PROBLEM SET 7 FOR MATH 71200
 - SET THEORY AND LOGIC -

 SPRING 2019

 SPRING 2019}

DR. GUNTER FUCHS

For this problem set, work in the theory ZF.
The language of number theory with exponentiation consists of the constant symbol 0 , the binary relation symbol $<$, the unary function symbol S, and the binary function symbols,$+ \cdot$ and E. Using infix notation for,$+ \cdot$ and $<$, we will work with the following set of axioms, called A_{E} (for "arithmetic with exponentiation"):
(S1) $\forall v_{0} \quad \neg S\left(v_{0}\right)=0$
(S2) $\forall v_{0} \forall v_{1} \quad\left(S\left(v_{0}\right)=S\left(v_{1}\right) \rightarrow v_{0}=v_{1}\right)$
(L1) $\forall v_{0} \forall v_{1}\left(v_{0}<S\left(v_{1}\right) \leftrightarrow\left(v_{0}<v_{1} \vee v_{0}=v_{1}\right)\right)$
(L2) $\forall v_{0} \quad \neg v_{0}<0$
(L3) $\forall v_{0} \forall v_{1}\left(v_{0}<v_{1} \vee v_{0}=v_{1} \vee v_{1}<v_{0}\right)$
(A1) $\forall v_{0} \quad v_{0}+0=v_{0}$
(A2) $\forall v_{0} \forall v_{1} \quad\left(v_{0}+S\left(v_{1}\right)=S\left(v_{0}+v_{1}\right)\right)$
(M1) $\forall v_{0} \quad v_{0} \cdot 0=0$
(M2) $\forall v_{0} \forall v_{1} \quad\left(v_{0} \cdot S\left(v_{1}\right)=\left(v_{0} \cdot v_{1}\right)+v_{0}\right)$
(E1) $\forall v_{0} \quad E\left(v_{0}, 0\right)=S(0)$
(E2) $\forall v_{0} \forall v_{1} \quad E\left(v_{0}, S\left(v_{1}\right)\right)=E\left(v_{0}, v_{1}\right) \cdot v_{0}$

Problem 1:

On problem set number 3, we defined ordinal addition, using the Recursion Theorem. As hinted at in class, let's define ordinal multiplication by

$$
\begin{aligned}
\alpha \cdot 0 & =0 \\
\alpha \cdot(\beta+1) & =(\alpha \cdot \beta)+\alpha \\
\alpha \cdot \lambda & =\bigcup\{\alpha \cdot \beta \mid \beta<\lambda\}, \text { for limit } \lambda
\end{aligned}
$$

Similarly, we can define ordinal exponentiation by

$$
\begin{aligned}
\alpha^{0} & =1 \\
\alpha^{\beta+1} & =\alpha^{\beta} \cdot \alpha, \\
\alpha^{\lambda} & =\bigcup\left\{\alpha^{\beta} \mid \beta<\lambda\right\}, \text { for limit } \lambda .
\end{aligned}
$$

Show (in ZF) that there arbitrarily large ordinals γ that are closed under addition, multiplication and exponentiation (the smallest such is ω, and the next one is called $\epsilon_{0}-$ can you describe it?). If $\gamma>0$ is closed under these operations, then show that

$$
\langle\gamma, 0, S \upharpoonright \gamma,+\upharpoonright(\gamma \times \gamma), \cdot \upharpoonright(\gamma \times \gamma), E \upharpoonright(\gamma \times \gamma),<\upharpoonright \gamma\rangle \models A_{E}
$$

Here, $E(\alpha, \beta)=\alpha^{\beta}$ and S is the usual ordinal successor operation.

Problem 2:

Prove or disprove:

$$
A_{E} \vdash \forall v_{0}\left(v_{0} \neq 0 \longrightarrow \exists v_{1}\left(v_{0}=S\left(v_{1}\right)\right)\right)
$$

Please submit your homework by email, as a pdf file created with latex, by 3/24/2019.

