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For this problem set, work in the theory ZF.
The language of number theory with exponentiation consists of the constant

symbol 0, the binary relation symbol <, the unary function symbol S, and the
binary function symbols +, · and E. Using infix notation for +, · and<, we will work
with the following set of axioms, called AE (for “arithmetic with exponentiation”):

(S1) ∀v0 ¬S(v0) = 0
(S2) ∀v0∀v1 (S(v0) = S(v1)→ v0 = v1)
(L1) ∀v0∀v1(v0 < S(v1)↔ (v0 < v1 ∨ v0 = v1))
(L2) ∀v0 ¬v0 < 0
(L3) ∀v0∀v1(v0 < v1 ∨ v0 = v1 ∨ v1 < v0)
(A1) ∀v0 v0 + 0 = v0
(A2) ∀v0∀v1 (v0 + S(v1) = S(v0 + v1))
(M1) ∀v0 v0 · 0 = 0
(M2) ∀v0∀v1 (v0 · S(v1) = (v0 · v1) + v0)
(E1) ∀v0 E(v0, 0) = S(0)
(E2) ∀v0∀v1 E(v0, S(v1)) = E(v0, v1) · v0

Problem 1:
On problem set number 3, we defined ordinal addition, using the Recursion Theo-
rem. As hinted at in class, let’s define ordinal multiplication by

α · 0 = 0,

α · (β + 1) = (α · β) + α,

α · λ =
⋃
{α · β | β < λ}, for limit λ.

Similarly, we can define ordinal exponentiation by

α0 = 1,

αβ+1 = αβ · α,
αλ =

⋃
{αβ | β < λ}, for limit λ.

Show (in ZF) that there arbitrarily large ordinals γ that are closed under addition,
multiplication and exponentiation (the smallest such is ω, and the next one is called
ε0 - can you describe it?). If γ > 0 is closed under these operations, then show that

〈γ, 0, S�γ,+�(γ × γ), ·�(γ × γ), E�(γ × γ), < �γ〉 |= AE

Here, E(α, β) = αβ and S is the usual ordinal successor operation.

Problem 2:
Prove or disprove:

AE ` ∀v0(v0 6= 0 −→ ∃v1(v0 = S(v1))).

Please submit your homework by email, as a pdf file created with latex, by
3/24/2019.
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