the operator D = −2(Δ − 2)−1. This is a positive, self-adjoint

(with respect to the L2 inner product of functions 〈f1, f2〉 =
∫
Σ

f1f2dAσ) operator
and D(1) = 1. Note that this operator plays a fundamental role in the Weil–Petersson
geometry of Teichmüller space [Wol86]. Now we differentiate equation (5.3) with re-
spect to t to find:

Δü− 32‖q‖2e−2u + 32t2‖q‖2e−2uü− 2euu̇2 − 2euü = 0.

We evaluate above at (0, 0) to obtain

(5.4) (Δ− 2)ü = 32‖q‖2,

and hence

(5.5) ü = −16D(‖q‖2).

Now the claim (iii) follows from the self-adjointness of the operator D and (5.5).



HOLOMORPHIC CUBIC DIFFERENTIALS AND MINIMAL LAGRANGIAN SURFACES 19

Acknowledgments

The research of Huang is supported in part by a grant from CUNY-CSI Provost’s
scholarship and a CIRG-CUNY award, and he also has benefitted from helpful con-
versations at an AIM workshop “Dynamics of the Weil-Petersson geodesic flow”; the
research of Loftin is supported in part by a Simons Collaboration Grant for Math-
ematicians 210124, and in part from from US National Science Foundation grants
DMS 1107452, 1107263, 1107367 “RNMS: Geometric structures And Representa-
tion varieties” (the GEAR Network); and the research of Lucia is supported by
projects MTM2008-06349-C03-01, MTM2011-27739-C04-01 (Spain) and 2009SGR345
(Catalunya), and a Simons Foundation Collaboration Grant for Mathematicians
210368.

References

[AR73] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical points theory and
applications, J. Funct. Anal. 14 (1973), 349–381.

[Bry87] R.L. Bryant, Minimal Lagrangian submanifolds of Kähler–Einstein manifolds, Differential

geometry and differential equations (Shanghai, 1985), Lecture Notes in Mathematics, 1255,
Springer, Berlin, 1987, pp. 1–12.

[FK80] H.M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Mathematics, 71,

Springer–Verlag, New York, 1980.
[GHW10] R. Guo, Z. Huang and B. Wang, Quasi–Fuchsian three-manifolds and metrics on

Teichmüller space, Asian J. Math. 14(2) (2010), 243–256.

[Gol99] W.M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The
Clarendon Press Oxford University Press, New York, 1999, Oxford Science Publications.

[HL82] R. Harvey and H. Blaine Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157.

[HL12] Z. Huang and M. Lucia, Minimal immersions of closed surfaces in hyperbolic three-manifolds,
Geom. Dedicata 158 (2012), 397–411, arXiv:1011.1313.

[Joy05] D. Joyce, Lectures on special Lagrangian geometry, Global theory of minimal surfaces, Clay
Mathematics Proc. 2, 2005, pp. 667–695.

[Lab07] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure
Appl. Math. Q. 3(4) (2007), part 1, 1057–1099.

[LJ70] H.B. Lawson Jr., Complete minimal surfaces in S3, Ann. Math. 92 (1970), 335–374.

[LM13] J. Loftin and I. McIntosh, Minimal Lagrangian surfaces in CH
2 and representations of

surface groups into SU(2, 1), Geom. Dedicata 162 (2013), 67–93.
[Lof01] J.C. Loftin, Affine spheres and convex RP

n-manifolds, Amer. J. Math. 123(2) (2001),

255–274.
[LYZ05] J. Loftin, S.-T. Yau, E. Zaslow, Affine manifolds, SYZ geometry and the “Y” vertex,

J. Differ. Geom. 71(1) (2005), 129–158.

[MW93] M.J. Micallef and J.G. Wolfson, The second variation of area of minimal surfaces in four-
manifolds, Math. Ann. 295(2) (1993), 245–267.

[Oh90] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler
manifolds, Invent. Math. 101(2) (1990), 501–519.

[PP06] J.R. Parker and I.D. Platis, Open sets of maximal dimension in complex hyperbolic quasi-
Fuchsian space, J. Differ. Geom. 73 (2006), 319–350.

[Sim68] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105.

[Smo96] K. Smoczyk, A canonical way to deform a Lagrangian submanifold,
arXiv:dg-ga/9605005v2, 1996.

[SW99] R. Schoen and J. Wolfson, Minimizing volume among Lagrangian submanifolds, Differential

equations: La Pietra 1996 (Florence), Proc. Symp. Pure Mathematics, 65, Amer. Math. Soc.,
Providence, RI, 1999, pp. 181–199.

[SW01] R. Schoen and J. Wolfson, Minimizing area among Lagrangian surfaces: the mapping

problem, J. Differ. Geom. 58(1) (2001), 1–86.



20 ZHENG HUANG, JOHN LOFTIN AND MARCELLO LUCIA

[SYZ96] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T -duality, Nucl. Phys. B

479(1–2) (1996), 243–259.
[Uhl83] K.K. Uhlenbeck, Closed minimal surfaces in hyperbolic 3-manifolds, Seminar on mini-

mal submanifolds, Ann. Math. Stud. 103, Princeton University Press, Princeton, NJ, 1983,
pp. 147–168.

[Wan08] M.T. Wang, Some recent developments in Lagrangian mean curvature flows, Surveys in dif-
ferential geometry. Vol. XII. Geometric flows, Surv. Differ. Geom., vol. 12, Int. Press, Somerville,
MA, 2008, pp. 333–347.

[Wol86] S.A. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent.
Math. 85(1) (1986), 119–145.

[Wol89] M. Wolf, Teichmüller theory of harmonic maps, J. Differ. Geom. 29(2) (1989), 449–479.

Department of Mathematics, The City University of New York, Staten Island,

NY 10314, USA

E-mail address: zheng.huang@csi.cuny.edu

Department of Mathematics and Computer Science, Rutgers University, Newark, Newark,

NJ 07102, USA

E-mail address: loftin@rutgers.edu

Department of Mathematics, The City University of New York, Staten Island,

NY 10314, USA

E-mail address: mlucia@math.csi.cuny.edu


