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Abstract. We study minimal immersions of closed surfaces (of genus g ≥
2) in hyperbolic three-manifolds, with prescribed data (σ, tα), where σ is a

conformal structure on a topological surface S, and αdz2 is a holomorphic

quadratic differential on the surface (S, σ). We show that, for each t ∈ (0, τ0)

for some τ0 > 0, depending only on (σ, α), there are at least two minimal

immersions of closed surface of prescribed second fundamental form Re(tα) in

the conformal structure σ. Moreover, for t sufficiently large, there exists no

such minimal immersion. Asymptotically, as t → 0, the principal curvatures

of one minimal immersion tend to zero, while the intrinsic curvatures of the

other blow up in magnitude.

1. Introduction

A fundamental problem in hyperbolic geometry is the interaction between the
hyperbolic structures of closed (compact without boundary) surfaces and those of
three-manifolds. The theory of minimal surfaces has been intimately related to the
geometry and topology of three-manifolds (see for instance [SY79, MIY82]). It
follows from [FHS83] that any incompressible surface can be isotoped to a minimal
surface in a closed Riemannian three-manifold. Hence one expects any hyperbolic
three-manifold to be obtained by gluing pieces of the type S × (−a, a), for some
a > 0, with S minimal.

Minimal surfaces play important roles in understanding the structures of 3-
manifolds (see for example [SU82] and recent series of work by Colding-Minicozzi
[CM04a, CM04b, CM04c, CM04d]). Closed surfaces cannot be minimally
embedded in R3. In the positive curvature case, the situation is quite different,
since Lawson proved in [LJ70] that every compact orientable surface can be min-
imally immersed in the sphere S3. The case of minimal immersions in hyperbolic
three-manifolds is much more subtle, and has been studied by several authors (see
for example [Tau04, Rub05, Has05]). In particular, Uhlenbeck in [Uhl83] has
undertaken a program to parametrize a class of hyperbolic three-manifolds by in-
compressible minimal surfaces.

The goal of this paper is to investigate closed minimal surfaces of genus g(≥ 2)
immersed in hyperbolic three-manifolds, and to prove several results inspired by Uh-
lenbeck’s approach. These surfaces admit hyperbolic metrics via the uniformization
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theorem, and the conformal change function between the unique hyperbolic metric
on a marked surface (S, σ) and the induced metric from the immersion into a hy-
perbolic three-manifold satisfies the Gauss equation, which is a semilinear elliptic
equation, and we study the solution curve to a family of Gauss equations and their
geometrical implications.

Throughout the paper, we assume S is a closed oriented surface of genus g ≥ 2.
Teichmüller space of S is denoted by Tg(S), and it is the space of conformal struc-
tures (or equivalently hyperbolic metrics) on S such that two conformal structures
σ and ρ are equivalent if there is an orientation-preserving diffeomorphism in the
homotopy class of the identity between them. Let (S, σ) be the surface S with the
conformal structure σ ∈ Tg(S), and z = x + iy be the conformal coordinates on
(S, σ), we denote the unique hyperbolic metric on (S, σ) by gσdzdz̄. When (S, σ) is
immersed in some hyperbolic three-manifold M , its induced metric from the immer-
sion by f(z)dzdz̄ with h = h11dx

2 + 2h12dxdxy + h22dy
2 the second fundamental

form. Then it is well-known that ([Hop89, LJ70]) the form α = (h11 − ih12)dz2

is a holomorphic quadratic differential and h = Re(α).
From the prescribed data (σ, tα), our goal is to construct hyperbolic three-

manifolds such that the closed surface S is minimally immersed. In this aspect,
our main result should be considered as a “local realization theorem”. This min-
imal immersion is governed by six equations: Three of them are in the form of
curvature relation since we require the normal bundle as a three-manifold is hyper-
bolic: Ri3j3 = −gij (see (2.1)). They can be reduced to a system of ODEs and
they determine the metric explicitly in the normal bundle of the minimal surface S
(see §2.2); Two more relations are provided by the Codazzi equations: Rijk3 = 0,
and they ensure the requirement for the prescribed second fundamental form (also
§2.2). The last equation is the Gauss equation which ensures the minimal immer-
sions stay in the prescribed conformal structure σ. Using these equations, we build
a hyperbolic three-manifold, topologically S × (−a, a), for a ∈ (0,∞], around the
minimal surface S. Among these equations, probably the Gauss equation is the
most intriguing. The conformal factor between the induced metric f(z)dzdz̄ and
the hyperbolic metric gσdzdz̄ on (S, σ) can be represented via f(z) = e2u(z)gσ(z),
and the Gauss equation is an elliptic semilinear equation given by

(1.1) ∆u+ 1− e2u − |α|
2

g2
σ

e−2u = 0,

where ∆ is the Laplacian in the hyperbolic metric gσdzdz̄.

Definition 1.1. We call S(σ, α) a minimal immersion with data (σ, α) if S is
marked by a conformal structure σ ∈ Tg(S) and S is a minimal immersion whose
second fundamental form is given by Re(α), for α ∈ Q(σ).

We consider a ray tα(z)dz2, for a fixed direction α ∈ Q(σ), and t ≥ 0. Note that
the space of holomorphic quadratic differentials, Q(σ), on (S, σ) is identified as the
cotangent space of Teichmüller space at the point σ ∈ Tg, therefore tα represents a
ray in Q(σ), and this ray is closely related to the notion of Teichmüller geodesics in
Teichmüller space. The data (σ, α) is a point in the cotangent bundle Tg(S)×Q(σ),
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where Q(σ) is a Banach space of real dimension 6g−6. This ray enables us to study
the one-parameter family of Gauss equations:

(1.2) ∆u(t) + 1− e2u(t) − t2|α|2

g2
σ

e−2u(t) = 0,

for minimal immersions S(σ, tα).
Using the implicit function theorem, Uhlenbeck ([Uhl83]) proved the existence

of a smooth solution curve to the equation (1.2):

Theorem [Uhl83]. Fixing a conformal structure σ ∈ Tg(S), and α ∈ Q(σ), there
exists a constant τ0 > 0, depending only on (σ, α), such that for each t ∈ [0, τ0],
there is a stable minimal immersion of S with data (σ, tα) into some hyperbolic
three-manifold.

Our main result in this paper is to obtain an additional solution for each Uhlen-
beck’s nonzero stable solution to the Gauss equation in this paper, which can be
formulated as the following theorem:

Theorem 1.2. Let S be a closed surface and σ ∈ Tg(S) be a conformal structure
on S. If α ∈ Q(σ) is a holomorphic quadratic differential on (S, σ), then:

(i) for sufficiently large t, the Gauss equation (1.2) admits no solutions, i.e.,
there is no minimal immersion of S with data (σ, tα) into some hyperbolic
three-manifolds;

(ii) there exists a constant τ0 > 0, such that, for each t ∈ (0, τ0), there exist at
least two minimal immersions of S into some hyperbolic three-manifold in
the conformal class of σ with the second fundamental form Re(tα).

In Uhlenbeck’s theorem, she also proved that there is a positive constant ε, such
that there is an unstable solution on for each t ∈ (τ0 − ε, τ0). We point out that
in this parameter interval (τ0 − ε, τ0), the minimal immersion obtained from our
additional solution might coincide with Uhlenbeck’s unstable solution on the same
interval.

The nature of these solutions indicates important geometric information on the
minimal surfaces, as well as the hyperbolic three-manifolds they immerse into: At
t = 0, the surface S is totally geodesic, and its normal bundle is a Fuchsian manifold,
i.e., a warped product hyperbolic three-manifold. For t small enough along the
Uhlenbeck solution curve, the principal curvatures of the minimal immersion stay
bounded in magnitude less than 1, its normal bundle is a so-called almost Fuchsian
manifold, and S is the unique minimal surface within this normal bundle ([Uhl83]).
Then further along the solution curve, the minimal immersions remain stable until
a particular parameter value, but the normal bundle becomes finite. It will be very
interesting to understand further solutions along this solution curve, as well as the
geometry of hyperbolic three-manifolds when t is approaching its maximal value
when such a minimal immersion is allowed.

In Theorem 1.2, we use Uhlenbeck’s parameterization of the solution curve to
study the equation (1.2), and find an additional solution for each Uhlenbeck’s stable
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solution along the solution curve. We note that though these solutions represent the
same point in Teichmüller space, the hyperbolic three-manifolds they immersed into
are quite different: by fixing the data (σ, tα), we fix the conformal class of the surface
and its second fundamental form for the minimal immersion. Different solutions
represent different induced metrics on the surface (S, σ), hence two normal bundles
are distinct. It is intriguing to ask how many minimal immersions are allowed for
each given data (σ, tα).

Naturally we also consider the asymptotic behavior of the solutions of the Gauss
equation (1.2). The blow-up analysis near t = 0 provides important structural
information about the minimal immersions we obtained in Theorem 1.2:

Theorem 1.3. Let {un(tn)} be a sequence of solutions to the equation (1.2) with
tn → 0. Then, along a subsequence, the following alternative holds

(i) un coincides with the solution obtained in Uhlenbeck’s theorem, in which
case, the normal bundle of S is an almost Fuchsian three-manifold, and
the principal curvatures are less than one in absolute value;

(ii) or ‖un‖∞ →∞, in which case, the absolute values of the intrinsic curva-
tures of the corresponding minimal immersion go to infinity.

Our technique is to study the variational theory for the solutions to the Gauss
equation. In calculus of variations, the problem of obtaining additional solutions
to some differential equation is well-studied ([GT83], [Str00]): one rewrites the
equation such that the nonlinear operator is the derivative of an appropriate func-
tional, and uses techniques such as the mountain pass theorem from nonlinear
functional analysis to find other critical points of the associated functional. Much
of the difficulty is that the usual variational setting for the problem does not satisfy
the compactness property. We introduce a different but equivalent inner product
structure to the usual Sobolev space for the problem and prove the mountain pass
theorem in the new setting.

Plan of the paper. We will collect preliminary results in section two. In particu-
lar, we briefly introduce hyperbolic geometry of dimensions two and three, and set
up the Gauss equation in this setting. Section three is devoted to prove our main
results, and it breaks into several subsections: in §3.1, we prove a nonexistence
theorem for large parameter t; in §3.2, we study Uhlenbeck’s solution curve and
its parameterization; in §3.3, we work in the variational setting of the problem,
and define a new norm and show that the functional with the norm satisfies the
Palais-Smale compactness condition in §3.4, therefore develop the mountain pass
structure of the solutions; and in the section §3.5, we prove the Theorem 1.3.
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2. Preliminaries

2.1. Hyperbolic surfaces and three-manifolds. By hyperbolic spaces, we refer
to Riemannian manifolds of constant sectional curvature −1. Naturally, a hyper-
bolic manifold Mn of dimension n is a quotient space of Hn (n ≥ 2), by a subgroup
of the (orientation preserving) isometry group Iso(Hn). We only consider n = 2
and n = 3 in this paper. These two cases are drastically different, largely due to
Mostow’s rigidity theorem.

In the case of n = 2, we have Iso(H2) = PSL(2,R), which can be identified to a
subgroup of Iso(H3) = PSL(2,C). Let S be a closed surface of genus g ≥ 2, then
there is a hyperbolic metric in each conformal structure of S, by the uniformization
theorem. Let σ be a conformal structure on S, it is a point in Teichmüller space
Tg(S). We often use z and gσdzdz̄ to record the conformal coordinate and the
hyperbolic metric on (S, σ). Similarly, we use w and gρdwdw̄ to record the conformal
coordinate and the hyperbolic metric on another conformal structure ρ ∈ Tg(S).
The geometry of Teichmüller space is often studied via its cotangent bundle. At
σ ∈ Tg(S), we have the cotangent space Q(σ), where α ∈ Q(σ) is a holomorphic
quadratic differential on (S, σ). Locally, α = α(z)dz2, where α(z) is holomorphic.

Let M3 = H3/Γ be a hyperbolic three-manifold, and we assume Γ ⊂ PSL(2,C)
acts on H3 properly and discontinuously. In this case we call Γ a Kleinian group. For
any p ∈ H3, the orbit set of Γ has accumulation points on the boundary S2

∞. The
closed set of these limit points is called the limit set ΛΓ of the group Γ. There are
two elementary types of hyperbolic three-manifolds we will encounter frequently:
when ΛΓ is a round circle, M3 is called Fuchsian, which is a product space of a
hyperbolic surface S and the real line R. It is easy to see that the space of Fuchsian
manifolds is isometric to Teichmüller space; when ΛΓ lies in a Jordan curve, M3 is
called quasi-Fuchsian, and it is topologically S × R. In this case M3 is a complete
hyperbolic three-manifold quasi-isometric to a Fuchsian manifold. These two types
correspond to the beginning of the solution curve for the Gauss equation (1.2).

In the case of M3 being quasi-Fuchsian, it admits at least one immersed area-
minimizing incompressible surface ([SY79, SU82]). Furthermore, if the principal
curvatures are less than one in magnitude, i.e., the case of almost Fuchsian, the
incompressible minimal surface is unique. Hence one can use minimal surfaces to
parametrize the space of almost Fuchsian manifolds within the quasi-Fuchsian space
([Uhl83, Tau04]), and obtain important geometric and dynamical information
about the almost Fuchsian manifolds, in terms of the geometry of the minimal
surface: for example, hyperbolic volume of the convex core and the Hausdorff
dimension of the limit set ([HW11]), and Teichmüller distance between conformal
infinities ([GHW10]). There are also recent important work on the applications
of almost Fuchsian manifolds to mathematical physics (see for instance [KS07,
KS08]).

2.2. The normal bundle. Let S ⊂ M3 be a minimal immersion of S into a
hyperbolic three-manifold M3, and T⊥S be its normal bundle in M3. The Riemann
curvature tensor Rijk` on M3 has six components, three of them satisfy curvature
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equation of the form:

(2.1) Ri3j3 = −gij , i = (1, 2), j = (1, 2).

From classical Riemannian geometry, the exponential map exp : T⊥S → M3 is
a local diffeomorphism on S × (−ε, ε) ⊂ T⊥S. Therefore, given first and second
fundamental forms on S, these equations (2.1) uniquely determine a hyperbolic
metric on S × (−ε, ε) ⊂ T⊥S. On the normal bundle T⊥S, these three equations
can be reduced to a second order system for fixed z ∈ S:

1
2
∂2gij(z, r)

∂r2
− 1

4
∂gi`(z, r)

∂r
g`k

∂gkj(z, r)
∂r

= gij(z, r),

whose solution can be written explicitly as follows ([Uhl83]): for (z, r) ∈ S×(−ε, ε),

(2.2) g(z, r) = e2v(z)[cosh(r)I + sinh(r)e−2v(z)A(z)]2 ,

and the hyperbolic metric on T⊥S is given as ds2 = g(z, r)|dz|2 + dr2. Here the
induced metric on S is given by gij(z) = gij(z, 0) = e2v(z)δij , where v(z) is a
smooth function on S, and the second fundamental form A(z) = [hij ]2×2, where
z = x+

√
−1y is the conformal coordinates on marked surface (S, σ). With respect

to these coordinates, the second fundamental form of S ⊂M3 can be written as

(2.3) h = h11dx
2 + 2h12dxdy + h22dy

2.

The remaining three curvature equations are constraint equations for the first and
second fundamental form on S. Note that the minimal surface S has zero mean
curvature, so we denote ±λ(z) the eigenvalues of A(z), where λ(z) ≥ 0. They are
the principal curvatures of S. In this case, h11 = −h22 and two of the remaining
three curvature equations are the Codazzi equations: Rijk3 = 0. That is equivalent
to say (2.3) becomes ([LJ70]):

(2.4) h = Re(α),

for some α ∈ Q(σ), a holomorphic quadratic differential on the marked Riemann
surface (S, σ). Note that the holomorphic quadratic differential α must have zeros
somewhere, or |α|dzdz̄ defines a smooth flat metric on S, violating the Gauss-
Bonnet theorem.

The metric g(z, r) might be singular if there are conjugate points of the expo-
nential map. It is easy to verify that when λ(z) < 1 for all z ∈ S, then the map
exp has no conjugate point and the normal bundle T⊥S extends to both infinities
to become a complete hyperbolic three-manifold and S is the only minimal surface
(also embedded) in T⊥S.

2.3. The Gauss equation. Five of six curvature equations for the minimal im-
mersion S ⊂ M3 take the form of (2.1) and (2.4). They determine the metric in
the normal bundle of S and the second fundamental form of S. The sixth equation
is the Gauss equation which describes the interaction between the hyperbolic struc-
ture on S and the ambient hyperbolic structure of M3. Note that ours is slightly
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different from the equation in [Theorem 4.2 [Uhl83]] because of an obvious typo
there. We recall from (1.1).

∆u+ 1− e2u − |α|
2

g2
σ

e−2u = 0,

here gσ|dz|2 is the hyperbolic metric on (S, σ), and the conformal factor between
the induced metric f(z)|dz|2 and gσ|dz|2 is determined by f(z) = e2u(z)gσ(z). We
also use ∆ to denote the hyperbolic Laplace operator on (S, σ). This equation is
similar to the prescribed scalar curvature equation studied by Kazdan-Warner in
[KW74, KW75]. Our equation is however very different since the curvatures in
our equation depend on the solution.

The Gauss equation is a consequence of two equivalent ways of describing the
intrinsic curvature K(z) induced by the minimal immersion:

K(z) = e−2u(z)(−∆u(z)− 1) = −1− λ2(z),

where the positive principal curvature λ(z) is given by

(2.5) λ(z) =
|α|
gσ
e−2u,

because of the equation (2.4).
We are particularly interested in a family of Gauss equations, corresponding to

a ray α(t) = tα ∈ Q(σ), as in (1.2):

∆u(t) + 1− e2u(t) − t2|α|2

g2
σ

e−2u(t) = 0.

3. Proof of main theorems

Our main theorems concern the solution curve for the family of Gauss equations
(1.2) and the geometry of the minimal surfaces corresponding to these solutions.
For the parameter t ≥ 0, we study the large values first, where we prove solutions do
not exist in §3.1. In the remaining sections, we focus on the range where solutions
do exist, especially Uhlenbeck’s stable solutions, in §3.2. We then construct the
mountain pass solutions and study their asymptotic geometry in the remainder of
the section.

3.1. Non-existence result. Let us first emphasize that equation (1.2) does not
admit any solution for large value of t. More specifically, the following theorem
reveals some necessary properties for solutions to the Gauss equation. In particular,
it proves part (i) of the Theorem 1.2.

Theorem 3.1. (a) Any solution u to the Gauss equation satisfies u ≤ 0.

(b) For t ≥ 2π(2g − 2)
(∫

Sσ

|α|
|gσ|

)−1

, Problem (1.2) admits no solution.

Proof. (a) This is the consequence of the maximum principle: At a maximum point
x0 of a solution u, apply the maximum principle to the equation (1.1) to obtain
that 0 ≤ 1− e2u(x0). Hence u ≤ 0, the conclusion follows.
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(b) Let (t, u) be a solution to (1.2), and dAσ = gσdzdz̄ be the hyperbolic area
element on (S, gσ). On the one hand, by integrating equation (1.2) on (S, gσ), and
using that the area of S is 2π(2g − 2), we obtain

2π(2g − 2) =
∫
S

e2udAσ + t2
∫
S

|α|2

g2
σ

e−2udAσ

> t2
∫
S

|α|2

g2
σ

e−2udAσ.(3.1)

On the other hand, Cauchy-Schwarz inequality and the fact that u ≤ 0 give(∫
S

|α|
gσ
dAσ

)2

=
(∫

S

eu
|α|
gσ
e−udAσ

)2

≤
(∫

S

e2udAσ

)(∫
S

|α|2

g2
σ

e−2udAσ

)
≤ 2π(2g − 2)

(∫
S

|α|2

g2
σ

e−2udAσ

)
.(3.2)

Relations (3.1) and (3.2) imply, for any solution (t, u), the following inequality holds

2π(2g − 2) > t2

(∫
Sσ

|α|
gσ

)2

2π(2g − 2)
,

and the conclusion follows.

Remark 3.2. One can see above application of the Cauchy-Schwarz inequality as
a comparison of two metrics on Teichmüller space: the Teichmüller metric and the
Weil-Petersson metric (See the Proposition 2.4 of [McM00]). For the holomorphic
quadratic differential αdz2, its Teichmüller norm is ‖α‖T =

∫
S
|α|dzdz̄, while its

Weil-Petersson norm is given by ‖α‖WP =
√∫

S
|α|2
g2σ
dAσ.

We end this subsection with an observation that if two solutions to (1.2) do
exist, then their geometric properties are different. In other words, if the Gauss
equation (1.2) admits two solutions u1 6≡ u2, and then their associated principal
curvatures are necessarily different. This can be seen by an easy exercise of the
maximum principle, or as a consequence of a comparison theorem for conformal
metrics of negative curvature ([Wol82]).

3.2. Uhlenbeck’s solution curve. A solution curve to the Gauss equation can
be obtained from the implicit function theorem, as in [Uhl83]. In this subsection,
we study this solution curve further, in anticipation of using it to construct our
mountain pass solution.

Consider the nonlinear map F : W 2,2(S)× [0,∞)→ L2(S) defined by

(3.3) F (u, t) = ∆u+ 1− e2u − t2|α|2

g2
σ

e−2u,
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where W 2,k(S) stands for the classical Sobolev space. At each t ≥ 0 fixed, the
linearized operator L(u, t) : W 2,2(S)→ L2(S) associated to F is given by

(3.4) L(u, t) = −∆ + 2
(
e2u − t2|α|2

g2
σ

e−2u

)
,

and the differential (Fréchet derivative) of F is given by

(3.5) dF (u, t)(u̇, ṫ) = −Lu̇− 2tṫ
|α|2

g2
σ

e−2u,

where (u̇, ṫ) ∈W 2,2(S)× R.
The linear operator L is geometrically meaningful, since its eigenvalues are

closely related to the stability of the minimal immersion by the following theo-
rem of Uhlenbeck:

Theorem 3.3. [Uhl83] A minimal immersion with data (σ, tα) in any hyperbolic
three-manifold M3 is stable if and only if L ≥ 0.

From the analytic point of view, the linear operators L(u, t) in (3.4) and dF (u, t)
in (3.5) are important in order to apply the implicit function theorem. When the
linearized operator L has all positive eigenvalues, the the differential operator dF
is onto. When zero is the lowest eigenvalue for L, its kernel and cokernel are
one-dimensional, and dF is still onto.

We easily see that there exists a constant τ := τ(σ, α), such that at any solution
F (u, t) = 0 with t > τ , the first eigenvalue of L(u, t) is negative. Indeed since any
solution satisfies u < 0 (as in Theorem 3.1), from

e2u(t) − t2|α|2

g2
σ

e−2u(t) < 1− t2|α|2

g2
σ

,

we readily see that for large t the first eigenvalue of L(u, t) is negative at any
possible solution. On the other hand, we have F (0, 0) = 0 and we immediately see
that L(0, 0) > 0. Hence by applying the implicit function theorem, starting from
this trivial solution, one obtains a smooth solution curve γ. More specifically we
obtain

Theorem 3.4. [Uhl83] There exists a smooth curve

γ : [0, τ0]→W 2,2(S)× [0,∞) t 7→ (u(t), t),

such that

(a) γ(0) = (0, 0) and F (γ(t)) = 0 for all t ∈ [0, τ0],
(b) L(u(t), t) > 0 for all t ∈ [0, τ0),
(c) Ker

(
L(u(τ0), τ0)

)
6= {0}.

Note that by standard regularity theory, the solution u(t) obtained in the above
theorem belongs to C∞(S).
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3.3. Variational setting. In the next three subsections, we prove our main theo-
rems. Since we focus on finding additional solutions, we will not use the parametriza-
tion of t in these subsections.

In this subsection, we develop the variational setting of the problem. We will
introduce a different but equivalent norm to make use of the mountain pass theorem.

Setting V (z) = t2|α|2
g2σ
≥ 0, the Gauss equation (1.1) is given by:

∆u+ 1− e2u − V (z)e−2u = 0, on (S, σ),

which is the Euler-Lagrange equation of

(3.6) I(u) :=
1
2

∫
S

|∇u|2 −
∫
S

(
u− e2u

2

)
−
∫
S

V (z)
e−2u

2
, u ∈ H1(S).

To derive compactness property, we introduce an equivalent norm on the Sobolev
space and consider a new functional whose set of critical points coincides with the
one of (3.6).

To reach this goal, by choosing θ > 2, we define a function F1 ∈ C∞(R) which
satisfies

F1(s) :=

{
s− 1

2e
2s if s ≤ 0

−sθ if s > 1
F ′1(s) < 0 ∀s > 0 ,

and F2 ∈ C∞(R) defined as

F2(s) :=

{
1
2 (s2 + e−2s) if s ≤ 0

0 if s > 1
F ′2 ≤ 0.

Setting fi(s) := F ′i (s) (i = 1, 2), we explicitly have

f1(s) :=
{

1− e2s if s ≤ 0
−θsθ−1 if s > 1

f2(s) :=
{
s− e−2s if s ≤ 0

0 if s > 1
,

which coincide for s ≤ 0 with the nonlinearities arising in the Gauss equation (1.1),
and have the following property:

(3.7) f1(s) < 0 ∀s > 0, f2(s) ≤ 0 ∀s ∈ R.

Proposition 3.5. The Gauss equation (1.1) is equivalent to the new equation

(3.8) −∆u+ V (z)u−
(
f1(u) + V (z)f2(u)

)
= 0 .

Proof. The maximum principle easily implies that u < 0. From the explicit formulas
of f1(u) and f2(u) for u < 0, it is easy to verify that

−∆u+ V (z)u− f1(u)− V (z)f2(u) = −∆u− 1 + e2u + V (z)e−2u

= 0.

Now we apply the maximum principle on (3.8), and make use of the properties (3.7),
we easily see that the solutions of (3.8) are negative. Hence the sets of solutions
of (1.1) and (3.8) coincide.
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We will work with (3.8), since it admits a variational formulation that satisfies
compactness property. More specifically, we consider the usual Sobolev space

H1(S) := {u ∈ L2(S) : ∇u ∈ L2(S)},

endowed with the following inner products

〈f, g〉 :=
∫
S

{
∇f∇g + fg

}
. 〈f, g〉V :=

∫
S

{
∇f∇g + V (z)fg

}
,

and denote ‖ · ‖H1 , ‖ · ‖V as their associated norms, respectively.

Lemma 3.6. The norms ‖ · ‖H1 , ‖ · ‖V are equivalent.

Proof. Since V ∈ L∞(S), we clearly have ‖ · ‖V ≤ C‖ · ‖H1 .
Setting ū := 1

|S|
∫
S
u, where |S| is the hyperbolic area of the surface, we have

(3.9) ‖u− ū‖L2 ≤ C‖∇u‖L2

from the Poincaré inequality. Furthermore,∫
S

V (z)|ū|2 ≤ 2
∫
S

{
V (z)|ū− u|2 + V (z)u2

}
≤ C

∫
S

{
|ū− u|2 + V (z)u2

}
≤ C

∫
S

{
|∇u|2 + V (z)u2

}
.

Therefore, since
∫
S
V > 0 we get

(3.10) |ū|2 ≤ C
(∫

S

V (z)
)−1

∫
S

{
|∇u|2 + V (z)u2

}
≤ C‖u‖V .

Using then (3.9) and (3.10), we conclude

‖u‖L2 ≤ ‖u− ū‖L2 + ‖ū‖L2 ≤ C‖u‖V .

This immediately implies ‖u‖H1 ≤ C‖u‖V , which completes the proof.

Note that one may take an alternative approach to above lemma. Namely, since
V (z) is positive almost everywhere on the surface, the operator −∆u + V (z)u
is Fredholm index zero, and positive definite, hence is a linear homeomorphism
H1 → H−1. The eigenvalues of this operator are positive and bounded away from
zero. This gives the equivalence of above two norms.

Now we can define the associated functional for the equation (3.8). In the Hilbert
space H1(S), the functional

(3.11) F(u) :=
1
2

∫
S

{
|∇u|2 + V (z)u2

}
−
∫
S

{
F1(u) + V (z)F2(u)

}
, u ∈ H1(S),

is by the Moser-Trudinger inequality well defined, continuously differentiable, and

its critical points are weak solutions of (3.8). In this functional setting, we will be
able to use a minimax argument to derive a second solution to the Gauss equation.
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3.4. Mountain pass structure. In this subsection, we show that the functional
F exhibits a mountain pass geometry. We need the following compactness property,

Theorem 3.7. The functional F satisfies the Palais-Smale condition, i.e., any
sequence {un} in H1(S) satisfying,

(3.12) |F(un)| ≤ C, ‖F ′(un)‖H−1 → 0,

admits a subsequence converging strongly in H1(S).

To simplify our exposition, we introduce the notation of O(1) and o(1) here.
When x approaches some x0 (might be infinity), we say a function f(x) is O(1) if
|f(x)| is uniformly bounded, and we say f(x) is o(1) if limx→x0 f(x) = 0.

Proof. Consider the exponent θ > 2 appearing in the definition F1. We claim that

F1(s) ≤ s

θ
f1(s) +O(1), F2(s) ≤ s

θ
f2(s) +O(1) .

Indeed from our definition of Fi (i = 1, 2), note first that for all s ∈ (1,∞)

F1(s) =
1
θ
sf1(s), F2(s) = sf2(s) = 0.

Secondly, for s ∈ [0, 1] we obviously have:

Fi(s) ≤ sfi(s) +O(1) (i = 1, 2).

Thirdly, for s < 0 we note that

F1(s) ≤ s ≤ s

θ
=

s

θ
(1− e2s) +O(1) =

s

θ
f1(s) +O(1),

F2(s) ≤ e−2s ≤ 1
θ

(−s)e−2s +O(1) ≤ s

θ
f2(s) +O(1) .

Hence, we have:

(3.13) F1(s) + V (z)F2(s) ≤ s

θ

(
f1(s) + V (z)f2(s)

)
+O(1) .

To proceed with the proof, given a sequence {un} satisfying (3.12), we prove that

it is bounded. Condition (3.12) implies that

(3.14)
1
2
‖un‖2V −

∫
S

{
F1(un) + V (z)F2(un)

}
= O(1)

(3.15) ‖un‖2V −
∫
S

un

{
f1(un) + V (z)f2(un)

}
= o(1).

Using successively (3.14), (3.13) and (3.15), we deduce

1
2
‖un‖2V ≤ C +

∫
S

{
F1(un) + V (z)F2(un)

}
≤ C +

1
θ

∫
S

un

{
f1(un) + V (z)f2(un)

}
= O(1) +

1
θ
‖un‖2V .
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Therefore for some θ > 2, we have(
1
2
− 1
θ

)
‖un‖2V = O(1).

So ‖un‖V = O(1), and therefore we have un ⇀ û weakly in H1(S) (up to a
subsequence).

Furthermore, we have

(3.16) ‖un − û‖2V =
∫
S

{
f1(un)(un − û) + V (z)f2(un)(un − û)

}
+ o(1).

Since the mappings

H1(S)→ Lq(S) u 7→ |u|q

for any q ≥ 1, and
H1(S)→ L2(S) u 7→ eu

are weakly continuous (Rellich Theorem, and as a consequence of Moser-Trudinger
Theorem), we deduce

f1(un)→ f1(û) and f2(un)→ f2(û)

strongly in L2(S). Hence (3.16) implies that ‖un− û‖V = o(1). By Lemma 3.6, we
conclude that ‖un − û‖H1 = o(1).

We now show that the functional F admits a mountain pass type solution:

Proposition 3.8. For each t ∈ (0, τ0) where τ0 is defined in Theorem 3.4, the
functional F admits at least two solutions.

Proof. Using the definition Fi (i = 1, 2), we see that at each point u ∈ H1(S) with
u ≤ 0 we have I(u) = F(u) and the second derivative at u satisfy

(3.17) I ′′(u)(ξ, ξ) = F ′′(u)(ξ, ξ) ∀ξ ∈ H1(S) ,

and this bilinear form is explicitly given by

I ′′(u)(ξ, ξ) =
∫
S

|∇ξ|2 + 2
∫
S

(
e2u − t2 |α(x)|2

g2
σ

e−2u

)
ξ2 .

Now at the stable solution u(t) obtained by Uhlenbeck’s Theorem 3.4, we note
that for t ∈ (0, τ0), standard results show that the first eigenvalue of the linearized

operator L(u(t), t) is given by the infimum of the Rayleigh quotient
I′′(u(t))(ξ,ξ)

‖ξ‖2
H1

with

ξ ∈ H1(S) \ {0}. Therefore for each t ∈ (0, τ0), we deduce

(3.18) I ′′(u(t))(ξ, ξ) ≥ C(t)‖ξ‖2H1 ∀ξ ∈ H1(S),

i.e. u(t) is a local minimizer of the functional I. Since u(t) < 0, equality (3.17),
with (3.18) and Lemma 3.6 imply

F(u(t))(ξ, ξ) ≥ ‖ξ‖V .

Hence there exists a ball B(u(t), r) in the Hilbert space H1(S) such that

(3.19) inf
u∈∂B(u(t),r)

F(u) ≥ F(u(t)) .
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Furthermore, take w to be a constant negative function, we easily see that

F(w) = −
(
w − 1

2
e2w
)
|S| − e−2w

∫
S

V (z),

namely
lim

w→−∞
F(w) = −∞.

Hence, there exists w ∈ H1(S) such that

(3.20) w 6∈ B(u(t), r), F(w) < F(u(t)) .

Since the Palais-Smale condition is satisfied, conditions (3.19) and (3.20) allow us
to apply the Mountain Pass Theorem of Ambrosetti-Rabinowitz [AR73].

Proof of Theorem 1.2: Now the theorem follows from the Proposition 3.8 and the
Proposition 3.5.

3.5. The asymptotic geometry. We show now that as t→ 0 the mountain pass
solutions blow-up.

Proposition 3.9. Let (tn, un) be a sequence of critical points with tn → 0. Then,
along a subsequence, the following alternative holds

(i) ‖un‖H1 = O(1), in which case, ‖un‖H1 → 0;
(ii) or ‖un‖H1 →∞, in which case, ‖un‖∞ →∞.

Proof. We have two possibilities: either ‖un‖H1 = O(1) or ‖un‖H1 → ∞ (up to a
subsequence).

Case 1: Assume ‖un‖H1 = O(1).
Then un ⇀ ū, and by the Moser-Trudinger inequality we know that e±2un → e±2ū

in L2(S). Since for each ξ ∈ C∞(S) we have∫
S

∇un∇ξ =
∫
S

ξ −
∫
S

{e2un + t2n|α(x)|2e−2un}ξ,

for n→∞ we get ∫
S

∇ū∇ξ =
∫
S

ξ −
∫
S

e2ūξ

Therefore −∆ū = 1− e2ū, which implies ū = 0.

Case 2: Assume ‖un‖H1(S) →∞.
From the identity

(3.21)
∫
S

|∇un|2 =
∫
S

un −
∫
S

{e2un + t2n
|α|2

|gσ|2
e−2un}un,

we immediately see that ‖un‖∞ →∞. Indeed, if this is not the case, we would have
‖un‖2L = O(1) and (3.21) would imply that

∫
S
|∇un|2 is bounded, a contradiction.

We now prove the Theorem 1.3 on the asymptotic geometry of the solutions as
t goes to zero:
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Proof of Theorem 1.3: Recall that the positive principal curvature of the minimal
immersion given by un(tn) is given by

λ(tn) =
tne
−2un |α|
gσ

.

We use this to examine our options from the above Proposition (3.9).

Case 1: when ‖un‖H1 → 0, the principal curvatures are small for t near zero.
Since in a neighborhood of (0, 0), the functional admits a unique branch of solution
(t, ut), we conclude that un coincides with the solution ut obtained by the implicit
function theorem from Uhlenbeck’s theorem. Since the principal curvatures are
small (less than one in absolute value), the normal bundle is an almost Fuchsian
three-manifold.

Case 2: when ‖un‖H1 →∞, we find |λ(tn)| → ∞ as tn → 0. Indeed assume on
the contrary that λ(tn) stays uniformly bounded as tn → 0. Let xn be such that
minu = utn(xn)→ −∞. By the minimum principle we deduce that

1− (1 + λ(tn)2)e2utn (xn) ≤ 0.

If λ(tn) stays uniformly bounded we get a contradiction. This proves Theorem 1.3.
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