PROBLEM SET 9 FOR MATH 71200 - SET THEORY AND LOGIC -SPRING 2019

DR. GUNTER FUCHS

Problem 1:

Work in ZF^- . Show that V_{ω} is the unique set u that has the following properties:

- (1) u is transitive.
- (2) u is closed under finite subsets. That is, if $a \subseteq u$ is finite, then $a \in u$.
- (3) Every set in u is finite.

Problem 2:

Work in ZF⁻. For $n \in \omega$, let u_n be the unique finite set such that $n = \sum_{i \in u_n} 2^i$. Define a binary relation $\tilde{\in}$ on ω by letting

$$m \in n \iff m \in u_n.$$

- (a) Show that $\langle \omega, \tilde{\epsilon} \rangle$ is extensional and well-founded.
- (b) Let $\pi : \langle \omega, \tilde{\in} \rangle \xrightarrow{\sim} \langle u, \in | u \rangle$, where u is transitive (as given by Mostowski's isomorphism theorem). Show that $u = V_{\omega}$ (using Problem 1).

Problem 3:

Let's consider the form of properties (1)-(3) of Problem 1, one cardinality higher:

- (1') *u* is transitive.
- (2') u is closed under countable subsets. That is, if $x \subseteq u$ is countable, then $x \in u$.
- (3) Every set in u is at most countable.

Denote by $\mathsf{TC}(x)$ the transitive closure of x, that is the least (with respect to inclusion) set y such that $x \subseteq y$ and y is transitive. Working in ZFC^- , show:

(a) A set u has properties (1')-(3') iff u = HC, where

 $HC = \{x \mid \mathsf{TC}(x) \text{ is at most countable}\}\$

is the collection of *hereditarily countable sets*.

- (b) $HC \neq V_{\omega_1}$. So Problem 1 does not generalize in this sense.
- (c) Letting $HF = \{x \mid \mathsf{TC}(x) \text{ is finite}\}$ (the collection of *hereditarily finite sets*, it follows that $HF = V_{\omega}$. So Problem 1 generalizes in the sense that (1)-(3) characterize HF and (1')-(3') characterize HC.

Please submit your homework by email, as a pdf file created with $I^{A}T_{E}X$, by 4/7/2019.