PROBLEM SET 3 FOR MATH 71200 - SET THEORY AND LOGIC - LOGIC I SPRING 2019

DR. GUNTER FUCHS

For this problem set, work in the theory ZF_F^{--} .

Problem 1:

Let A be a class term. Show that there is a unique class HA that satisfies

 $\forall x \quad (x \in \mathsf{H}A \iff (x \in A \land \forall y \in x \quad y \in \mathsf{H}A)).$

HA is called the class of *hereditarily* A sets.

Problem 2:

Now let T be the class of transitive sets. Show that the following classes are equal:

- (1) $\{x \mid x \in \mathsf{T} \land \forall y \in x \quad y \in \mathsf{T}\},\$
- (2) HT,
- (3) On.

Problem 3:

Let $G : V \longrightarrow V$ and $x_0 \in V$. Show that there is a unique function $F : On \longrightarrow V$ that satisfies:

- (1) $F(0) = x_0$
- (2) $F(s\alpha) = G(F(\alpha))$, for all $\alpha \in On$
- (3) $F(\lambda) = \bigcup F^{*}\lambda$, if $\lambda > 0$ is not of the form $s\alpha$, for any α (" λ is a limit ordinal").

Problem 4:

For $\alpha \in On$, let $F_{\alpha} : On \longrightarrow On$ be the unique function satisfying

- (1) $F_{\alpha}(0) = \alpha$
- (2) $F_{\alpha}(s\beta) = s(F_{\alpha}(\beta))$
- (3) $F_{\alpha}(\lambda) = \bigcup \{F_{\alpha}(\beta) \mid \beta < \lambda\}.$

Write $\alpha + \beta := F_{\alpha}(\beta)$. Further, if $s_0 = \langle u_0, r_0 \rangle$ and $s_1 = \langle u_1, r_1 \rangle$ are well-orders, define $s_0 + s_1 := s = \langle u, r \rangle$ by

$$u = (u_0 \times \{0\}) \cup (u_1 \times \{1\}), \text{ and}$$

$$x, i \rangle r \langle y, j \rangle \iff ((i = j \land xr_i y) \lor (i = 0 \land j = 1))$$

Show that $s_0 + s_1$ is a well-order, and that if $\alpha = \operatorname{otp}(s_0)$ and $\beta = \operatorname{otp}(s_1)$, then (by induction on β)

$$\operatorname{otp}(s_0 + s_1) = \alpha + \beta.$$