PROBLEM SET 11 FOR MATH 71200
 - SET THEORY AND LOGIC -
 SPRING 2019

DR. GUNTER FUCHS

Problem 1:

Fix a finite alphabet Σ. Say that two Turing machines S and T with input alphabet Σ are equivalent if for every word w over Σ, S and T exhibit the same behavior. So S accepts w iff T accepts w, and S rejects w iff T rejects w. (Note that it follows that S terminates on input w iff T terminates on input w.) Show that the language

$$
E=\{\ulcorner A, B\urcorner \mid A \text { and } B \text { are equivalent standard Turing machines }\}
$$

is undecidable.
Hint: You can reduce your favorite undecidable problem to E. I.e., show that for a suitable problem P that you know is undecidable, there is a recursive function f such that $f^{"} P \subseteq E$ and $f^{"} P^{c} \subseteq E^{c}$. Thus, a decision procedure for E would yield a decision procedure for P.

Problem 2:

Let A be a recursively enumerable set of codes of standard Turing Machines. Show that there is a decidable set B of codes of standard Turing Machines such that modulo equivalence, A is equal to B. I.e., for every $\ulcorner M\urcorner \in A$, there is an $\ulcorner N\urcorner \in B$ such that M and N are equivalent, and vice versa, for every $\ulcorner N\urcorner \in B$, there is an $\ulcorner M\urcorner \in A$ such that M and N are equivalent.

Problem 3:

Use the Recursion Theorem (of Recursion Theory) to show the existence of a Turing machine which outputs its own code (regardless of its input). Put differently, find a natural number n such that φ_{n} is the constant function with value n.

Please submit your homework by email, as a pdf file created with ${ }^{A} T_{E} X$, by 4/28/2019.

