PROBLEM SET 8 FOR MATH 71200
 - SET THEORY AND LOGIC -
 SPRING 2019

DR. GUNTER FUCHS

Problem 1:

Work in ZF $^{-}$. Consider the following principles:
Compactness: if Σ is a set of formulas (in any language) such that every finite subset of Σ has a model, then Σ has a model.
Completeness: if $\Sigma \cup\{\varphi\}$ is a set of formulas (in any language) and $\Sigma \models \varphi$, then $\Sigma \vdash \varphi$.
The Linear Order Principle: every set can be linearly ordered (i.e., for any set u, there is a binary relation $r \subseteq u \times u$ such that $\langle u, r\rangle$ is a linear order).
The Ultrafilter Lemma: every filter in a Boolean algebra is contained in an ultrafilter.

All of these principles are provable in ZFC. We proved the special case of Completeness where Σ is countable in ZF^{-}. Show the following:
(1) Compactness and Completeness are equivalent.
(2) Compactness implies the Linear Order Principle.
(3) The Linear Order Principle implies the following weak form of the axiom of choice: every set of finite nonempty sets has a choice function.
(4) Compactness implies implies the Ultrafilter Lemma.

Note: If ZF is consistent, then so is the theory ZF, together with the assertion that there exists a set $\left\{a_{n} \mid n<\omega\right\}$ of two-element sets that has no choice function. By (1), (2) and (3), Compactness and Completeness fail in any model of this theory.

Problem 2:

Optional! Show in ZF $^{-}$that the Ultrafilter Lemma implies Completeness. For the argument, you can use what's known as the Henkin construction. Sketching the proof is enough!

Problem 3:

Find a formula that defines the graph of the function $f:\langle x, y\rangle \mapsto x+y$ over \mathfrak{N}, yet is not a functional representation of f. Show that your formula works.
Hint: You can use Problem 2 of Homework set 7 here.

Problem 4:

Show that the following functions are representable:
(1) The projections $\pi_{l}^{n}: \omega^{n} \longrightarrow \omega$, for $l<n<\omega$, which are defined by

$$
\pi_{l}^{n}\left(x_{0}, \ldots, x_{n-1}\right)=x_{l}
$$

(2) the functions $m \mapsto m+1,\langle m, n\rangle \mapsto m+n,\langle m, n\rangle \mapsto m \cdot n$ and $\langle m, n\rangle \mapsto m^{n}$,
(3) the constant functions $c_{k}^{n}: \omega^{n} \longrightarrow \omega$, for $k, n<\omega$, which are defined by

$$
c_{k}^{n}(m)=k,
$$

(4) the function $m \mapsto[m: 2]$, the integer part of $m / 2$.

Please submit your homework by email, as a pdf file created with $L^{A} T_{E} X$, by 3/31/2019.

