PROBLEM SET 5 FOR MATH 71200 - SET THEORY AND LOGIC - LOGIC I SPRING 2019

DR. GUNTER FUCHS

Work in ZF_F^{--} .

Problem 1:

Let Σ be a class. Show that there are terms Σ^* , $\widehat{}$ such that $\widehat{} : (\Sigma^*)^2 \longrightarrow \Sigma^*$ and $(\Sigma^*, \widehat{})$ is a free semi-group generated by Σ .

Problem 2:

Show that there are class terms $\operatorname{Var}, F : \omega \to \operatorname{Var}$ and distinct sets $\dot{\wedge}, \dot{\vee}, \dot{\neg}, \dot{\forall}, \dot{\exists}, \dot{\langle}, \dot{\rangle}, \dot{,}$ $\dot{\downarrow}, \dot{=}$ such that letting S be the collection of these sets, $\operatorname{Var} \cap S = \emptyset$ and the following holds: if $\mathcal{L} = (\mathbb{C}, \mathbb{P}, \mathbb{F}, \#)$ is a language such that $(\mathbb{C} \cup \mathbb{P} \cup \mathbb{F}) \cap (\operatorname{Var} \cup S) = \emptyset$, then, defining $\Sigma(\mathcal{L})$ as in Def. 1.2.1, there is a class term $\operatorname{Terms}_{\mathcal{L}}$ that provably satisfies Definition. 1.2.1 (the class of \mathcal{L} -terms), using the structure $(\Sigma(\mathcal{L})^*, \widehat{})$ from Problem 1.

Hint: Use the Recursion Theorem for the "proper substring" relation to define the characteristic function of $\mathsf{Terms}_{\mathcal{L}}$.

Please submit your homework by email, as a pdf file created with $I^{A}T_{E}X$, by 3/10/2019.