PROBLEM SET 8 FOR MATH 71200 - SET THEORY AND LOGIC -SPRING 2019

DR. GUNTER FUCHS

Problem 1:

Work in ZF⁻. Consider the following principles:

Compactness: if Σ is a set of formulas (in any language) such that every finite subset of Σ has a model, then Σ has a model.

Completeness: if $\Sigma \cup \{\varphi\}$ is a set of formulas (in any language) and $\Sigma \models \varphi$, then $\Sigma \vdash \varphi$.

The Linear Order Principle: every set can be linearly ordered (i.e., for any set u, there is a binary relation $r \subseteq u \times u$ such that $\langle u, r \rangle$ is a linear order).

The *Ultrafilter Lemma*: every filter in a Boolean algebra is contained in an ultrafilter.

All of these principles are provable in ZFC. We proved the special case of Completeness where Σ is countable in ZF⁻. Show the following:

- (1) Compactness and Completeness are equivalent.
- (2) Compactness implies the Linear Order Principle.
- (3) The Linear Order Principle implies the following weak form of the axiom of choice: every set of *finite* nonempty sets has a choice function.
- (4) Compactness implies implies the Ultrafilter Lemma.

Note: If ZF is consistent, then so is the theory ZF, together with the assertion that there exists a set $\{a_n \mid n < \omega\}$ of *two-element* sets that has no choice function. By (1), (2) and (3), Compactness and Completeness fail in any model of this theory.

Problem 2:

Optional! Show in ZF^- that the Ultrafilter Lemma implies Completeness. For the argument, you can use what's known as the Henkin construction. Sketching the proof is enough!

Problem 3:

Find a formula that defines the graph of the function $f : \langle x, y \rangle \mapsto x + y$ over \mathfrak{N} , yet is not a functional representation of f. Show that your formula works. *Hint:* You can use Problem 2 of Homework set 7 here.

Problem 4:

Show that the following functions are representable:

(1) The projections $\pi_l^n : \omega^n \longrightarrow \omega$, for $l < n < \omega$, which are defined by

$$\pi_l^n(x_0,\ldots,x_{n-1})=x_l,$$

- (2) the functions $m \mapsto m+1$, $\langle m, n \rangle \mapsto m+n$, $\langle m, n \rangle \mapsto m \cdot n$ and $\langle m, n \rangle \mapsto m^n$,
- (3) the constant functions $c_k^n : \omega^n \longrightarrow \omega$, for $k, n < \omega$, which are defined by

$$c_k^n(m) = k,$$

(4) the function $m \mapsto [m:2]$, the integer part of m/2.

Please submit your homework by email, as a pdf file created with IAT_EX , by 3/31/2019.