Maximality Principles for Closed Forcings

Gunter Fuchs
Institut für Mathematische Logik und Grundlagenforschung
Westfälische Wilhelms-Universität Münster

Logic Colloquium 2007, Wroclaw

July 18, 2007
This is the first of a two-part talk on closed maximality principles.
This is the first of a two-part talk on closed maximality principles.

I gave the second part last week at the First European Set Theory meeting in Bedlewo, and I apologize to those who attended that talk for some overlaps between the talks.
Let’s view the universe and its possible generic extensions as a Kripke model for modal logic.
Question:

CH?
Question: \(\omega_1 > (\omega_1)^L \)?
ϕ is forceably necessary.

MP says ϕ is true.
“ϕ is necessary” is forceably necessary.

MP says ϕ is necessary.
Write $\Diamond \varphi$ to express that φ holds in a forcing extension (φ is forceable).

Note: This is the first order statement $\exists \mathcal{P} \quad \mathcal{P} \vDash \varphi$.
Write $\diamond \varphi$ to express that φ holds in a forcing extension (φ is forceable).

Note: This is the first order statement $\exists P \ P \vDash \varphi$.

$\Box \varphi$ means that φ holds in every forcing extension (φ is necessary).

This is again a first order statement.
Write $\Diamond \varphi$ to express that φ holds in a forcing extension (φ is forceable).

Note: This is the first order statement $\exists P \ P \models \varphi$.

$\Box \varphi$ means that φ holds in every forcing extension (φ is necessary).

This is again a first order statement.

So the statement $\Diamond (\Box \varphi)$ makes sense.

It expresses that it is forceable that φ is necessary, or in short, that φ is forceably necessary.
Write $\diamond \varphi$ to express that φ holds in a forcing extension (\(\varphi\) is forceable).

Note: This is the first order statement $\exists P \ P \vDash \varphi$.

$\square \varphi$ means that φ holds in every forcing extension (\(\varphi\) is necessary).

This is again a first order statement.

So the statement $\diamond (\square \varphi)$ makes sense.

It expresses that it is forceable that φ is necessary, or in short, that φ is forceably necessary.

The Maximality Principle MP is the scheme consisting of the formulae

\[
(\diamond \square \varphi) \implies \varphi,
\]

for every sentence φ. It was introduced in a slightly different formulation in 1977 here at the Logic Colloquium by Stavi and Väänänen, and then rediscovered independently by Hamkins, as stated.
Possible modifications of MP:
Possible modifications of MP:

1. Restrict to certain classes of forcings, such as: Proper, ccc, stationary-preserving, \ldots
Possible modifications of MP:

1. Restrict to certain classes of forcings, such as: Proper, ccc, stationary-preserving, . . .

2. Allow parameters in the scheme $\Diamond \Box \varphi \implies \varphi$, i.e., boldface versions of the principles.
Possible modifications of MP:

1. Restrict to certain classes of forcings, such as: Proper, ccc, stationary-preserving, . . .

2. Allow parameters in the scheme $\diamond \Box \varphi \implies \varphi$, i.e., boldface versions of the principles.

3. Necessary forms of the boldface principles.
Possible modifications of MP:

1. Restrict to certain classes of forcings, such as: Proper, ccc, stationary-preserving, . . .

2. Allow parameters in the scheme $\diamond \Box \varphi \implies \varphi$, i.e., boldface versions of the principles.

3. Necessary forms of the boldface principles.

4. (Restrict to a subclass of formulae.)
Possible modifications of MP:

1. Restrict to certain classes of forcings, such as: Proper, ccc, stationary-preserving, . . .

2. Allow parameters in the scheme $\Diamond \Box \varphi \Rightarrow \varphi$, i.e., boldface versions of the principles.

3. Necessary forms of the boldface principles.

4. (Restrict to a subclass of formulae.)

General form of the principle:

$$\text{MP}_\Gamma(X),$$

where Γ is a class of partial orders and X is the parameter set.
I looked at the case where Γ is one of the following, for some fixed regular cardinal κ.
I looked at the case where Γ is one of the following, for some fixed regular cardinal κ.

1. The class of all $<\kappa$-closed forcings,
I looked at the case where Γ is one of the following, for some fixed regular cardinal κ.

1. The class of all $<\kappa$-closed forcings,

2. the class of all $<\kappa$-directed-closed forcings,
I looked at the case where Γ is one of the following, for some fixed regular cardinal κ.

1. The class of all $\lt \kappa$-closed forcings,

2. the class of all $\lt \kappa$-directed-closed forcings,

3. the class of all forcings of the form $\text{Col}(\kappa, \lambda)$ or $\text{Col}(\kappa, < \lambda)$, for some λ. Call the class $\text{Col}(\kappa)$.
I looked at the case where Γ is one of the following, for some fixed regular cardinal κ.

1. The class of all $<_\kappa$-closed forcings,

2. the class of all $<_\kappa$-directed-closed forcings,

3. the class of all forcings of the form $\text{Col}(\kappa, \lambda)$ or $\text{Col}(\kappa, < \lambda)$, for some λ. Call the class $\text{Col}(\kappa)$.

Note: $\kappa = \omega$ is allowed!

The corresponding parameter set will usually be one of the following:

$$\emptyset, \ H_\kappa \cup \{\kappa\}, \ H_\kappa^+.$$
1. Relationships between versions of the maximality principles.
Overview

1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
Overview

1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
 Consistency strengths,
1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
 - Consistency strengths,
 - Compatibility with large cardinals.
Overview

1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
 - Consistency strengths,
 - Compatibility with large cardinals.

3. Implications.
Overview

1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
 - Consistency strengths,
 - Compatibility with large cardinals.

3. Implications.

4. Separations.
Overview

1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
 - Consistency strengths,
 - Compatibility with large cardinals.

3. Implications.

4. Separations.

5. Combinations.
1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
 - Consistency strengths,
 - Compatibility with large cardinals.

3. Implications.

4. Separations.

5. Combinations.

Overview

1. Relationships between versions of the maximality principles.

2. Consistency Investigations:
 - Consistency strengths,
 - Compatibility with large cardinals.

3. Implications.

4. Separations.

5. Combinations.

The last two points were already covered in the second part of the talk.
Note the following folkloristic fact:

Lemma 1. Let κ be a regular cardinal and $\lambda > \kappa$ a cardinal with $\lambda = \lambda^{<\kappa}$. Then there is a dense subset Δ of $\text{Col}(\kappa, \lambda)$ such that if \mathbb{P} is a separative $<\kappa$-closed partial order with $\mathbb{P}[\lambda] = \lambda$ and $1 \Vdash_{\mathbb{P}} (\lambda = \kappa)$, then there is a dense subset D of \mathbb{P} with $\text{Col}(\kappa, \lambda) \upharpoonright \Delta \cong \mathbb{P} \upharpoonright D$, i.e., $\text{Col}(\kappa, \lambda)$ and \mathbb{P} are forcing-equivalent.
Relationships between versions of the maximality principles

Note the following folkloristic fact:

Lemma 1. Let κ be a regular cardinal and $\lambda > \kappa$ a cardinal with $\lambda = \lambda^{<\kappa}$. Then there is a dense subset Δ of $\text{Col}(\kappa, \lambda)$ such that if \mathbb{P} is a separative $<\kappa$-closed partial order with $\mathbb{P} = \lambda$ and $1 \Vdash_{\mathbb{P}} (\lambda = \kappa)$, then there is a dense subset D of \mathbb{P} with $\text{Col}(\kappa, \lambda) \upharpoonright \Delta \cong \mathbb{P} \upharpoonright D$, i.e., $\text{Col}(\kappa, \lambda)$ and \mathbb{P} are forcing-equivalent.

Corollary 2. Let \mathbb{P} be a $<\kappa$-closed notion of forcing, where κ is regular. Then if $\lambda \geq \mathbb{P}$ and $\lambda^{<\kappa} = \lambda$,

$$\left(\mathbb{P} \times \text{Col}(\kappa, \lambda)\right) \upharpoonright D \cong \text{Col}(\kappa, \lambda) \upharpoonright \Delta,$$

for some dense set D and the dense set Δ from Lemma 1.

So $\text{Col}(\kappa)$ absorbs any $<\kappa$-closed forcing.
Lemma 3.

\[
\text{ZFC} + \text{MP}_{\text{Col}(\kappa)}(X) \\
\vdash \text{ZFC} + \text{MP}_{\kappa-\text{dir. cl.}}(X) \\
\vdash \text{ZFC} + \text{MP}_{\kappa-\text{closed}}(X).
\]
Lemma 3.

\[\text{ZFC} + \text{MP}_{\text{Col}(\kappa)}(X) \]
\[\vdash \text{ZFC} + \text{MP}_{<\kappa-\text{dir. cl.}}(X) \]
\[\vdash \text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(X). \]

Proof. Let \(\varphi \) be a statement with parameters from \(X \).
Lemma 3.

\[ZFC + MP_{\text{Col}(\kappa)}(X) \]
\[\vdash ZFC + MP_{\prec\kappa-\text{dir. cl.}}(X) \]
\[\vdash ZFC + MP_{\prec\kappa-\text{closed}}(X). \]

Proof. Let \(\varphi \) be a statement with parameters from \(X \). To show

\[MP_{\prec\kappa-\text{dir. cl.}}(X) \implies MP_{\prec\kappa-\text{closed}}(X), \]

it suffices to show:
Lemma 3.

\[ZFC + MP_{\text{Col}(\kappa)}(X) \]
\[\vdash ZFC + MP_{\prec \kappa - \text{dir. cl.}}(X) \]
\[\vdash ZFC + MP_{\prec \kappa - \text{closed}}(X). \]

Proof. Let \(\varphi \) be a statement with parameters from \(X \). To show

\[MP_{\prec \kappa - \text{dir. cl.}}(X) \implies MP_{\prec \kappa - \text{closed}}(X), \]

it suffices to show:

\[\varphi \text{ is } \prec \kappa - \text{closed-forceably necessary} \]

\[\implies \]

\[\varphi \text{ is } \prec \kappa - \text{directed-closed-forceably necessary.} \]
This can be seen as follows:
This can be seen as follows:

- Let \mathbb{P} be a $\lt\kappa$-closed poset making φ $\lt\kappa$-closed-necessary.
This can be seen as follows:

- Let \mathbb{P} be a $\lt\kappa$-closed poset making φ $\lt\kappa$-closed-necessary.

- \mathbb{P} forces that it is $\lt\kappa$-closed-necessary that φ is $\lt\kappa$-closed-necessary.
This can be seen as follows:

- Let \mathbb{P} be a $\lt\kappa$-closed poset making φ $\lt\kappa$-closed-necessary.
- \mathbb{P} forces that it is $\lt\kappa$-closed-necessary that φ is $\lt\kappa$-closed-necessary.
- Let $\mathbb{Q} = \text{Col}(\kappa, \theta)$, where θ is sufficiently closed and large.
This can be seen as follows:

- Let P be a $<\kappa$-closed poset making φ $<\kappa$-closed-necessary.

- P forces that it is $<\kappa$-closed-necessary that φ is $<\kappa$-closed-necessary.

- Let $Q = \text{Col}(\kappa, \theta)$, where θ is sufficiently closed and large.

- Note: $Q = \text{Col}(\kappa, \theta)^{V^P}$.
This can be seen as follows:

• Let \mathbb{P} be a $<\kappa$-closed poset making φ $<\kappa$-closed-necessary.

• \mathbb{P} forces that it is $<\kappa$-closed-necessary that φ is $<\kappa$-closed-necessary.

• Let $Q = \text{Col}(\kappa, \theta)$, where θ is sufficiently closed and large.

• Note: $Q = \text{Col}(\kappa, \theta)^{V^\mathbb{P}}$.

• φ is $<\kappa$-closed-necessary in $V^\mathbb{P} \times Q$.
This can be seen as follows:

• Let \mathbb{P} be a $<\kappa$-closed poset making φ $<\kappa$-closed-necessary.

• \mathbb{P} forces that it is $<\kappa$-closed-necessary that φ is $<\kappa$-closed-necessary.

• Let $Q = \text{Col}(\kappa, \theta)$, where θ is sufficiently closed and large.

• Note: $Q = \text{Col}(\kappa, \theta)^{V^\mathbb{P}}$.

• φ is $<\kappa$-closed-necessary in $V^{\mathbb{P} \times Q}$.

• $\mathbb{P} \times Q$ is forcing equivalent to Q.
This can be seen as follows:

- Let \mathbb{P} be a $<\kappa$-closed poset making φ $<\kappa$-closed-necessary.

- \mathbb{P} forces that it is $<\kappa$-closed-necessary that φ is $<\kappa$-closed-necessary.

- Let $\mathcal{Q} = \text{Col}(\kappa, \theta)$, where θ is sufficiently closed and large.

- Note: $\mathcal{Q} = \text{Col}(\kappa, \theta)^{V^\mathbb{P}}$.

- φ is $<\kappa$-closed-necessary in $V^{\mathbb{P} \times \mathcal{Q}}$.

- $\mathbb{P} \times \mathcal{Q}$ is forcing equivalent to \mathcal{Q}.

- \mathcal{Q} is $<\kappa$-directed-closed.
This can be seen as follows:

• Let \mathbb{P} be a $\langle \kappa \rangle$-closed poset making φ $\langle \kappa \rangle$-closed-necessary.

• \mathbb{P} forces that it is $\langle \kappa \rangle$-closed-necessary that φ is $\langle \kappa \rangle$-closed-necessary.

• Let $\mathbb{Q} = \text{Col}(\kappa, \theta)$, where θ is sufficiently closed and large.

• Note: $\mathbb{Q} = \text{Col}(\kappa, \theta)^{V_{\mathbb{P}}}$.

• φ is $\langle \kappa \rangle$-closed-necessary in $V_{\mathbb{P} \times \mathbb{Q}}$.

• $\mathbb{P} \times \mathbb{Q}$ is forcing equivalent to \mathbb{Q}.

• \mathbb{Q} is $\langle \kappa \rangle$-directed-closed.

The other statement is proven analogously.
\[\text{MP}_{\text{Col}(\kappa)}(H_\kappa \cup \{\kappa\}) \leftrightarrow \text{MP}_{\text{Col}(\kappa)}(H_\kappa^+) \]

\[\text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa \cup \{\kappa\}) \leftrightarrow \text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa^+) \]

\[\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\}) \leftrightarrow \text{MP}_{<\kappa-\text{closed}}(H_\kappa^+) \]
Theorem 4. Assume $\kappa < \delta$, $V_\delta \prec V$ and κ, as well as δ, are regular. Then $\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+})$ holds in $V[G]$, where G is V-generic for $\mathbb{P} = \text{Col}(\kappa, < \delta)$.
Implications
Lemma 5. Let \mathbb{P} be a $<\kappa$-closed notion of forcing, where κ is regular, and let G be \mathbb{P}-generic over V.
Lemma 5. Let \mathbb{P} be a $\langle \kappa \rangle$-closed notion of forcing, where κ is regular, and let G be \mathbb{P}-generic over V.

1. (Jensen) If \vec{S} is a \diamondsuit_κ-sequence, then $V[G] \models \langle \vec{S} \rangle$ is a $\diamondsuit_{\check{\kappa}}$-sequence“.
Lemma 5. Let \mathbb{P} be a $<\kappa$-closed notion of forcing, where κ is regular, and let G be \mathbb{P}-generic over V.

1. (Jensen) If \vec{S} is a \diamondsuit_κ-sequence, then $V[G] \models \text{"}\vec{S} \text{ is a } \diamondsuit_{\check{\kappa}}\text{-sequence."}$

2. (Silver for $\kappa = \omega_1$) Let T be a slim κ-tree ($\kappa > \omega$). Then $[T] = [T]^{V[G]}$.

Lemma 5. Let \mathbb{P} be a $<\kappa$-closed notion of forcing, where κ is regular, and let G be \mathbb{P}-generic over V.

1. (Jensen) If \vec{S} is a \diamondsuit_κ-sequence, then $V[G] \models "\vec{S} \text{ is a } \diamondsuit_\kappa\text{-sequence}"$.

2. (Silver for $\kappa = \omega_1$) Let T be a slim κ-tree ($\kappa > \omega$). Then $[T] = [T]^{V[G]}$.

3. If S and T are normal κ-trees s.t. $\text{Iso}(S, T)$ has cardinality less than 2^κ, then $\text{Iso}(S, T) = (\text{Iso}(S, T))^{V[G]}$.
Lemma 5. Let \mathbb{P} be a $<_\kappa$-closed notion of forcing, where κ is regular, and let G be \mathbb{P}-generic over V.

1. (Jensen) If \vec{S} is a \diamondsuit_κ-sequence, then $V[G] \models "\vec{S} \text{ is a } \diamondsuit_{\check{\kappa}}\text{-sequence}"$.

2. (Silver for $\kappa = \omega_1$) Let T be a slim κ-tree ($\kappa > \omega$). Then $[T] = [T]^{V[G]}$.

3. If S and T are normal κ-trees s.t. $\text{Iso}(S,T)$ has cardinality less than 2^κ, then $\text{Iso}(S,T) = (\text{Iso}(S,T))^{V[G]}$.

4. If φ is a Σ^1_1-sentence and $A \subseteq \kappa$, then

$$\langle \kappa, <, A \rangle \models \varphi \iff (\langle \kappa, <, A \rangle \models \varphi)^{V[G]}.$$

Note that this remains true even for Σ^1_2-sentences, if $\kappa = \omega$, by Shoenfield absoluteness.
Lemma 5. Let \mathbb{P} be a $<\kappa$-closed notion of forcing, where κ is regular, and let G be \mathbb{P}-generic over V.

1. (Jensen) If \vec{S} is a \diamondsuit_κ-sequence, then $V[G] \models "\vec{S} is a \diamondsuit_κ-sequence."$

2. (Silver for $\kappa = \omega_1$) Let T be a slim κ-tree ($\kappa > \omega$). Then $[T] = [T]^{V[G]}$.

3. If S and T are normal κ-trees s.t. $\text{Iso}(S, T)$ has cardinality less than 2^κ, then $\text{Iso}(S, T) = (\text{Iso}(S, T))^{V[G]}$.

4. If φ is a Σ^1_1-sentence and $A \subseteq \kappa$, then

$$\langle \kappa, <, A \rangle \models \varphi \iff (\langle \kappa, <, A \rangle \models \varphi)^{V[G]}.$$

Note that this remains true even for Σ^1_2-sentences, if $\kappa = \omega$, by Shoenfield absoluteness.

5. If T is a κ-Souslin tree, then $V[G] \models "T is a κ-Souslin tree."$
Corollary 6. The following statements, if true, are $<\kappa$-closed-necessary.
Corollary 6. The following statements, if true, are $\prec \kappa$-closed-necessary.

1. \diamondsuit_κ.
Corollary 6. The following statements, if true, are $\prec\kappa$-closed-necessary.

1. \diamondsuit_κ.

2. S and T are non-isomorphic normal κ-trees.
Corollary 6. The following statements, if true, are $<\kappa$-closed-necessary.

1. \Diamond_κ.

2. S and T are non-isomorphic normal κ-trees.

3. T is a rigid normal κ-tree.
Corollary 6. The following statements, if true, are $\prec \kappa$-closed-necessary.

1. \diamondsuit_κ.

2. S and T are non-isomorphic normal κ-trees.

3. T is a rigid normal κ-tree.

4. T is a κ-Aronszajn tree.
Corollary 6. The following statements, if true, are \(<\kappa\)-closed-necessary.

1. \(\diamond \kappa\).

2. \(S\) and \(T\) are non-isomorphic normal \(\kappa\)-trees.

3. \(T\) is a rigid normal \(\kappa\)-tree.

4. \(T\) is a \(\kappa\)-Aronszajn tree.

5. \(T\) is a slim \(\kappa\)-tree which is not Kurepa.
Corollary 6. The following statements, if true, are κ-closed-necessary.

1. \Diamond_κ.

2. S and T are non-isomorphic normal κ-trees.

3. T is a rigid normal κ-tree.

4. T is a κ-Aronszajn tree.

5. T is a slim κ-tree which is not Kurepa.

6. T is a κ-Souslin tree.
Corollary 6. The following statements, if true, are $<\kappa$-closed-necessary.

1. \diamondsuit_κ.

2. S and T are non-isomorphic normal κ-trees.

3. T is a rigid normal κ-tree.

4. T is a κ-Aronszajn tree.

5. T is a slim κ-tree which is not Kurepa.

6. T is a κ-Souslin tree.

7. $\langle \kappa, <, A \rangle \models \varphi$, where φ is a Σ^1_2 sentence and A is a subset of κ^n, for some $n < \omega$. If $\kappa = \omega$, then Σ^1_2 can be replaced by Σ^1_3.
Theorem 7. Assume $\text{MP}_{\prec\kappa-\text{closed}}(S \cup \{\kappa\})$. Then
Theorem 7. Assume $\text{MP}_{<\kappa-\text{closed}}(S \cup \{\kappa\})$. Then

1. If $\kappa > \omega$, then \diamondsuit_κ holds.
Theorem 7. Assume $\text{MP}_{<\kappa}^{\text{closed}}(S \cup \{\kappa\})$. Then

1. If $\kappa > \omega$, then \Diamond_{κ} holds.

2. If κ is the successor of the regular cardinal $\bar{\kappa}$ and $\bar{\kappa}^{<\bar{\kappa}} = \bar{\kappa}$, then there is a κ-Souslin tree. In particular, this is true for $\kappa = \omega_1$.
Theorem 7. Assume \(\text{MP}_{<\kappa-\text{closed}}(S \cup \{\kappa\}) \). Then

1. If \(\kappa > \omega \), then \(\diamondsuit_\kappa \) holds.

2. If \(\kappa \) is the successor of the regular cardinal \(\bar{\kappa} \) and \(\bar{\kappa} < \bar{\kappa} \) = \(\bar{\kappa} \), then there is a \(\kappa \)-Souslin tree. In particular, this is true for \(\kappa = \omega_1 \).

3. For any \(A \subseteq H_\kappa \) with \(A \in S \), any \(\Sigma_2^1 \)-sentence \(\varphi \) and any \(<\kappa \)-closed notion of forcing \(\mathbb{P} \), it follows that

\[
\langle H_\kappa, \in, A \rangle \models \varphi \iff 1 \Vdash_{\mathbb{P}} (\langle H_{\bar{\kappa}}, \in, \bar{A} \rangle \models \varphi).
\]

So \(<\kappa \)-closed-generic \(\Sigma_2^1 \)-absoluteness over \(H_\kappa \) holds.
Theorem 7. Assume $\text{MP}_{<\kappa-\text{closed}}(S \cup \{\kappa\})$. Then

1. If $\kappa > \omega$, then \Diamond_{κ} holds.

2. If κ is the successor of the regular cardinal $\bar{\kappa}$ and $\bar{\kappa} < \bar{\kappa} = \bar{\kappa}$, then there is a κ-Souslin tree. In particular, this is true for $\kappa = \omega_1$.

3. For any $A \subseteq H_\kappa$ with $A \in S$, any Σ^1_2-sentence φ and any $<\kappa$-closed notion of forcing \mathbb{P}, it follows that

$\langle H_\kappa, \in, A \rangle \models \varphi \iff 1 \Vdash_{\mathbb{P}} (\langle H_{\bar{\kappa}}, \in, \bar{A} \rangle \models \varphi)$.

So $<\kappa$-closed-generic Σ^1_2-absoluteness over H_κ holds.

In case $\kappa = \omega$, generic Σ^1_3-absoluteness in parameters from $S \cap \mathcal{P}(\omega)$ follows.
Theorem 7. Assume $\text{MP}_{<\kappa}$-closed$(S \cup \{\kappa\})$. Then

1. If $\kappa > \omega$, then \diamondsuit_κ holds.

2. If κ is the successor of the regular cardinal $\bar{\kappa}$ and $\kappa^{<\bar{\kappa}} = \bar{\kappa}$, then there is a κ-Souslin tree. In particular, this is true for $\kappa = \omega_1$.

3. For any $A \subseteq H_\kappa$ with $A \in S$, any Σ^1_2-sentence φ and any $<\kappa$-closed notion of forcing \mathbb{P}, it follows that

$$\langle H_\kappa, \in, A \rangle \models \varphi \iff 1 \Vdash_\mathbb{P} (\langle H_{\bar{\kappa}}, \in, \bar{A} \rangle \models \varphi).$$

So $<\kappa$-closed-generic Σ^1_2-absoluteness over H_κ holds.

In case $\kappa = \omega$, generic Σ^1_3-absoluteness in parameters from $S \cap \mathcal{P}(\omega)$ follows.

So if $S = H_{\kappa+}$, boldface $<\kappa$-closed-generic $\Sigma^1_2(H_\kappa)$-absoluteness follows in case $\kappa > \omega$, and boldface generic Σ^1_3-absoluteness in case $\kappa = \omega$.
From now on, assume that $S = H_{\kappa^+}$.
From now on, assume that $S = H_{\kappa^+}$.

4. If $\kappa > \omega$, then there is no slim κ-Kurepa tree.
From now on, assume that $S = H_{\kappa^+}$.

4. If $\kappa > \omega$, then there is no slim κ-Kurepa tree.

5. κ^+ is inaccessible in L.
From now on, assume that $S = H_{\kappa^+}$.

4. If $\kappa > \omega$, then there is no slim κ-Kurepa tree.

5. κ^+ is inaccessible in L.

6. $L_{\kappa^+} \prec L$. So L is a model of T_{κ, κ^+}.
From now on, assume that $S = H_{\kappa^+}$.

4. If $\kappa > \omega$, then there is no slim κ-Kurepa tree.

5. κ^+ is inaccessible in L.

6. $L_{\kappa^+} \preceq L$. So L is a model of T_{κ, κ^+}.

Proof. Generic Σ^1_2-Absoluteness:
From now on, assume that $S = H_{\kappa^+}$.

4. If $\kappa > \omega$, then there is no slim κ-Kurepa tree.

5. κ^+ is inaccessible in L.

6. $L_{\kappa^+} \prec L$. So L is a model of T_{κ, κ^+}.

Proof. Generic Σ^1_2-Absoluteness:

- $2^{<\kappa} = \kappa = \overline{H_\kappa}$, by \diamondsuit_κ.

From now on, assume that $S = H_{\kappa^+}$.

4. If $\kappa > \omega$, then there is no slim κ-Kurepa tree.

5. κ^+ is inaccessible in L.

6. $L_{\kappa^+} \prec L$. So L is a model of T_{κ, κ^+}.

Proof. Generic Σ^1_2-Absoluteness:

- $2^{<\kappa} = \kappa = \overline{H_\kappa}$, by \blacklozenge_κ.

- If $\psi(A) = \langle H_\kappa, \in, A \rangle \models \varphi$ holds in V, then this is necessary.
From now on, assume that $S = H_{\kappa^+}$.

4. If $\kappa > \omega$, then there is no slim κ-Kurepa tree.

5. κ^+ is inaccessible in L.

6. $L_{\kappa^+} \preceq L$. So L is a model of T_{κ, κ^+}.

Proof. Generic Σ^1_2-Absoluteness:

- $2^{<\kappa} = \kappa = H_{\kappa}$, by \Diamond_{κ}.

- If $\psi(A) = \langle H_{\kappa}, \in, A \rangle \models \varphi$ holds in V, then this is necessary.

- If $\psi(A)$ holds in $V[G]$, then this is necessary. So $\psi(A)$ is forceably necessary, and hence true in V.
No slim Kurepa tree:
No slim Kurepa tree: Assume \(T \) were Kurepa.
No slim Kurepa tree: Assume T were Kurepa.

- $\text{Col}(\kappa, [T])$, yields an extension in which T ceases to be Kurepa.
No slim Kurepa tree: Assume T were Kurepa.

- $\text{Col}(\kappa, [T])$, yields an extension in which T ceases to be Kurepa.
- No branches can subsequently be added to T.
No slim Kurepa tree: Assume T were Kurepa.

- $\text{Col}(\kappa, [T])$, yields an extension in which T ceases to be Kurepa.
- No branches can subsequently be added to T.
- So T is forceably necessarily not Kurepa.
No slim Kurepa tree: Assume T were Kurepa.

- $\text{Col}(\kappa, [T])$, yields an extension in which T ceases to be Kurepa.

- No branches can subsequently be added to T.

- So T is forceably necessarily not Kurepa.

$L_{\kappa^+} \prec L$:
No slim Kurepa tree: Assume T were Kurepa.

- $Col(\kappa, [T])$, yields an extension in which T ceases to be Kurepa.
- No branches can subsequently be added to T.
- So T is forceably necessarily not Kurepa.

$L_{\kappa^+} \prec L$: Tarski-Vaught criterion.
Lemma 8. Let \mathcal{M} be a model of ZFC + MP$_{\kappa-\text{closed}}(\{\kappa\})$. Let δ be the supremum of the ordinals that are definable over $L^\mathcal{M}$ in the parameter κ. Then $L_\delta \prec L$.
Lemma 8. Let M be a model of $\text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$. Let δ be the supremum of the ordinals that are definable over L^M in the parameter κ. Then $L_\delta \prec L$.

Proof.

• $\delta \leq (\kappa^+)^M$, by $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$.
Lemma 8. Let M be a model of $\text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$. Let δ be the supremum of the ordinals that are definable over L^M in the parameter κ. Then $L_\delta \prec L$.

Proof.

- $\delta \leq (\kappa^+)^M$, by $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$,
- then verify the Tarski-Vaught criterion.
Summarizing, we have shown:
Summarizing, we have shown:

Corollary 9. *The following equiconsistencies hold:*
Summarizing, we have shown:

Corollary 9. *The following equiconsistencies hold:*

1. *The theory $\text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$ is transitive model equiconsistent to*

 $\text{ZFC} + \kappa$ is regular $+ \kappa < \delta + V_\delta \prec V$,

 *locally in κ.***
Summarizing, we have shown:

Corollary 9. The following equiconsistencies hold:

1. The theory $\text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$ is transitive model equiconsistent to

 $\text{ZFC} + \kappa$ is regular $+ \kappa < \delta + V_\delta \prec V$,

 locally in κ.

2. The theory $\text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+}) + \delta = \kappa^+$ is transitive model equiconsistent to the theory

 $\text{ZFC} + \kappa$ is regular $+ \kappa < \delta + \delta$ is inaccessible $+ V_\delta \prec V$,

 locally in κ and δ.
Compatibility of the closed maximality principles at κ with κ being a large cardinal

Lemma 10. Let $\varphi(\kappa)$ express one of the following statements about κ: κ is inaccessible, Mahlo, subtle, Woodin.
Lemma 10. Let $\varphi(\kappa)$ express one of the following statements about κ: κ is inaccessible, Mahlo, subtle, Woodin.

1. The theory $\text{ZFC} + \text{MP}_{\kappa \text{-closed}}(\{\kappa\}) + \varphi(\kappa)$ is transitive model equiconsistent to “$\text{ZFC} + \kappa$ is regular + $\kappa < \delta + V_\delta \prec V + \varphi(\kappa)$”, locally in κ.
Compatibility of the closed maximality principles at κ with κ being a large cardinal

Lemma 10. Let $\varphi(\kappa)$ express one of the following statements about κ: κ is inaccessible, Mahlo, subtle, Woodin.

1. The theory $\text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(\{\kappa\}) + \varphi(\kappa)$ is transitive model equiconsistent to “$\text{ZFC} + \kappa$ is regular + $\kappa < \delta + V_\delta \prec V + \varphi(\kappa)$”, locally in κ.

2. The theory $\text{ZFC} + \text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+}) + \delta = \kappa^+ + \varphi(\kappa)$ is transitive model equiconsistent to the theory “$\text{ZFC} + \kappa$ and δ are regular + $\kappa < \delta + V_\delta \prec V$”, locally in κ and δ.
A weak version of the following Lemma was independently proven by Leibman.

Lemma 11. Suppose κ is supercompact and $\kappa < \delta$, where δ is an inaccessible cardinal such that $V_\delta \prec V$. Then there is a forcing extension $V[G]$ of V in which $\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+})$ holds and in which κ is still supercompact.
A weak version of the following Lemma was independently proven by Leibman.

Lemma 11. Suppose \(\kappa \) is supercompact and \(\kappa < \delta \), where \(\delta \) is an inaccessible cardinal such that \(V_\delta \prec V \). Then there is a forcing extension \(V[G] \) of \(V \) in which \(\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+}) \) holds and in which \(\kappa \) is still supercompact.

Proof.

- Force to make \(\kappa \) Laver indestructible,
A weak version of the following Lemma was independently proven by Leibman.

Lemma 11. Suppose \(\kappa \) is supercompact and \(\kappa < \delta \), where \(\delta \) is an inaccessible cardinal such that \(V_\delta \prec V \). Then there is a forcing extension \(V[G] \) of \(V \) in which \(\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+}) \) holds and in which \(\kappa \) is still supercompact.

Proof.

- Force to make \(\kappa \) Laver indestructible,
- then force \(\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+}) \).
A related Question

What is the consistency strength of a weakly compact κ such that $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})/\text{MP}_{<\kappa-\text{closed}}(H_\kappa^+) \text{ holds?}$
What is the consistency strength of a weakly compact κ such that $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})/\text{MP}_{<\kappa-\text{closed}}(H_\kappa^+)$ holds?

The following is worthwhile to note in this context:

Observation 12. Assume $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\}) + \kappa$ is weakly compact. Then the weak compactness of κ is indestructible under $<\kappa$-closed forcing.
What is the consistency strength of a weakly compact κ such that $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\}) / \text{MP}_{<\kappa-\text{closed}}(H_\kappa^+) \text{ holds?}$

The following is worthwhile to note in this context:

Observation 12. Assume $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\}) + \kappa$ is weakly compact. Then the weak compactness of κ is indestructible under $<\kappa$-closed forcing.

Proof. That κ is weakly compact is expressed by a Π^1_2-formula over H_κ. □
A Digression: The strength of an indestructibly weakly compact cardinal
A Digression: The strength of an indestructibly weakly compact cardinal

Apter and Hamkins: If κ is weakly compact, and its weak compactness is indestructible by $\lt \kappa$-directed-closed forcing, and this indestructibility was achieved by forcing that has a closure point below κ, then κ was supercompact in the ground model.
A Digression: The strength of an indestructibly weakly compact cardinal

Apter and Hamkins: If κ is weakly compact, and its weak compactness is indestructible by $<\kappa$-directed-closed forcing, and this indestructibility was achieved by forcing that has a closure point below κ, then κ was supercompact in the ground model.

Schimmerling and Steel: If K exists and κ is weakly compact, then κ is weakly compact in K and $\kappa^+K = \kappa^+$.
A Digression: The strength of an indestructibly weakly compact cardinal

Apter and Hamkins: If κ is weakly compact, and its weak compactness is indestructible by $<\kappa$-directed-closed forcing, and this indestructibility was achieved by forcing that has a closure point below κ, then κ was supercompact in the ground model.

Schimmerling and Steel: If K exists and κ is weakly compact, then κ is weakly compact in K and $\kappa^+K = \kappa^+$.

Fuchs and Schindler: Obtain a non-domestic mouse.
Impossible strengthenings of $\text{MP}_{<\kappa\text{-closed}}(H_\kappa \cup \{\kappa\})$
Impossible strengthenings of $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$ cannot be consistently strengthened by allowing for parameters which are not in H_κ^+.
Impossible strengthenings of $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$ cannot be consistently strengthened by allowing for parameters which are not in H_κ^+. Let $\square \text{MP}_{<\kappa-\text{closed}}(H_\kappa^+)$ be the principle stating that $\text{MP}_{<\kappa-\text{closed}}(H_\kappa^+)$ holds in every forcing extension obtained by $<\kappa$-closed forcing (with H_κ^+ interpreted in the extension).
Impossible strengthenings of $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$ cannot be consistently strengthened by allowing for parameters which are not in H_κ^+. Let $\Box \text{MP}_{<\kappa-\text{closed}}(H_\kappa^+)$ be the principle stating that $\text{MP}_{<\kappa-\text{closed}}(H_\kappa^+)$ holds in every forcing extension obtained by $<\kappa$-closed forcing (with H_κ^+ interpreted in the extension).

Theorem 13. [Fuchs/Hamkins] $\Box \text{MP}_{<\kappa-\text{closed}}(H_\kappa^+)$ is inconsistent with ZFC, if $\kappa > \omega$.
Impossible strengthenings of $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$ cannot be consistently strengthened by allowing for parameters which are not in $H_\kappa+$.

Let $\square \text{MP}_{<\kappa-\text{closed}}(H_\kappa+)$ be the principle stating that $\text{MP}_{<\kappa-\text{closed}}(H_\kappa+)$ holds in every forcing extension obtained by $<\kappa$-closed forcing (with $H_\kappa+$ interpreted in the extension).

Theorem 13. [Fuchs/Hamkins] $\square \text{MP}_{<\kappa-\text{closed}}(H_\kappa+)$ is inconsistent with ZFC, if $\kappa > \omega$.

Proof. Assume ZFC$+\square \text{MP}_{<\kappa-\text{closed}}(H_\kappa+)$.
Impossible strengthenings of $\text{MP}_{\kappa<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{\kappa<\kappa-\text{closed}}(\{\kappa\})$ cannot be consistently strengthened by allowing for parameters which are not in H_{κ^+}.

Let $\Box \text{MP}_{\kappa<\kappa-\text{closed}}(H_{\kappa^+})$ be the principle stating that $\text{MP}_{\kappa<\kappa-\text{closed}}(H_{\kappa^+})$ holds in every forcing extension obtained by κ-closed forcing (with H_{κ^+} interpreted in the extension).

Theorem 13. [Fuchs/Hamkins] $\Box \text{MP}_{\kappa<\kappa-\text{closed}}(H_{\kappa^+})$ is inconsistent with ZFC, if $\kappa > \omega$.

Proof. Assume ZFC+$\Box \text{MP}_{\kappa<\kappa-\text{closed}}(H_{\kappa^+})$. Force to add a slim κ-Kurepa tree.
Impossible strengthenings of $\text{MP}_{\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{\kappa-\text{closed}}(\{\kappa\})$ cannot be consistently strengthened by allowing for parameters which are not in H_κ^+. Let $\square \text{MP}_{\kappa-\text{closed}}(H_\kappa^+)$ be the principle stating that $\text{MP}_{\kappa-\text{closed}}(H_\kappa^+)$ holds in every forcing extension obtained by κ-closed forcing (with H_κ^+ interpreted in the extension).

Theorem 13. [Fuchs/Hamkins] $\square \text{MP}_{\kappa-\text{closed}}(H_\kappa^+)$ is inconsistent with ZFC, if $\kappa > \omega$.

Proof. Assume ZFC + $\square \text{MP}_{\kappa-\text{closed}}(H_\kappa^+)$. Force to add a slim κ-Kurepa tree. Contradiction. □

Compare this with the following:
Impossible strengthenings of $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{<\kappa-\text{closed}}(\{\kappa\})$ cannot be consistently strengthened by allowing for parameters which are not in H_{κ^+}.

Let $\square \text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$ be the principle stating that $\text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$ holds in every forcing extension obtained by $<\kappa$-closed forcing (with H_{κ^+} interpreted in the extension).

Theorem 13. [Fuchs/Hamkins] $\square \text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$ is inconsistent with ZFC, if $\kappa > \omega$.

Proof. Assume ZFC + $\square \text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$. Force to add a slim κ-Kurepa tree. Contradiction. \qed

Compare this with the following:

Theorem 14. [Woodin] $\square \text{MP}(\mathbb{R})$ is consistent, assuming strong axioms of infinity.
Impossible strengthenings of $\text{MP}_{<\kappa}\text{-closed}(H_\kappa \cup \{\kappa\})$

Note: $\text{MP}_{<\kappa}\text{-closed}({\kappa})$ cannot be consistently strengthened by allowing for parameters which are not in H_κ^+. Let $\square \text{MP}_{<\kappa}\text{-closed}(H_\kappa^+)$ be the principle stating that $\text{MP}_{<\kappa}\text{-closed}(H_\kappa^+)$ holds in every forcing extension obtained by $<\kappa$-closed forcing (with H_κ^+ interpreted in the extension).

Theorem 13. [Fuchs/Hamkins] $\square \text{MP}_{<\kappa}\text{-closed}(H_\kappa^+)$ is inconsistent with ZFC, if $\kappa > \omega$.

Proof. Assume ZFC+$\square \text{MP}_{<\kappa}\text{-closed}(H_\kappa^+)$. Force to add a slim κ-Kurepa tree. Contradiction. □

Compare this with the following:

Theorem 14. [Woodin] $\square \text{MP}(R)$ is consistent, assuming strong axioms of infinity.

Theorem 15. [Hamkins/Woodin] $\square \text{MP}_{\text{ccc}}(R)$ is equiconsistent with the existence of a weakly compact cardinal.
The same proof shows that the principle $\Box MP_{\leq \kappa - \text{dir. cl.} (H_\kappa^+)}$ is inconsistent.
The same proof shows that the principle $\square\text{MP}_{\kappa-\text{dir. cl.}}(H_{\kappa^+})$ is inconsistent.

Note that it is not the case that the stronger a principle is, the stronger its necessary form is! Indeed, the following questions arise:
The same proof shows that the principle $\square \text{MP}_{<\kappa-\text{dir. cl.}}(H_{\kappa+})$ is inconsistent.

Note that it is not the case that the stronger a principle is, the stronger its necessary form is! Indeed, the following questions arise:

Question 16. Is $\square \text{MP}_{\text{Col}(\kappa)}(H_{\kappa+})$ consistent?

Is $\square \text{MP}_{<\kappa-\text{dir. cl.}}(H_{\kappa+})$ consistent?
Separating the principles
Separating the principles

Recall the relationships between the principles:

\[
\begin{align*}
\text{MP}_{\text{Col}(\kappa)}(H_\kappa \cup \{\kappa\}) & \iff \text{MP}_{\text{Col}(\kappa)}(H_\kappa^+) \\
\text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa \cup \{\kappa\}) & \iff \text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa^+) \\
\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\}) & \iff \text{MP}_{<\kappa-\text{closed}}(H_\kappa^+)
\end{align*}
\]

Can any of these implications be reversed?
Producing other models of closed maximality principles
Observation 17. \(\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\}) \), if true, is \(<\kappa\)-closed-necessary. Actually, \(\text{MP}_{<\kappa-\text{closed}}(\{a\}) \) persists to \(<\kappa\)-closed extensions, for any \(a \).

The analogous statements apply to the maximality principles for \(<\kappa\)-\text{directed}-closed forcings and forcings from \(\text{Col}(\kappa) \) as well.
Producing other models of closed maximality principles

Observation 17. \(\text{MP}_{< \kappa} (H_{\kappa} \cup \{ \kappa \}) \), if true, is \(< \kappa \)-closed-necessary. Actually, \(\text{MP}_{< \kappa} (\{ a \}) \) persists to \(< \kappa \)-closed extensions, for any \(a \).

The analogous statements apply to the maximality principles for \(< \kappa \)-directed-closed forcings and forcings from \(\text{Col}(\kappa) \) as well.

For the boldface versions of the maximality principles for \(< \kappa \)-closed or \(< \kappa \)-directed-closed forcing, there is the following Lemma:

Lemma 18. Assume \(\text{MP}_{< \kappa} (H_{\kappa^+}) \). Let \(\mathbb{P} \) be a \(< \kappa^+ \)-closed notion of forcing. If \(G \) is \(\mathbb{P} \)-generic, then in \(V[G] \), \(\text{MP}_{< \kappa} (H_{\kappa^+}) \) continues to hold. This remains true if “\(< \kappa \)-closed” is replaced with “\(< \kappa \)-directed-closed”.
Producing other models of closed maximality principles

Observation 17. \(\text{MP}_{<\kappa \text{-closed}}(H_\kappa \cup \{\kappa\}) \), if true, is \(<\kappa \text{-closed-necessary} \). Actually, \(\text{MP}_{<\kappa \text{-closed}}(\{a\}) \) persists to \(<\kappa \text{-closed extensions} \), for any \(a \).

The analogous statements apply to the maximality principles for \(<\kappa \text{-directed-closed forcings} \) and forcings from \(\text{Col}(\kappa) \) as well.

For the boldface versions of the maximality principles for \(<\kappa \text{-closed} \) or \(<\kappa \text{-directed-closed forcing} \), there is the following Lemma:

Lemma 18. Assume \(\text{MP}_{<\kappa \text{-closed}}(H_{\kappa^+}) \). Let \(\mathbb{P} \) be a \(<\kappa^+ \text{-closed notion of forcing} \). If \(G \) is \(\mathbb{P} \text{-generic} \), then in \(V[G] \), \(\text{MP}_{<\kappa \text{-closed}}(H_{\kappa^+}) \) continues to hold. This remains true if “\(<\kappa \text{-closed} \)” is replaced with “\(<\kappa \text{-directed-closed} \).”

Note: Why is a version of the previous lemma for \(\text{Col}(\kappa) \) and \(\text{Col}(\kappa^+) \) missing?
Producing other models of closed maximality principles

Observation 17. $\text{MP}_{<\kappa\text{-closed}}(H_\kappa \cup \{\kappa\})$, if true, is $<\kappa$-closed-necessary. Actually, $\text{MP}_{<\kappa\text{-closed}}(\{a\})$ persists to $<\kappa$-closed extensions, for any a.

The analogous statements apply to the maximality principles for $<\kappa$-directed-closed forcings and forcings from $\text{Col}(\kappa)$ as well.

For the boldface versions of the maximality principles for $<\kappa$-closed or $<\kappa$-directed-closed forcing, there is the following Lemma:

Lemma 18. Assume $\text{MP}_{<\kappa\text{-closed}}(H_{\kappa^+})$. Let \mathbb{P} be a $<\kappa^+$-closed notion of forcing. If G is \mathbb{P}-generic, then in $V[G]$, $\text{MP}_{<\kappa\text{-closed}}(H_{\kappa^+})$ continues to hold. This remains true if “$<\kappa$-closed” is replaced with “$<\kappa$-directed-closed”.

Note: Why is a version of the previous lemma for $\text{Col}(\kappa)$ and $\text{Col}(\kappa^+)$ missing? Because there is none.
Separating $\text{MP}^{<\kappa-\text{closed}}$ from $\text{MP}^{<\kappa-\text{dir. cl.}}$.
Lemma 19. Assuming κ is supercompact, $\kappa < \delta$ and $V_\delta \prec V$, there is a model in which $MP_{<\kappa} \text{closed} (H_\kappa \cup \{\kappa\})$ holds, but $MP_{<\kappa} \text{dir. cl.} (H_\kappa \cup \{\kappa\})$ does not.

If moreover δ is inaccessible, then there is a model in which $MP_{<\kappa} \text{closed} (H_{\kappa^+})$ holds, but $MP_{<\kappa} \text{dir. cl.} (H_\kappa \cup \{\kappa\})$ does not.
Proof. Focus on the boldface part.
Proof. Focus on the boldface part.

- Do the Laver preparation.
Proof. Focus on the boldface part.

- Do the Laver preparation.

- Force $\text{MP}_{<\kappa-\text{dir. cl.}}(H_{\kappa^+})$. Call the resulting model M.
Proof. Focus on the boldface part.

- Do the Laver preparation.
- Force MP$_{<\kappa^\text{dir. cl.}}(H_{\kappa^+})$. Call the resulting model M.
- Force over M to add a κ^+-regressive κ^+-Kurepa tree.
Proof. Focus on the boldface part.

- Do the Laver preparation.

- Force $\text{MP}_{<\kappa^\text{dir.} \cdot \text{cl.}}(H_{\kappa^+})$. Call the resulting model M.

- Force over M to add a κ^+-regressive κ^+-Kurepa tree.

The forcing is $<\kappa^+$-closed and destroys κ's supercompactness (König-Yoshinobu). Call the model N.
Proof. Focus on the boldface part.

• Do the Laver preparation.

• Force $\text{MP}^{\text{dir. cl.}}_{<\kappa}(H_{\kappa^+})$. Call the resulting model M.

• Force over M to add a κ^+-regressive κ^+-Kurepa tree.

 The forcing is $<\kappa^+$-closed and destroys κ's supercompactness (König-Yoshinobu). Call the model N.

• N is a model of $\text{MP}^{\text{closed}}_{<\kappa}(H_{\kappa^+})$.
Proof. Focus on the boldface part.

• Do the Laver preparation.

• Force $\text{MP}_{\kappa^- \text{dir. cl.}}(H_{\kappa^+})$. Call the resulting model M.

• Force over M to add a κ^+-regressive κ^+-Kurepa tree.

 The forcing is $<\kappa^+$-closed and destroys κ’s supercompactness (König-Yoshinobu). Call the model N.

• N is a model of $\text{MP}_{\kappa^- \text{closed}}(H_{\kappa^+})$.

• N is not a model of $\text{MP}_{\kappa^- \text{dir. cl.}}(\{\kappa\})$.

\square
Separating $\text{MP}^{<\kappa}_{\text{dir. cl.}}$ from $\text{MP}^{\text{Col}(\kappa)}$
Lemma 20.

1. $\text{MP}_{\text{Col}(\kappa)}(\emptyset)$ implies that $V \neq \text{HOD}$.
Separating $\text{MP}_{<\kappa-\text{dir. cl.}}$ from $\text{MP}_{\text{Col}(\kappa)}$

Lemma 20.

1. $\text{MP}_{\text{Col}(\kappa)}(\emptyset)$ implies that $V \neq \text{HOD}$.

2. $\text{MP}_{<\kappa-\text{closed}}(\emptyset)$ implies that there is a forcing extension of an initial segment of L in which $\text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa \cup \{\kappa\}) + V = \text{HOD}$ holds. Analogously, $\text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$ implies that there is a forcing extension of L in which $\text{MP}_{<\kappa-\text{dir. cl.}}(H_{\kappa^+}) + V = \text{HOD}$ holds.
Proof. Part 1:
Proof. Part 1: "\(\forall \neq \text{HOD} \)" is \(\text{Col}(\kappa) \)-forceably necessary.
Proof. Part 1: “$V \neq \text{HOD}$” is $\text{Col}(\kappa)$-forceably necessary.

Part 2: Focus on the boldface claim. Let $\delta = (\kappa^+)$.

Part 2: Focus on the boldface claim. Let \(\delta = (\kappa^+) \).

- \(L_\delta \prec L \).
Proof. Part 1: “V \neq \text{HOD}” is Col(\kappa)-forceably necessary.

Part 2: Focus on the boldface claim. Let \(\delta = (\kappa^+) \).

- \(L_\delta \prec L \).

- Let \(G \) be \(\text{Col}(\kappa, < \delta) \)-generic over \(L \). So \(L[G] \) is a model of \(\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+}) \).
Proof. Part 1: “$\mathcal{V} \neq \text{HOD}$” is $\text{Col}(\kappa)$-forceably necessary.

Part 2: Focus on the boldface claim. Let $\delta = (\kappa^+)$.

- $L_\delta \prec L$.

- Let G be $\text{Col}(\kappa, < \delta)$-generic over L. So $L[G]$ is a model of $\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+})$.

- Force to code G into the continuum function well above δ.
Proof. Part 1: “$V \neq \text{HOD}$” is $\text{Col}(\kappa)$-forceably necessary.

Part 2: Focus on the boldface claim. Let $\delta = (\kappa^+)$.

- $L_\delta \prec L$.

- Let G be $\text{Col}(\kappa, < \delta)$-generic over L. So $L[G]$ is a model of $\text{MP}_{\text{Col}(\kappa)}(H_{\kappa^+})$.

- Force to code G into the continuum function well above δ.

- The result is a model of $V = \text{HOD}$, where $\text{MP}_{<\kappa - \text{closed}}(H_{\kappa^+})$ still holds, because the forcing was $<\kappa^+$-closed.
Boldface vs. lightface Principles
Lemma 21.

1. Assuming $\text{MP}_{\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$, there is a forcing extension in which $\text{MP}_{\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$ holds but $\text{MP}_{\kappa-\text{closed}}(H_{\kappa^+})$ fails.
Lemma 21.

1. Assuming \(\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\}) \), there is a forcing extension in which \(\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\}) \) holds but \(\text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+}) \) fails.

2. Assuming \(\text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa \cup \{\kappa\}) \), there is forcing extension in which \(\text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa \cup \{\kappa\}) \) holds but \(\text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+}) \) fails.
Lemma 21.

1. Assuming $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$, there is a forcing extension in which $\text{MP}_{<\kappa-\text{closed}}(H_\kappa \cup \{\kappa\})$ holds but $\text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$ fails.

2. Assuming $\text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa \cup \{\kappa\})$, there is forcing extension in which $\text{MP}_{<\kappa-\text{dir. cl.}}(H_\kappa \cup \{\kappa\})$ holds but $\text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$ fails.

3. Assuming $\text{MP}_{\text{Col}(\kappa)}(H_\kappa \cup \{\kappa\})$, there is a model of $\text{MP}_{\text{Col}(\kappa)}(H_\kappa \cup \{\kappa\})$ in which $\text{MP}_{<\kappa-\text{closed}}(H_{\kappa^+})$ is false.
Lemma 21.

1. Assuming $\text{MP}_{<\kappa} - \text{closed}(H_\kappa \cup \{\kappa\})$, there is a forcing extension in which $\text{MP}_{<\kappa} - \text{closed}(H_\kappa \cup \{\kappa\})$ holds but $\text{MP}_{<\kappa} - \text{closed}(H_{\kappa^+})$ fails.

2. Assuming $\text{MP}_{<\kappa} - \text{dir. cl.}(H_\kappa \cup \{\kappa\})$, there is forcing extension in which $\text{MP}_{<\kappa} - \text{dir. cl.}(H_\kappa \cup \{\kappa\})$ holds but $\text{MP}_{<\kappa} - \text{closed}(H_{\kappa^+})$ fails.

3. Assuming $\text{MP}_{\text{Col}(\kappa)}(H_\kappa \cup \{\kappa\})$, there is a model of $\text{MP}_{\text{Col}(\kappa)}(H_\kappa \cup \{\kappa\})$ in which $\text{MP}_{<\kappa} - \text{closed}(H_{\kappa^+})$ is false.
So in general, none of the implications shown in the figure can be reversed.