PROBLEM SET 7 FOR MATH 71200 - SET THEORY AND LOGIC -SPRING 2019

DR. GUNTER FUCHS

For this problem set, work in the theory ZF.

The language of number theory with exponentiation consists of the constant symbol 0, the binary relation symbol <, the unary function symbol S, and the binary function symbols $+, \cdot$ and E. Using infix notation for $+, \cdot$ and <, we will work with the following set of axioms, called A_E (for "arithmetic with exponentiation"):

$$(S1) \quad \forall v_0 \quad \neg S(v_0) = 0$$

- $(S2) \quad \forall v_0 \forall v_1 \quad (S(v_0) = S(v_1) \rightarrow v_0 = v_1)$
- (L1) $\forall v_0 \forall v_1 (v_0 < S(v_1) \leftrightarrow (v_0 < v_1 \lor v_0 = v_1))$
- (L2) $\forall v_0 \quad \neg v_0 < 0$
- (L3) $\forall v_0 \forall v_1 (v_0 < v_1 \lor v_0 = v_1 \lor v_1 < v_0)$
- $(A1) \quad \forall v_0 \quad v_0 + 0 = v_0$
- (A2) $\forall v_0 \forall v_1 \quad (v_0 + S(v_1) = S(v_0 + v_1))$
- $(M1) \quad \forall v_0 \quad v_0 \cdot 0 = 0$
- (M2) $\forall v_0 \forall v_1 \quad (v_0 \cdot S(v_1) = (v_0 \cdot v_1) + v_0)$
- (E1) $\forall v_0 \quad E(v_0, 0) = S(0)$
- (E2) $\forall v_0 \forall v_1 \quad E(v_0, S(v_1)) = E(v_0, v_1) \cdot v_0$

Problem 1:

On problem set number 3, we defined ordinal addition, using the Recursion Theorem. As hinted at in class, let's define ordinal multiplication by

$$\begin{array}{rcl} \alpha \cdot 0 & = & 0, \\ \alpha \cdot (\beta + 1) & = & (\alpha \cdot \beta) + \alpha, \\ \alpha \cdot \lambda & = & \bigcup \{ \alpha \cdot \beta \mid \beta < \lambda \}, \text{ for limit } \lambda. \end{array}$$

Similarly, we can define ordinal exponentiation by

$$\begin{array}{rcl} \alpha^{0} & = & 1, \\ \alpha^{\beta+1} & = & \alpha^{\beta} \cdot \alpha, \\ \alpha^{\lambda} & = & \bigcup \{ \alpha^{\beta} \mid \beta < \lambda \}, \text{ for limit } \lambda. \end{array}$$

Show (in ZF) that there arbitrarily large ordinals γ that are closed under addition, multiplication and exponentiation (the smallest such is ω , and the next one is called ϵ_0 - can you describe it?). If $\gamma > 0$ is closed under these operations, then show that

$$\langle \gamma, 0, S \restriction \gamma, + \restriction (\gamma \times \gamma), \cdot \restriction (\gamma \times \gamma), E \restriction (\gamma \times \gamma), < \restriction \gamma \rangle \models A_E$$

Here, $E(\alpha, \beta) = \alpha^{\beta}$ and S is the usual ordinal successor operation.

Problem 2:

Prove or disprove:

$$A_E \vdash \forall v_0 (v_0 \neq 0 \longrightarrow \exists v_1 (v_0 = S(v_1)))$$

Please submit your homework by email, as a pdf file created with latex, by 3/24/2019.