PROBLEM SET 12 (EXTRA CREDIT) FOR MATH 71200 - SET THEORY AND LOGIC -SPRING 2019

DR. GUNTER FUCHS

Problem 1:

Let λ be a limit ordinal, with $\kappa = cf(\lambda)$. Show that there is a cofinal function $f: \kappa \longrightarrow \lambda$ that is strictly increasing and continuous, meaning that if $\alpha < \kappa$ is a limit ordinal, then $f(\alpha) = \bigcup_{\xi < \alpha} f(\xi)$. So f enumerates a club subset of λ .

Problem 2:

Suppose that λ is a singular limit ordinal of uncountable cofinality. Show that there are a stationary subset $S \subseteq \lambda$ and a regressive function $f: S \longrightarrow \lambda$ that is not constant on a stationary subset of S. (So Fodor's Lemma really only holds for uncountable regular cardinals.)

Problem 3:

A train is traveling from 0 to the uncountable regular cardinal κ , making stops at all the intermediate ordinals, in their natural order. It starts out empty, and after its arrival at stop α , the following happens: first, if the train is not empty, then *one* passenger gets off. Second, $\overline{\alpha}$ many passengers enter the train. A passenger that has left the train cannot get back on the train (to avoid confusion about whether or not a passenger is on the train or not when it arrives at a limit station).

- (1) Show that it is not determined how many passengers will be on the train when it arrives at station ω . In fact, the cardinality of the set of passengers that are on the train when it arrives at station ω could be any number less than or equal to \aleph_0 .
- (2) How many passengers are on the train when it arrives at station κ ? Fodor's Lemma is useful here.

Please submit your homework by email, as a pdf file created with IAT_{EX} , by 5/22/2019.