PROBLEM SET 4 FOR MATH 71200 - SET THEORY AND LOGIC - LOGIC I SPRING 2019

DR. GUNTER FUCHS

The principle of Dependent Choices (DC) is a weak form of the axiom of choice stating that whenever $\langle u, r \rangle$ is a binary system with the property that for every $y \in u$, there is an $x \in u$ such that xry, it follows that there is an infinite decreasing chain in $\langle u, r \rangle$, that is, a function $f : \omega \longrightarrow u$ such that for all $n \in \omega$, f(n+1)rf(n).

Problem 1:

Prove in $\mathsf{ZF} + \mathsf{DC}$ that a binary system $\langle u, r \rangle$ fails to be well-founded iff there is an infinite decreasing chain in $\langle u, r \rangle$, that is, a function $f : \omega \longrightarrow u$ such that for all $n \in \omega$, f(n+1)rf(n). Conclude that König's Lemma holds in $\mathsf{ZF} + \mathsf{DC}$: every infinite, locally finite tree has an infinite branch. Actually, an even weaker form of choice suffices for the latter: every countable set of finite, nonempty sets has a choice function.

Problem 2:

The countable Löwenheim-Skolem Theorem says that every infinite model of a countable first order language language has a countable elementary submodel. Show in ZF that the countable Löwenheim-Skolem Theorem is equivalent to DC.

Hint: To show that DC implies the countable Löwenheim-Skolem Theorem, given an infinite model M, let u consist of one-to-one functions $f: n \longrightarrow |M|$, for some $n < \omega$, and define frg if $\operatorname{dom}(f) > \operatorname{dom}(g)$ and, fixing an enumeration of the formulas in the language of M, we have that for every $i < \operatorname{dom}(g)$, if $\varphi_i(w, v_0, \ldots, v_{l-1})$ is the *i*-th formula, and $a_0, \ldots, a_{l-1} \in \operatorname{ran}(g)$, if $M \models \exists w \ \varphi_i[a_0, \ldots, a_{l-1}]$, then there is a $b \in \operatorname{ran}(f)$ such that $M \models \varphi_i[b, a_0, \ldots, a_{l-1}]$.

For the converse, note that any countable set is automatically well-ordered.

Problem 3:

Show in ZF^{--} + Infinity: if $R \subseteq V^2$ is a set-like relation, then for every set u, there is a minimal (with respect to inclusion) set v that's R-closed and contains u. Show also that this result does not hold in ZF without the axiom of infinity, and that it does not hold if R is not set-like.

Problem 4:

Let's say that a relation R is well-founded with respect to sets if every nonempty set a has an R-minimal element. And let's say R is well-founded with respect to classes for the scheme expressing that every nonempty class has an R-minimal element.

- (1) Show that $ZF^{--} + Infinity + "R$ is set-like and well-founded with respect to sets" proves the scheme "R is set-like and well-founded with respect to classes". So in $ZF^{--} + Infinity$, this scheme can be expressed by a single formula. In particular, the recursion theorem can be expressed in this theory.
- (2) Show that in ZF , if R is well-founded with respect to sets, then R is well-founded with respect to classes (that is, every nonempty class has an R-minimal element note that it is not assumed here that R is set-like).

Please submit your homework by email, as a pdf file created with latex, by 3/3/2019.