PROBLEM SET 10 FOR MATH 71200 - SET THEORY AND LOGIC -SPRING 2019

DR. GUNTER FUCHS

Problem 1:

Let T be the theory ZF^- – Infinity – Foundation. Show that the following formulas are Δ_1^T , or even Σ_0^T :

- (1) " $v_1 = \{v_0\}$ "
- (2) " $v_n = \langle v_0, \dots, v_{n-1} \rangle$."
- (3) " v_0 is a function."
- (4) " $v_1 = \operatorname{ran}(v_0)$." (5) " $v_1 = \operatorname{dom}(v_0)$."
- (6) " $v_2 = v_0 \upharpoonright v_1$."
- (7) " $v_2 = v_0(v_1)$."

Problem 2:

Show that the following functions and relations/sets are $\Delta_1(V_{\omega})$:

- (1) ω , and the functions +, \cdot defined on ω .
- (2) The set Σ of symbols of the language of A_E , in some convenient coding.
- (3) The set of variables of that language, also the set of constants, the set of function symbols and the set of relation symbols (the latter three are finite).
- (4) The free semi-group generated by these symbols, in the following sense: There is a class $Z \subseteq V_{\omega}$ and a function $\widehat{}: Z \times Z \longrightarrow Z$ such that $\langle Z, \widehat{} \rangle$ is a free semi-group generated by Σ , and such that Z and \cap are $\Delta_1(V_{\omega})$.
- (5) The set of terms and the set of formulas.
- (6) The function π .

Please submit your homework by email, as a pdf file created with LATEX, by 4/14/2019.