
COMPUTABILITY-THEORETIC ASPECTS OF
AN ANTICHAIN THEOREM FOR

INFINITE EXTENDIBLE TREES OF NON-TRIVIAL RANK

CHRIS J. CONIDIS

Abstract. We introduce an antichain principle for infinite extendible trees of nontrivial
rank and show that, in the context of Reverse Mathematics, its strength is distinct from
every other principle currently cataloged in the “Reverse Mathematical Zoo.”

1. Introduction

Two major branches of applied Computability Theory include Computable Structure The-
ory and Reverse Mathematics. While Computable Structure Theory typically aims to ex-
amine and classify the computability content of mathematical structures and their substruc-
tures, Reverse Mathematics examines and classifies the logical content of theorems associated
with such structures. One interesting class of structures that have received much atten-
tion since the turn of the century are partial orders; see any of [GMS13, DHLS03, JKL+,
CDSS12, HS07] for more details. For a background in Computability Theory, see [Soa16]; for
a background in Computable Structure Theory, consult [AK00]; [Sim09] contains background
information in Reverse Mathematics.

This article is primarily a contribution to Reverse Mathematics, and as such examines and
attempts to classify the strength of a particular mathematical theorem over the weak base
theory known as the Recursive Comprehension Axiom scheme, or RCA0.

1 More specifically,
we introduce and analyze a theorem regarding the existence of antichains in a certain class
of partial orders that are a subclass of trees. To achieve our goal we will examine the
computability-theoretic aspects of antichains in this subclass of partial orders.

For our purposes we are primarily interested in the class of partial orders T consisting
of downward closed subsets of binary strings (ordered by inclusion) with infintely many
branchings. It is easy to show (see Remark 2.4 below for more details) that the infinitely
many branchings result in the existence of infinite antichains AT ⊂ T within T . Moreover, the
author has recently discovered, but has not yet published, results showing that such orderings
T and their associated antichains AT play a significant role in the Reverse Mathematics of
Commutative Noetherian Rings. Although our primary goal here is to introduce what we
believe to be an interesting class of partial orderings which yield interesting results from the
point of view of Reverse Mathematics, a secondary aim of ours is to lay the groundwork for
future results concerning the Reverse Mathematics of Commutative Noetherian Rings.

Our main goal in this article is to catalog some of the basic computability-theoretic aspects
of antichains of the form AT above, one consequence of which is that the existence of such
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antichains in every such partial order is (computationally) distinct from every other combina-
torial principle that has thus far been examined and cataloged in the “Reverse Mathematical
Zoo.” More details follow in the next section.

2. Background

2.1. Trees in Baire space and Cantor space. Let ω = {0, 1, 2, . . .} denote the standard
natural numbers, while N = {0, 1, 2, . . .} denotes the possibly nonstandard natural numbers.
Any of the following definitions that mention N has an implicit corresponding version for
ω. Let N<N, N ∈ N, denote the set of finite N−ary sequences ordered by extension, and
let N<N, denote the set of finite sequences of natural numbers ordered by extension. Any
defintion mentioning finite binary sequences, i.e. 2<N, has an implicit corresponding version
for both N<N and N<N as well. We will explicitly write our finite sequences in either 2<N or
N<N using angled brackets, like so

〈a0, a1, a2, . . . , an〉 ∈ 2<N, n ∈ N, ai ∈ ω, 0 ≤ i ≤ n.

For all σ ∈ 2<N and k ∈ {0, 1}, σk ∈ 2<N denotes the 1-bit concatenation (extension) of σ
with (by) k. Let N<N

< denote finite sequences of strictly increasing natural numbers; it is
easy to see that N<N is computably isomorphic to N<N

< and we will implicitly use this obvious
fact in Theorem 4.1 below. For any natural number l ∈ N, let 2=l ⊂ 2<N denote those finite
binary sequences of natural numbers of length l. Let ∅ denote the root of 2<N, and for all
σ ∈ 2<N, let |σ| ∈ N denote the length of σ. For any σ, τ ∈ N<N, we write τ ⊆ σ to denote
the fact that τ is a prefix of σ; we write τ ⊂ σ to denote the fact that τ is a proper prefix
of σ. Note that ⊆ yields a partial ordering on 2<N. We say that T ⊆ 2<N is a tree if for all
σ ∈ T and τ ⊆ σ we have that τ ∈ T . Let 2N denote the set of infinite sequences of natural
numbers. We write σ ⊆ f , σ ∈ 2<N, f ∈ 2N, to mean that σ is a finite initial segment of f .
For any given tree T ⊆ 2<N, let [T ] ⊆ 2N denote the set of infinite binary sequences f ∈ 2N,
such that for each n ∈ N we have that the finite initial segment of f of length n, denoted
f�n ∈ 2<N, is in T , i.e. we have

f�n = 〈f(0), f(1), f(2), · · · , f(n)〉 ∈ T ⊂ 2<N,

where f(k) ∈ 2 = {0, 1} denotes the kth bit of f . We say that a given σ ∈ T is extendible
whenever there exists f ∈ [T ] ⊆ 2N such that σ ⊂ f . We say that the tree T ⊂ ω<ω is
extendible whenever T every element of T is extendible. For any given σ ∈ 2<N, let

[σ] = {f ∈ 2N : f ⊃ σ}
and for any subset A ⊂ T let

[A] =
⋃
σ∈A

[σ] ⊆ 2N.

If T ⊂ 2<N is a tree, λ ∈ T , but λ0, λ1 /∈ T , (i.e. if λ ∈ T has no T−extensions) then we say
that λ is a leaf (of T ).

2.2. Computability Theory. Our computability-theoretic notation is standard and fol-
lows that of [Soa16]. A computable nondecreasing unbounded function h : N → N is
called an order function. We say that a function f : N → N is computably approximable
or limit computable whenever there exists a computable function g : N × N → N such that
f(x) = lims g(x, s) exists for all x ∈ N. Moreover, we say that the computable approximation
g obeys the order function h, if, for every x ∈ N, we have that

|{s : g(x, s) 6= g(x, s+ 1)}| ≤ h(x),

where |A| ∈ N denotes the size of A ⊂ N. Furthermore, we say that X ⊆ N is h−c.e.
whenever X is limit computable via some g : N × N → N that obeys h. Let {ϕe : e ∈ N}
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be a fixed uniformly computable enumeration of the partial computable functions, ϕe : N→
N, and let {Φe : e ∈ N} denote a fixed uniformly computable enumeration of the oracle
computable functionals, i.e. Φe : 2N × N → N. Recall that ϕ(x) ↓ denotes that the partial
computable function ϕ eventually halts on input x ∈ N, and that ϕs(s) ↓ (ϕe,s(x) ↓) says
that the (eth) partial computable function halts on input x ∈ N in at most s ∈ N steps.
Similar defintions apply for Φα

e (x) ↓ and Φα
e,s(x) ↓, e, x ∈ N, α ∈ 2<N. A partial computable

function ϕ : N → N, is said to be total whenever ϕ(x) ↓ for all x ∈ N. We say that X ⊂ N
is hyperimmune whenever there is some function f : N → N, f ≤T X, i.e. X computes f ,
such that for every e ∈ N either there exist infinitely many natural numbers x ∈ N, such
that f(x) > ϕe(x) whenever ϕe : N → N is total. Finally, we say that X ⊂ N is DNR
(diagonally nonrecursive) whenever there is some g ≤T X, g : N → N, such that for all
e ∈ N, g(e) 6= Φe(e) whenever Φe(e) ↓. Moreover, if ∅′ ⊂ N denotes Turing’s Halting Set and
g(e) 6= Φ∅

′
e (e), whenever Φ∅

′
e (e) ↓, e ∈ N, then we say that X is 2−DNR. If, in addition we

have that g(e) < h(e), for some nondecreasing function h and every e ∈ N, then we say that
X is 2− h−DNR.

2.2.1. The Finite Injury Priority Method. Finally, most of our proofs employ the Finite
Injury Priority Method. Roughly speaking, this proof technique shows how one can satisfy
a countable sequence of “requirements” (that usually culminates in the proof of a larger
theorem) Re, e ∈ N, where Re is said to have priority e and lower natural numbers correspond
to higher priority requirements. Furthermore, for each e ∈ N, the user of this method
constructs a “proof module” Me whose aim is to satisfy each Re in isolation, with the added
(key) condition that higher priority modules can only “disrupt” or “reset” lower priority
modules and moreover this can only happen finitely many times over the course of the entire
construction in which all modules act. From the point of view of Reverse Mathematics,
this method usually requires a certain level of induction known as BΣ2 to be defined in the
following subsection. More information on the Finite Injury Priority Method can be found
in [Soa16, Chapter 7].

2.3. Reverse Mathematics. Reverse Mathematics is the subfield of Computability Theory
and Proof Theory that aims to classify mathematical theorems, in the context of Second-
Order Arithmetic and countable structures, according to their effective content. More specif-
ically, in Reverse Mathematics one works over a weak base theory known as the Recursive
Comprehension Axiom RCA0 that, in the context of ω−models and full induction2, says:

• ∅ exists,
• whenever X ⊆ N exists and Y ≤T X, then Y also exists, and
• whenever X, Y ⊆ N exist, then

X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y } ⊆ N

exists.

The theorems typically analyzed in this context assert the existence of certain sets inside
given structures. Roughly speaking, to show that theorem T1 implies another theorem T2
over RCA0 it suffices to show that, given any computable structure corresponding to T2, one
can use finitely many iterations of solution sets for T1 to compute a solution set for the given
T2−structure. For more details consult [Sim09].

We now state some theorems of Second-Order Arithmetic that will be relevant throughout
the rest of our article. References (in order of appearance) for each of these theorems in
the context of Reverse Mathematics are [Sim09, HS07, HSS09, NS]. More information on

2More information on induction schemes in the context of Second-Order Arithmetic follows.
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Martin-Löf Randomness can be found in [DH10, Chapter 6]. A set X ⊆ N is MLR (Martin-
Löf Random) if it passes every Martin-Löf test. Furthermore, X is 2 -MLR if it passes every
Martin-Löf test relative to Turing’s Halting Set ∅′.
WKL0: (Weak König’s Lemma) Every infinite tree T ⊆ 2<N contains an infinite path/chain.

CAC: (Chain-Antichain Theorem) Every infinite partial order contains either an infinite
chain, or an infinite antichain

HYP : For every set X ⊆ N there is a set of pairs Y ⊆ N× N such that Y is the graph of a
function fY : N→ N that is hyperimmune relative to X.

2−MLR: For every set X ⊆ N there is a set Y ⊂ N such that Y is 2−MLR relative to X
(i.e. Y is MLR relative to the Turing jump of X, denoted X ′ ⊂ N).

An introduction to diagonally nonrecursive functions in the context of Reverse Mathemat-
ics can be found in [NS, Section 7]. Fix a nondecreasing function h : N→ N.

h− 2− DNR: For every set X ⊆ N there is a set Y ⊆ N× N that is the graph of a
function fY : N→ N that is h− 2−DNR relative to X, i.e. fY is h−DNR
relative to the Turing jump of X, denoted X ′ ⊂ N.

2− DNR : For every set X ⊆ N there is a set Y ⊆ N× N that is the graph of a
function fY : N→ N that is 2−DNR relative to X, i.e. fY is DNR relative
to X ′.

More information on DNR Turing degrees and their relationship to Martin-Löf randomness
can be found in [HS07, Nie09]. A well-known but unpublished result of J. Miller shows that
2− DNR is equivalent to the Rainbow Ramsey Theorem for Pairs RRT2

2 over RCA0; see [NS,
Theorem 7.4] and the following paragraph for more details.

2.3.1. First-Order Reverse Mathematics. We assume that the reader is familiar with the
arithmetical hierarchy; for more information on this topic we invite the reader to consult
either [Soa16, Chapter 4] or [AK00, Chapter 2]. Now, RCA0 includes a restricted induction
scheme that only applies to Σ0

1 formulas where a computable predicate is preceded only
by existential quantifiers. Aside from asserting the existence of certain sets, theorems of
Second-Order Arithmetic may also have First-Order (i.e. arithmetical, or number-theoretic)
consequences and thus may require additional induction schemes (beyond Σ0

1−induction) in
their proofs. For example, it is well-known that CAC cannot be proved from Σ0

1−induction
alone. Rather, the first-order part of CAC includes a bounding principle for Σ0

2−formulas
that implies, but is not equivalent to Σ0

1−induction, and will play an essential role in some
of our proofs below.

BΣ2: Let ψ(x) be a Σ0
2−formula. Then, for any given n ∈ N, if there exist x1, x2, . . . , xn ∈ N

such that ψ(xi) holds for 1 ≤ i ≤ n, then there exists N ∈ N and y1, y2, . . . , yn ∈ N
such that ψ(yi) holds for 1 ≤ i ≤ n and max{yi : 1 ≤ i ≤ n} < N .

An ω−model is a model of Second-Order Arithmetic whose first-order part is the standard
natural numbers ω = {0, 1, 2, . . .} and therefore satisfies induction for all formulas. It is useful
to keep in mind that, in the context of Reverse Mathematics, to show that a theorem T1
does not imply another theorem T2 it suffices to produce an ω−model of RCA0 in which T1
holds but T2 does not.

2.3.2. The Tree Antichain Theorem. We now introduce the main theorem that we will ex-
amine from the point of view of Reverse Mathematics, namely the Tree Antichain Theorem,
abbreviated TAC.
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Definition 2.1 (RCA0). We say that a tree T ⊆ 2<N is completely branching if for all σ ∈ T
such that σk ∈ T for some k ∈ {0, 1} we have that σ(1 − k) ∈ T as well. In other words,
every node σ ∈ T is either a leaf, or else {σ0, σ1} ⊂ T .

Additionally, for any given infinite completely branching tree T ⊆ 2<N, we say that {Ts :
s ∈ N} is an enumeration of T whenever:

• Ts ⊆ T , for all s ∈ N;
• T0 = ∅;
• for each s > 0, s ∈ N, there exists a unique Ts−1−leaf λ such that Ts = {λ0, λ1}∪Ts−1;

and
• T = ∪s∈NTs.

It follows that T is Σ0
1−definable (i.e. computably enumerable) if and only if there exists a

uniformly computable enumeration of T .

Definition 2.2 (RCA0). Let TAC be the theorem that says “every infinite Σ0
1−definable

completely branching tree T ⊆ 2<N, with corresponding enumeration T = ∪s∈NTs, contains
an infinite (2<N−)antichain.”

Remark 2.3 (An alternate characterization of TAC in Second-Order Arithmetic over RCA0).
The following equivalent version of TAC does not explicitly mention the computability-theoretic
notion of Σ0

1−definability in the guise of enumerations.

TAC1 : Let T ⊆ 2<N be an extendible tree containing infinitely many splittings,
i.e. infinitely many σ ∈ T such that σ0, σ1 ∈ T . Then T contains
an infinite (2<N−)antichain.

We leave it to the reader to verify that the TAC and TAC1 are equivalent over RCA0. From
now on we will only work with TAC of Definition 2.2 above since we find it slightly more
convenient.3

Remark 2.4. TAC is not a standard theorem of mathematics that one would expect to find
featured in a textbook, and so requires a (short and easy) proof. To see why TAC holds in
Second-Order Arithmetic, note that T ⊆ 2<N is an infinite partial order and therefore (by the
Chain-Antichain Theorem) either contains an infinite chain or else it contains an infinite
antichain. If T contains an infinite antichain then we are done, otherwise T ⊆ 2<N contains
an infinite chain/path f ∈ [T ] ⊆ 2N. Now, for all k ∈ N let σk = f�k ∈ T ⊆ 2<N denote the
unique initial segment of f of length k. Since T is completely branching, for each k ∈ N we
have that both σk0, σk1 ∈ T . For each k ∈ N let τk = σkj ∈ T for the unique j ∈ {0, 1} such
that τk 6= σk+1 ⊂ f ∈ 2N, i.e. τk * f . It follows that {τk : k ∈ N} ⊆ T ⊆ 2<N is an infinite
antichain, as required.

Note that we have actually given an effective proof of TAC via the Chain-Antichain property
CAC for infinite partial orders.

2.4. TAC is not equivalent to any “known” subsystem of Second-Order Arith-
metic. The overall main objective of this article is to catalog some of the computability-
theoretic aspects of TAC and show that TAC is not equivalent to any other subsystem
of Second-Order Arithmetic that has thus far been studied and is included in the “Re-
verse Mathematical Zoo”4 that has been developed and promulgated by Dzhafarov and
others (it suffices to do so in the context of ω−models). Now, to see why this is the
case, via the diagram given in https://production.wordpress.uconn.edu/mathrmzoo/

3At this point we should point out that the trees T ⊆ 2<N mentioned in TAC1 have non-trivial (Cantor-
Bendixson) rank, as defined in [Soa16, Definition 8.7.5]. The title of our article references this fact.

4See rmzoo.math.uconn.edu for more details, and rmzoo.math.uconn.edu/diagrams for visualizations
of the Reverse Mathematical Zoo.
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wp-content/uploads/sites/841/2014/09/diagram oip.pdf, which we will refer to as sim-
ply diagram oip.pdf, the reader can verify that, in the context of ω−models, every sub-
system mentioned there that is also a consequence of CAC either implies AMT (The Atomic
Model Theorem; see [HSS09] for more details) or is implied by AMT (over RCA). Fur-
thermore, together [Pat, Theorem 9.1.2] and Theorem 3.4 below say that TAC does not
imply AMT, while [HSS09, Corollary 3.5] says that AMT does not imply TAC. There-
fore, TAC cannot be equivalent to any subsystem of Second-Order Arithmetic mentioned in
diagram oip.pdf.

2.5. TAC’s relationship to the theory of Commutative Noetherian Rings. As we
previously mentioned in our introduction, TAC plays a role in the theory of Commutative
Noetherian Rings. We now outline some of our currently unpublished results in this area.
The following theorem of Noetherian Algebra originally led us to TAC.

NFP: Every Notherian ring has only finitely many minimal prime ideals.

Thus far we can show that (over RCA0)

CAC + WKL0 → NFP→ TAC

and are currently working on showing that NFP implies WKL0.

3. Upper Bounds on TAC

The main goal of this section is to establish the weakness of TAC in two respects. First, we
will point out (via Remark 2.4 above) that TAC obviously follows from the Chain-Antichain
Theorem for infinite partial orders. Then, we will show that TAC also follows from 2−MLR,
i.e. the existence of (relatively) 2-random sets.

Theorem 3.1. TAC follows from CAC over RCA0.

Proof. Remark 2.4 in the previous section. �

The following theorem will be useful in showing that 2−MLR implies TAC below; it is
essentially due to Kučera and we refer the reader to [NS, Section 7] and [BPS17, Theorem
2.8] for more details.

Theorem 3.2. Let h(x) = 2x, x ∈ N. Then every 2-MLR set X ⊆ N computes an h −
2−DNR function f .

Corollary 3.3 (RCA0). 2−MLR implies h− 2− DNR for h(x) = 2x, x ∈ N.

Theorem 3.4 (RCA0). h− 2− DNR implies TAC for h(x) = 2x, x ∈ N.

Proof. Let T =⊆ 2<N, be an infinite Σ0
1 completely branching tree, with corresponding

enumeration T =
⋃
s∈N Ts, and let h(x) = 2x, x ∈ N. Now, let A ⊂ N<N be the computable

finitely branching tree such that at level k ∈ N, all nodes σ of length k have exactly 2k+1

successor nodes, i.e. σ`k ∈ A, 0 ≤ `k < 2k+1, ` ∈ N. We will construct a partial computable
oracle reduction Φ : A → T such that for every h− 2−DNR function f ∈ [A] ⊂ NN we have
that

A = {Φg(k) ↓= ak : k ∈ N} ⊂ T

is an infinite antichain, for some g ≤T f , as required by TAC.
To construct Φ, inductively assume that for any given σ ∈ A,

Aσ = {Φσ(i) ↓= ai : 0 < i < |σ|, i ∈ N} ⊂ T
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is a finite antichain of size |σ| − 1, and then wait for a computable finite approximation
Ts ⊂ T , s ∈ N, that contains an antichain Bσ ⊂ Ts, |Bσ| = 2|σ|+1,

Bσ = {bi : 0 ≤ i < 2|σ|+1} ⊂ T,

disjoint from Aσ and such that Aσ ∪Bσ ⊂ Ts is a finite antichain of T . Now set

Φσ`k(k + 1) ↓= b`k ∈ T, 0 ≤ `k < 2k,

in this case. This inductive process defines a partial computable oracle reduction Φ : A → T .
Moreover, it is clear by construction that if Φf is defined on N+ then

A = {Φf (k) : k ∈ N+} ⊂ T

is an infinite antichain. Next we will show that if f is h − 2−DNR then f computes some
g ∈ [A] such that Φg is defined on all of N+.

Before we continue it may be of help to the reader to note that the following three state-
ments are easily shown to be equivalent for any given finite antichain A ⊂ T :

(1) ∅ 6= [T ] \ [A] ⊆ 2N, i.e. there is an infinite path through T for which no σ ∈ A is an
initial segment,

(2) the set of nodes of T not extending A is infinite, in particular these nodes form an
infinite Σ0

1 completely branching tree, and
(3) A is extendible to an infinite antichain of T .

We invite the reader to verify this easy equivalence that is really at the heart of the current
proof. We will mainly mention (1) for the rest of the proof.

Now, note that if A0 ⊂ T is a finite antichain such that

∅ 6= [T ] \ [A0],

and B0 ⊂ T is another finite antichain such that the union A0 ∪ B0 ⊂ T is also a finite
antichain, then (since the elements of B are mutually incomparable) it follows that there
can only be at most one σ ∈ B0 ⊂ T for which we have

∅ = [T ] \ [A0 ∪ {σ}],
and moreover this σ is Σ0

2−definable, uniformly in A0 and B0. Thus, by our construction of
Φ above, it follows that if σ ∈ A, |σ| = k ∈ N, is extendible to some g0 ∈ [A], g0 ⊃ σ, such
that Φg0 is defined on N+, then there is at most one 0 ≤ `k < 2k+1, `k ∈ N, for which there
is no g1 ∈ [A], g1 ⊃ σ`k, such that Φg1 is total on N+. Furthermore, by definition it follows
that any given h− 2−DNR function f can compute some g ∈ [A] that avoids all such “dead
ends” 0 ≤ `k < 2k+1, uniformly in k ∈ N, and therefore produce a g ≤T f such that Φg is
total on N+. �

Corollary 3.5 (RCA0). 2−MLR implies TAC.

Proof. See Corollary 3.3 and Theorem 3.4 above. �

4. Lower Bounds on TAC

The main goal of this section is to establish the strength of TAC in two respects. First,
we show that TAC implies HYP, over RCA0 + BΣ2.

Theorem 4.1 (RCA0 + BΣ2). TAC implies HYP.

Proof. We will construct an infinite Σ0
1 completely branching tree T = ∪s∈NTs ⊂ 2N such

that

• T0 = ∅,
• Ts+1 = Ts ∪ {λ0, λ1}, for some leaf λ ∈ Ts, and
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• every infinite antichain A of T is of hyperimmune Turing degree via one of two
reductions ΦA,ΨA : N→ N that we will also contruct along with T .

For any σ ∈ T ⊆ 2<N let s ∈ N be minimal such that σ ∈ Ts \ Ts−1 and define

sσ =

{
2s, if σ(|σ| − 1) = 0,

2s+ 1, if σ(|σ| − 1) = 1.

Then, for any given subset Σ ⊆ T , let Ξ(Σ) = {sσ : σ ∈ Σ} ⊂ N. It follows that the
correspondence Ξ of the previous sentence yields a natural uniformly computable order-
preserving (i.e. continuous) map between the finite subsets of T and N<N, i.e. Ξ : 2<T →
N<N
<
∼= N<N, and also between infinite subsets of T and NN, i.e. Ξ : 2T → NN, such that for

every finite A ⊂ N and corresponding σA ∈ 2<T , we have that

|Ξ(A)| = |σA| = |A| ∈ N.
By BΣ2, for each x ∈ N, let

Mx = max
s∈N
{(∃x′ ≤ x)[φx′,s(x) ↓ and φx′,s(x) ↑]} ∈ N.

Our argument is a finite injury priority argument with requirements

Re : If the ϕe : N→ N is total then there exists xe ∈ N such that for each T−antichain
αe ∈ Ξ−1[(Mxe)

=xe ] ⊂ 2<T there exists xαe ∈ N such that

ϕe(xαe) < Φαe(xαe) ↓ .
Fix an infinite antichain A = {σk : k ∈ N} ⊂ T such that sσk0 < sσk1 whenever k0 < k1,

k0, k1 ∈ N, and
Ξ(A) = 〈sσ0 , sσ1 , · · · 〉 ∈ NN.

Now, assume that the requirement Re, e ∈ N, is satisfied via xe ∈ N and let

αe = A�xe = {σk : k ≤ xe} ⊂ T, i.e. αe ∈ 2<T .

In this case there are two possibilities. The first possibility says that we could have

σxe ∈ TMxe
⊂ T ⊂ 2<N

which is equivalent to saying that

σi ∈ TMxe
⊂ 2<N, i = 0, 1, . . . , xe ∈ N,

or that
sσi ≤Mxe , i = 0, 1, 2, . . . , xe ∈ N,

or that
〈sσ0 , sσ1 , . . . , sσxe 〉 ∈ (Mxe)

=xe ,

or (finally) that

αe ∈ Ξ−1[(Mxe)
=xe ] ⊂ 2<T .

In this case the fact that Re is satisfied guarantees us that our reduction Φαe(xe) ↓> ϕe(xe).
Otherwise, we would have that sσxe > Mxe . Now, if we set

Ψα(|α| − 1) = sα(|α|−1) ∈ N, α ∈ 2<T , α(k) ∈ T, k < |α|,
then by our construction above it follows that

Ψαe(xe) = sσxe > Mxe ≥ ϕx′(xe), 0 ≤ x′ ≤ xe,

whenever ϕx′(xe) ↓. We have now shown that if requirement Re is satisfied via xe ∈ N and
ϕe is total, then, for any given antichain A ⊂ T we either have that ΦA(xe) > ϕe(xe), or else
we have that ΨA(xe) > ϕx′(xe), for all 0 ≤ x′ ≤ xe. It follows that either



COMPUTABILITY-THEORETIC ASPECTS OF THE TREE ANTICHAIN THEOREM 9

(1) there exist infinitely many e ∈ N and corresponding xe ∈ N for which ΨA(xe) ↓>
ϕx′(xe), for all 0 ≤ x′ ≤ xe, or else

(2) for almost all natural numbers e, we have that ΦA
e (xe) ↓> ϕe(xe).

In the first case (1) it is easy to see that ΨA : N → N is hyperimmune via the (uniform set
of) witnesses {xe : e ∈ N} ⊆ N. In the second case (2), given a total computable function
ϕ = ϕe0 , via the Padding Lemma [Soa16, Lemma 1.5.2] it follows that there exist infinitely
many e ∈ N such that ϕe0 = ϕe and ΦA(xe) > ϕe(xe), implying that ΦA : N → N is
hyperimmune.

We defined Ψ : NN × N→ N above, i.e.

Ψα(|α| − 1) = sα(|α|−1) ∈ N.

Therefore, all that is left to do now is to produce/eumerate an infinite Σ0
1 completely branch-

ing tree T = ∪s∈NTs, and corresponding reductions Φ : NN×N→ N, such that every require-
ment Re, e ∈ N, is satisfied. Our verification of this fact via the finite injury priority method
will closely follow [DH10, Theorem 8.21.1] and/or [KM17, Theorem 6.1], both of which are
modeled on Martin’s proof that the hyperimmune Turing degrees have measure one.

For each e ∈ N, let Me,s ∈ N denote a uniform computable approximation to Me ∈ N such
that

lim
s
Me,s = Me

for each e ∈ N. Now, fix e ∈ N and assume, via BΣ2
5, that s is the last stage at which

any requirement of the form Re′ , 0 ≤ e′ < e, acts and resets Re. By our construction (that
follows), in this case we will have already produced corresponding finite sequences

∅ = σ−1 ⊂ σ0 ⊂ σ1 ⊂ · · · ⊂ σe−1 ∈ T,
and

0 = s−1 < s0 < s1 < · · · se−1 ∈ N
such that for each −1 ≤ k < e we will have that σk is a uniform prefix for every element of
T \ Tsk .

To satisfy requirement Re, e ∈ N, at stage s ∈ N, first we choose a large xe = xe,s ∈ N such
that xe > |Ts| + 2. By our construction it will follow that xe is redefined only if Re is reset
by a higher priority requirement Re′ , 0 ≤ e′ < e, at some later stage of the construction.
Hence, in the current context (see our application of BΣ2 above for more details) xe is never
again reset. Next, choose the leftmost Ts−leaf λ ⊇ σe−1 and set Ts+1 = Ts ∪ {λ0, λ1}. Now,
since xe > |Ts|+ 2 it follows that for every Σ ∈ Ξ−1[N=`e ] ⊂ 2<T , if σ = Σ(|Σ| − 1) ∈ T then
σ ⊃ σe−1. Let

τ1, τ2, . . . , τNe ∈ Ξ−1[(Me,s)
=`e ] ⊂ 2<T , Ne ∈ N, Ne > 1,

be an enumeration of the finite antichains of Ξ−1[(Me,s)
=`e ], and

ρk = τk(|τk| − 1) ∈ T, 1 ≤ k ≤ Ne.

Let k = 1. To satisfy Re we take ρk ∈ Ts and choose a large number xe,k = xe,ρk ∈ N such
that

xe,k > max
x
{x : (∃σ ∈ Ts)[Φσ

s (x) ↓]}.

Then we set

σe = σe,k = ρk ⊃ σe−1,

5By our remarks in the following paragraphs it will eventually follow that each requirement Re is reset at
most 1 + 2 + 3 + · · ·+ e = e(e + 1)/2−many times, thus justifying our use of BΣ2 in the current context of
the finite injury priority method.
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thus promising (for now) every new node that we add to T from now on will extend ρk ∈ T .
Under this hypothesis (i.e. if this hypothesis persists indefinitely then) it follows that the
finite antichain τk ∈ 2<T above is not the initial segment of any infinite antichain of T .
Furthermore, we say that xe,k = xe,ρk is currently reserved for requirement e. We may
change our current choice of ρ, however, when we see that ϕe,s′(x) ↓ at some later stage
s′ > s, s′ ∈ N. In this case we react by:

• setting Φρk
s′ (xe,k) = ϕe,s′(xe,k) + 1,

• resetting all requirements Re′ , e
′ > e, e′ ∈ N, and

• if k + 1 ≤ Ne then:
– resetting the current ρ = ρk to its new value ρ = ρk+1 (with corresponding τk),

and
– choosing some new xe,k+1 = xe,ρk+1

∈ N as we did in the first sentence of the
current paragraph with s′ replacing s.

This iterative effective procedure works until we exhaust all k = 1, 2, . . . , Ne ∈ N and
corresponding ρk = τk(|τk| − 1) ⊃ σe−1. In this case, by our construction above it follows
that if A ⊂ T is an infinite antichain with initial segment τk ⊂ A, 1 ≤ k ≤ Ne, and if
ϕe : N→ N is total, then we have that

ΦA(xe,k) = Φτk(xe,k) = ϕe(xe,k) + 1 > ϕe(xe,k).

Finally, if we never exhaust our enumeration k = 1, 2, . . . , Ne, it follows that ϕe is not total.
In this case Re is trivially satisfied.

Meanwhile, at the current stage s ∈ N of the construction we ensure that Φρ(x) ↓ for all
ρ ∈ 2<Ts and x ∈ N, x ≤ s, unless x is currently reserved for requirement e and ρ ⊇ ρk,
1 ≤ k ≤ Ne,s.

Finally, if we have that Me′,s < Me′,s+1, for some e′ ≤ e, e′ ∈ N, then we reset all
requirements Re′′ , e

′′ ≥ e′, e′′ ∈ N, and proceed to stage s + 1 with corresponding finite
sequences

{σk = σk,s+1 : −1 ≤ k ≤ e− 1} ⊂ Ts = Ts+1 ⊂ 2<N

and
{sk = sk,s+1 : −1 ≤ k ≤ e− 1} ⊂ N.

This completes the construction of our infinite Σ0
1 completely branching tree T = ∪s∈NTs ⊂

2<N, and functionals Φ,Ψ : 2<T ×N→ N. Note that, by our construction above and BΣ2, it
follows that each requirement Re, e ∈ N, can only be reset finitely many times by the higher
priority requirements Re′ , e

′ < e, and this suffices to prove the current theorem. �

We now turn our attention to showing that TAC does not follow from WKL0, even in the
context of ω−models.

Theorem 4.2. For any order function h : ω → ω, TAC implies the existence of a set A ⊂ ω
that is not h−c.e.

Proof. Let h : ω → ω+ be a computable order function. To do this, in the coming paragraphs
we will employ a finite injury argument to construct an infinite Σ0

1 completely branching tree
T ⊂ 2<ω with corresponding approximation T = ∪s∈NTs such that every potential ∆0

2 set
that obeys the order function h is not an infinite T−antichain. Let f(e, x, s) : ω3 → 2<ω be
a uniformly computable approximation to every h −∆0

2−set Xe ⊆ 2<ω such that for every
e, x ∈ ω,

fe(x) = lim
s
f(e, x, s) ∈ T

obeys h (therefore exists) and yields a (2<ω−)nondecreasing function of x. Then for every
e ∈ ω, e > 0, we will satisfy the requirement
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Re : There exists xe ∈ ω such that if fe(xe) = lims fe(xe) = σe ∈ T then σ ⊃ σe for almost all
σ ∈ T . It follows that σe cannot be included in any infinite antichain of T and so the
image of fe is not an infinite T−antichain.

We now construct T = ∪s∈ωTs ⊂ 2<ω in stages s ∈ ω. At stage s = 0 we enumerate the
root ∅ ∈ 2<ω into T0 and Σ0 = {} ⊂ 2<ω, and reset all requirements Re, e ∈ ω. Now, at
stage s > 0 assume that we are given a (possibly empty) finite sequence of T−nodes

Σs = {σj = σj,s : 0 ≤ j ≤ k}, ∅ = σ0 ⊂ σ1 ⊂ σ2 ⊂ · · · ⊂ σk ∈ Ts ⊂ T, k ∈ ω,
and corresponding

x0 = x0,s < x1 = x1,s < x2 = x2,s < · · · < xk = xk,s

such that for each 0 ≤ e ≤ k we have that either:

• fe(xe) /∈ Ts, or
• fe(xe) + σe−1, or else
• fe(xe) = σe ∈ Ts.

Now, suppose that there exists 0 ≤ e ≤ k for which fe(xe, s− 1) 6= fe(xe, s). In this case we

• reset all requirements Re′ , e
′ > e, e′ ∈ ω, including all currently defined σe′ and xe′ ,

for all e′ > e,
• set σe′,s = σe′,s+1 for all 0 ≤ e′ < e, and

• set σe,s+1 =

{
fe(xe), if fe(xe) ∈ Ts and fe(xe) ⊃ σe−1,

σe−1,s0 ∈ Ts, otherwise.
, and finally

• proceed to the next stage of the construction with Ts = Ts+1,

Σs+1 = {σe′,s+1 : 0 ≤ e′ ≤ e} ⊂ Ts+1,

and corresponding

x0 = x0,s+1 < x1 = x1,s+1 < x2 = x2,s+1 · · · < xe = xe,s+1 ∈ ω.
On the other hand, if such a 0 ≤ e ≤ k (as described above) does not exist at stage s, then
we set out to satisfy Rk+1 by:

• setting Ts+1 = Ts∪{λ0, λ1}, where λ ∈ Ts is the leftmost leaf of Ts extending σk ∈ Ts,
with the following caveat:

– If either λ0, λ1 ∈ {σe : 0 ≤ e ≤ k} ⊆ Ts+1 then let 0 ≤ e ≤ k, e ∈ ω, be minimal
such that σe ∈ {λ0, λ1} and reset all requirements Re′ , e

′ > e. Then proceed to
the next stage s+ 1 with

Σs+1 = {σj,s = σj,s+1 : 1 ≤ j ≤ e} ⊂ Ts+1

and corresponding

{xj,s+1 = xj,s : 0 ≤ j ≤ e} ⊂ ω.

And finally,
• setting xk+1 = xk+1,s = |Ts|+ 1 ∈ ω and

σk+1 =

{
fk+1(xk+1), if fk+1(xk+1, s) ∈ Ts+1,

σk0 ∈ Ts+1, otherwise.

By our choice of xk+1 it follows that if the image of fe0(·, t0) : ω → 2<ω on domain x =
0, 1, 2 . . . , xk+1 ∈ ω yields a Ts−antichain for some fixed e0, t0 ∈ ω, then fe0(xk+1, t

′) *
σk at all subsequent stages t′ ≥ t0 and so it follows that we will always have

σj,s′ = σj ⊂ σj+1 = σj+1,s′
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whenever fj(·, t) : {0, 1, 2, . . . , xj} → Tt, j, t ∈ ω yields a Tt−antichain.

For each x ∈ ω, let

H(x) =
x∏
i=0

2 · h(x) = 2x+1

x∏
i=0

h(x),

where h : ω → ω+ is our fixed order function above. To finish off the proof, we invite the
reader to confirm the success of our given finite injury priority argument above by verifying
that:

• Each requirement Re can only be reset by higher priority requirements Re′ , e
′ < e, and

more specifically Re is reset by Re′ , e
′ < e, whenever our computable approximation

fe′ changes or Ts grows to contain fe′ and (all together) this may happen at most
H(e − 1)−many times. It follows that for each e ∈ ω there is a stage se ∈ ω such
that Re is no longer reset after stage se.
• Assuming that Re is no longer reset at or after stage se ∈ ω and

fe(x) = lim
s
fe(x, s) : ω → ω.

To verify that the range of fe is not an infinite T−antichain note that by our con-
struction above there exists xe = xe,se such that for all s ≥ se and corresponding

x = xe,s = xe,se

we have that either:
– fe(x) /∈ T , or else
– fe(x) = σe ∈ T and almost all nodes of T extend σe.

�

Corollary 4.3. TAC does not follow from WKL0 over RCA0. More specifically, there is an
ω−model of WKL0 + ¬TAC.

Proof. [NS, Proposition 7.6] asserts the existence of an ω−model of WKL0, M = (ω,S), such
that for every S ∈ S there exists k ∈ ω such that S is kn−c.e. Therefore, every S ∈ S
is h−c.e. for any computable order function that dominates every exponential function.
However, it follows from Theorem 4.2 above that M cannot be a model of TAC. �

5. An Open Question

This article leaves many open questions concerning the precise strength of TAC, but we
think that the following one is the most important for now.

Question 5.1. Does 2− DNR imply TAC over RCA0? In the context of ω−models?
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