PROBLEM SET 2 FOR MATH 71200 - SET THEORY AND LOGIC - LOGIC I SPRING 2019

DR. GUNTER FUCHS

Problem 1:

Show in ZF_F^{--} that every set is contained in a transitive set, that is, for every a, there is a transitive set u with $a \subseteq u$.

Problem 2:

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$ be the set of natural numbers, and let M^+ and M^- be the models of the language of set theory whose universe is \mathbb{N} and in which \in is interpreted as follows:

$$\dot{\in}^{M^+} = \langle \text{ and } \dot{\in}^{M^-} = \rangle,$$

that is, for $m, n \in \mathbb{N}$, we have that

$$n \dot{\in}^{M^+} n \iff m < n \text{ and } m \dot{\in}^{M^-} n \iff m > n.$$

- (1) Which axioms of ZF_F^{--} hold in M^+ ? (2) Which hold in M^- ?
- (3) For which $n \in \mathbb{N}$ does $M^+ \models$ "n is transitive"? How about M^- ?
- (4) If $A = \{x \mid \varphi(x, \vec{y})\}$ is a class term, M is a model for the language of set theory, and \vec{a} is in M, then let's let

$$(A[\vec{a}])^M = \{x \mid \varphi(x, \vec{a})\}^M := \{b \in |M| \mid M \models \varphi(b, \vec{a})\}.$$

That's the relativization of A to M.

- (a) What is $(\{v_0, v_1\}[0, 1])^{M^+}$?
- (b) Show that $M^+ \models \{0, 1\} \in V$.
- (c) Find the $a \in M^+$ such that $M^+ \models \{0, 1\} = a$.

Please submit your solutions, written in LATEX or any other layout system you prefer, via email by February 17, 2019.