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Abstract. We begin the study of the Reverse Mathematics of the algebraic theorem PDL
that says “If R is a commutative Noetherian ring, then R contains finitely many minimal
prime ideals (i.e. R does not contain infinitely many primes),” which plays a key role in
the proof of Noether’s Primary Decomposition Theorem [Noe21]. In doing so, we introduce
a combinatorial principle TAC which asserts the existence of infinite antichains in binary-
branching trees with infinitely many splittings. After showing that TAC is distinct from the
other combinatorial principles in the Reverse Mathematical “Zoo,” we characterize TAC and
WKL0 + TAC over RCA0 + BΣ2 via algebraic principles related to PDL. Here RCA0 denotes
the Recursive Comprehension Axiom; WKL0 denotes weak König’s Lemma; and BΣ2 denotes
a bounding principle for Σ0

2−formulas that is equivalent to the Infinite Pigeonhole Principle
over RCA0.

1. Introduction

For over a century now, chain conditions have played a central role in the study of algebraic
structures. In particular, the study of ascending and descending chain conditions on the
ideals of rings yielded various foundational ring-theoretic results. Chain conditions can be
thought of as a generalization of mathematical induction from the context of well-orderings
to the context of partial orders. Like induction, chain conditions yield the powerful proof
paradigm that says if a counterexample to a purported theorem exists, then a “minimal”
counterexample exists.

Noether was one of the first to introduce and exploit ascending and descending chain
conditions in rings [NS20, Noe21]; as a result the term Noetherian is synonymous with the
ascending chain condition in many branches of mathematics. One of Noether’s biggest ring-
theoretic achievements is the Primary Decomposition Theorem of [Noe21], which says that in
commutative rings with identity that satisfy the ascending chain condition (on their ideals),
all ideals are the intersection of finitely many primary ideals1, which generalize the prime
ideals of Kummer and Dedekind2. A key step in proving Noether’s Primary Decomposition
Theorem is the following lemma, which we refer to as Noether’s Primary Decomposition
Lemma, or PDL. See subsection 2.3 below for a brief introduction to Ring Theory, with
references.
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Definition 1.1. Let R be a commutative ring with identity, and let P ⊂ R be a prime ideal.
Then we say that P is minimal if for all R−prime ideals Q, we have that Q = P whenever
Q ⊆ P .

Definition 1.2. Let R be a commutative ring with identity. We say that R is Noetherian if
every infinite ascending chain of R−ideals eventually stabilizes.

PDL: (Noether’s Primary Decomposition Lemma) Let R be a commutative Notherian ring
with identity. Then R contains finitely3 many minimal prime ideals. Equivalently, if R
contains infinitely many minimal prime ideals, then R also contains an infinite strictly
ascending chain of ideals.

1.1. Summary of Results. We begin an investigation into the logical strength of PDL,
introduced in subsection 2.4 below, in the contexts of Computable and Reverse Mathemat-
ics. Previously, we investigated ART, i.e. the statement that says “every Artinian4 ring is
Noetherian” [Con10, Con19] in the context of Reverse Mathematics, and showed that (over
the Recursive Comprehension Axiom, RCA0, defined later on) ART is equivalent to weak
König’s Lemma via a Computable Structure Theorem for Local Artinian Rings [Con19,
Theorem 7.1, Corollary 7.3]. Our investigation here shows that PDL implies a combinato-
rial principle, which we call the Tree-Antichain Theorem (and denote by TAC), that asserts
the existence of infinite antichains within computably enumerable (i.e. Σ0

1−definable) binary
branching trees5 with infinitely many splittings (see Definition 3.2 below for more details).
Additionally, we show that PDL follows from the conjunction of Ramsey’s Theorem for Pairs
(RT2

2) and weak König’s Lemma (WKL0), introduced in subsection 2.4 below.
Most of our results in this initial investigation involve the Computability Theory and

Reverse Mathematics of TAC, which we will formally introduce in Section 3 below. In
Section 4 we show that TAC follows from:

• the combinatorial principle ADS that says “every infinite linear order contains an
infinite chain,” as well as

• the principle 2−MLR that says “for every set of natural numbers X, there exists a
set fo natural numbers Y that is 2-random relative to X.”

The implication described in the second item above assumes more induction than the first.
Additionally, we will show that TAC is not implied by weak König’s Lemma, WKL0. More

3There are two logical interpretations of finiteness here, corresponding to negations of Aristotle’s potential
and actual infinities. However, in Theorem 5.11 below, which builds upon Proposition 5.4, we show that if R
is a computable Noetherian ring with no uniformly computable infinite ascending chains of ideals, then there
is a uniformly computable enumeration of infinitely many prime ideals in R. Also, our lower bounds are
obtained via computable rings containing an infinite uniformly computable enumeration of minimal prime
ideals, and thus it follows that our results are independent of our interpretation of (potential vs actual)
infinity. We will omit our interpretation of infinity going forward, to highlight the more interesting and
consequential aspects of our analysis.

4A commutative ring with identity is called Artinian if it satisfies the descending chain condition (on its
ideals); i.e. if every infinite descending chain of R−ideals eventually stabilizes.

5A tree is a set of finite binary strings closed under prefix, while an antichain is a prefix-free set of
such strings. Similar trees were used by Greenberg and Melnikov [GM17] to analyze the computability of
divisibility and factorizations in computable integral domains. Two obvious differences (one logical, one
algebraic) between our work here and the study [GM17] are:

• the trees utilized in [GM17] are of a higher complexity, namely Σ0
2−definable, while the trees that

we utilize here are Σ0
1−definable; and

• the rings studied in [GM17] are all integral domains, while none of the rings that we consider here
belong to this class.
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information, including references to the definition of 2-randomness, as well as induction
schemes, are contained in our introduction to Reverse Mathematics in Section 2.4 below.

In Section 5 we develop some of the theory of Noetherian rings in the context of Reverse
Mathematics, and end by showing that RT2

2 +WKL0 implies PDL. In Section 6 we examine
the following two weaker versions of PDL, each of which applies to a restricted class of
Noetherian rings.

RPDL: Let R be a commutative Notherian ring with identity, such that every prime ideal of
R is both minimal and maximal6. Then R contains finitely many minimal prime ideals;
i.e. R does not contain infinitely many minimal primes. Or, equivalently, if R contains
infinitely many minimal prime ideals, then R also contains an infinite strictly ascending
chain of ideals.

Definition 1.3. Let R be a commutative ring with identity, and let P,Q ⊂ R be distinct
prime ideals. Basic Algebra (see [DF99] for more details) says:

• P and Q are coprime whenever R = P + Q, i.e. there exist elements x ∈ P , y ∈ Q
such that 1R = x+ y, and in this case we also have that

• P ∩Q = PQ.

Additionally, we say that P and Q are uniformly coprime if for all w ∈ P ∩ Q there exist

elements x = xw ∈ P , y = yw ∈ Q, and a = aw, b = bw ∈ R7 such that

ax+ by = 1R and w = xwyw.

URPDL: Let R be a commutative Notherian ring with identity, such that every pair of
minimal prime ideals are uniformly coprime. Then R contains finitely many
minimal prime ideals; i.e. R does not contain infinitely many minimal primes. Or,
equivalently, if R contains infinitely many minimal prime ideals, then R also
contains an infinite strictly ascending chain of ideals.

Clearly, RPDL implies URPDL.
We introduce RPDL and URPDL as potential algebraic characterizations of TAC and

WKL0 + TAC in the context of Reverse Mathematics. In Section 6 we show that:

• TAC implies URPDL, while
• WKL0 + TAC implies RPDL,

in the context of Reverse Mathematics. In Section 7 we show that

• URPDL (and hence RPDL) implies TAC,

in the context of Reverse Mathematics and the Infinite Pigeonhole Principle; see Subsection
2.4 for more information. We also introduce a principle WTAC such that:

• TAC implies WTAC,
• URPDL implies WTAC, and
• WKL0 does not imply WTAC

in the context of Reverse Mathematics with or without the Infinite Pigeonhole Principle.
These results yield an algebraic characterization of TAC via URPDL, modulo the Infinite
Pigeonhole Principle.

Finally, in Section 8 we will introduce an algebraic principle related to ART (described
above), denoted NMMA, that we will show is equivalent to WKL0 + TAC in the context of
Reverse Mathematics modulo the Infinite Pigeonhole Principle.

6An ideal M ⊂ R is maximal if for each ideal X ⊂ R such that M ⊆ X, we have that X = M .
7For our purposes in this article we could just as well always take a = b = 1R.
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1.2. The Computability of Combinatorial Principles. Many contributions to Reverse
Mathematics, such as this article, depend upon relevant contributions to Computable Struc-
ture Theory. Most of this article is devoted to analyzing the computability and definability
complexity of infinite antichains in computably enumerable trees with infinitely many split-
tings, i.e. computability-theoretic aspects of the Tree Antichain Theorem TAC. The com-
putability of Partial Orders such as trees and their combinatorial substructures has received
much attention since the turn of the century, including [GMS13, DHLS03, JKL+09, CDSS12,
HS07]. We will utilize some important and relevant results contained therein for our pur-
poses. For more information on Computable Structure Theory, including an introduction,
see [AK00, Mon21, Mon].

2. Background

2.1. Trees in Baire space and Cantor space. All of the sets and structures that we
consider will be countable, coded as subsets of the natural numbers. We use ⊂ to denote
strict inclusion of sets, and ⊆ to denote non-strict inclusion. Let ω = {0, 1, 2, . . .} denote
the standard natural numbers, and ω+ = {1, 2, 3, . . .} denote the positive standard natural
numbers. Let 2<ω denote the set of finite binary sequences ordered by extension, and let
ω<ω (⊃ 2<ω), denote the set of finite sequences of natural numbers, partially ordered by
extension. Many constructions and definitions in the context of 2<ω can be easily adapted
to ω<ω. We will explicitly write our finite sequences in 2<ω and ω<ω using angled brackets,
like so

⟨a0, a1, a2, . . . , an⟩ ∈ 2<ω, n ∈ ω, ai ∈ {0, 1}, 0 ≤ i ≤ n.

For all σ ∈ 2<ω and k ∈ {0, 1}, σk ∈ 2<ω denotes the 1-bit concatenation (extension) of
σ with (by) k. For any natural number ℓ ∈ ω, let 2=ℓ ⊂ 2<ω denote those finite binary
sequences of natural numbers of length ℓ. Let ∅ denote the root of 2<ω, and for all σ ∈ 2<ω,
let |σ| ∈ ω denote the length of σ. For any σ, τ ∈ 2<ω, we write τ ⊆ σ to denote the fact
that τ is a prefix of σ; we write τ ⊂ σ to denote the fact that τ is a proper prefix of σ.
Note that ⊆ yields a natural partial ordering on 2<ω. A set X ⊆ 2<ω is prefix-free if for any
ρ, τ ∈ X, ρ is not a prefix of τ . We say that T ⊆ 2<ω is a tree if for all σ ∈ T and τ ⊆ σ we
have that τ ∈ T . Let 2ω denote the set of infinite binary sequences and ωω denote the set
of infinite sequences of natural numbers. Many definitions and constructions in the context
of 2ω can be easily adapted to ωω. We write σ ⊆ f , σ ∈ 2<ω, f ∈ 2ω, to mean that σ is a
finite initial segment of f . For any given tree T ⊆ 2<ω, let [T ] ⊆ 2ω denote the set of infinite
binary sequences f ∈ 2ω, such that for each n ∈ ω we have that the finite initial segment of
f of length n, denoted f↾n ∈ 2<ω, is in T , i.e. we have

f↾n = ⟨f(0), f(1), f(2), · · · , f(n− 1)⟩ ∈ T,

where f(k) ∈ {0, 1} = 2 denotes the kth bit of f . If T ⊆ 2<ω is a tree, we say that a given
σ ∈ T is (T−)extendable whenever there exists f ∈ [T ] ⊆ 2ω such that σ ⊂ f . We say
that the tree T ⊂ 2<ω is extendable whenever T every σ ∈ T is extendable. For any given
σ ∈ 2<ω, let

[σ] = {f ∈ 2ω : f ⊃ σ}
and for any subset A ⊆ 2<ω let

[A] =
⋃
σ∈A

[σ] ⊆ 2ω.

If T ⊆ 2<ω is a tree, λ ∈ T , but λ0, λ1 /∈ T , (i.e. if λ ∈ T has no T−extensions) then we say
that λ is a (T−)leaf.

Definition 2.1. Let σ, τ ∈ 2<ω, σ ̸= τ , |σ| ≤ |τ |. Then we say that
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• “τ extends σ” if τ ⊃ σ.
• Otherwise there exists 1 ≤ k0 ≤ |σ| such that σ(k0) ̸= τ(k0), in this case we say that:

– “τ is to the left of σ” (or “σ is to the right of τ”) whenever τ(k0) < σ(k0), and
– “τ is to the right of σ” (or “σ is to the left of τ”) whenever τ(k0) > σ(k0).

Given a tree T ⊆ 2<ω, it is possible to consruct a corresponding linear order

TKB = (T,<KB),

such that for any given σ, τ as in Definition 2.1 above we have that

• τ <KB σ if either τ extends σ or τ is to the right of σ, and
• τ >KB σ if τ is to the left of σ.

This well-known construction is called the Kleene-Brower linearization of T .

Definition 2.2. Let T ⊆ 2<ω be an infinite tree, and let H ⊆ ω, c ∈ {0, 1}. Now, for each
h ∈ H let

• Th = {σ ∈ T : |σ| = h} ⊆ 2=h,
• Th,c = {σ(1− c) : σ ∈ T} ⊆ 2=h+1, and
• Th,c,0 = {τ ∈ 2<ω : (∃σ ∈ Th,c)[τ ⊇ σ]} ⊆ 2<ω.

Finally, set

TH,c,0 =
⋃
h∈H

Th,c ⊆ 2<ω,

and
TH,c = T \ TH,c,0.

It follows that TH,c ⊆ T ⊆ 2<ω is a tree. Moreover, if TH,c is infinite for some c ∈ {0, 1},
then we say that H ⊆ ω is homogeneous for T .

Definition 2.3. An enumeration of a countable set X is a listing of its elements, X = {xi :
i ∈ ω}, without repetitions. A subenumeration of X is a listing of the elements of X in
which repetitions are allowed.

2.2. Computability Theory. Our computability-theoretic notation is standard and fol-
lows that of [Soa16]. A computable nondecreasing unbounded function h : ω → ω is
called an order function. We say that a function f : ω → ω is computably approximable
or limit computable whenever there exists a computable function g : ω × ω → ω such that
f(x) = lims g(x, s) exists for all x ∈ ω. Moreover, we say that the computable approximation
g obeys the order function h, if for every x ∈ ω we have that

|{s : g(x, s) ̸= g(x, s+ 1)}| ≤ h(x),

where |A| ∈ ω denotes the size of the finite set A ⊂ ω. Furthermore, we say that X ⊆ ω is
h−c.e. whenever the characteristic function of X is limit computable via some g : ω×ω → ω
that obeys h. Let {φe : e ∈ ω} be a fixed uniformly computable enumeration of the partial
computable functions, φe : ω → ω, and let {Φe : e ∈ ω} denote a fixed uniformly computable
enumeration of the oracle computable functionals, i.e. Φe : 2

ω × ω → ω. Recall that φ(x)↓
denotes that the partial computable function φ eventually halts on input x ∈ ω, and that
φs(x)↓ (φe,s(x)↓ ) says that the (eth) partial computable function halts on input x ∈ ω in at
most s ∈ ω steps. Similar defintions apply for Φα

e (x)↓ and Φα
e,s(x)↓ , e, x, s ∈ ω, α ∈ 2<ω.

A partial computable function φ : ω → ω, is said to be total whenever φ(x)↓ for all x ∈ ω.
We say that X ⊂ N is of hyperimmune degree whenever there is some function f : ω → ω,
f ≤T X, i.e. X computes f , such that for every e ∈ ω either there exist infinitely many
natural numbers x ∈ ω, such that f(x) > φe(x) whenever φe : ω → ω is total. Finally, we
say that X ⊂ ω is of DNR degree (diagonally nonrecursive degree) whenever there is some
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g ≤T X, g : ω → ω, such that for all e ∈ ω, g(e) ̸= Φe(e) whenever Φe(e)↓ . Moreover, if
∅′ ⊂ ω denotes Turing’s Halting Set and g(e) ̸= Φ∅′

e (e), whenever Φ
∅′
e (e)↓ , e ∈ ω, then we say

that X is 2−DNR. Finally, if in addition we have that g(e) < h(e), for some nondecreasing
function h and every e ∈ ω, then we will say that X is 2−h−DNR.

Definition 2.4. We say that X ⊆ ω is of PA Turing degree if for every infinite computable
binary branching tree T ⊆ 2<ω, T computes an infinite path f ∈ [T ] ̸= ∅.
It is well-known that X is of PA Turing degree if and only if X computes a complete and

consistent extension of Peano Arithmetic.

Definition 2.5. Let A,B ⊆ ω be disjoint. We say that X ⊆ ω is an (A,B)−separator

whenever A ⊆ X and X ∩B = ∅.
Remark 2.6. It is well-known that X ⊆ ω is of PA Turing degree if and only if for any two
disjoint computably enumerable sets8 A,B ⊆ ω, X computes an (A,B)−separator.

2.2.1. The Finite Injury Priority Method. Our proof of Theorem 4.11 employs the Finite
Injury Priority Method. Roughly speaking, this proof technique shows how one can satisfy a
countable sequence of “requirements,” Re, e ∈ N, the satisfaction of which culminates in the
proof of the main theorem. This method assigns, to each requirement Re, a priority e ∈ ω
such that lower indices have higher priorities. Additionally, this method assigns to each Re,
e ∈ ω, a “proof module” Me whose aim is to satisfy Re in isolation. Finally, the key compo-
nent of this methodology says that higher priority modulesMe can “disrupt” or “reset” lower
priority modules, but not vice versa; i.e. lower priority proof modules can only act in ways
that respect the (usually finite) boundaries set by higher priority modules. Consequently,
Me can only be disrupted (reset) by the finitely manyMe′ , 0 ≤ e′ < e; this is where the name
“finite injury” is derived. From the point of view of Reverse Mathematics, the validation of
proofs employing the Finite Injury methodolgy usually requires a certain level of induction
known as Σ2−Bounding, denoted BΣ2, which we will define in the following subsection and
essentially says that “a finite union of finite sets is finite.” For more information on the
Finite Injury Priority Method, consult [Soa16, Chapter 7].

2.3. Ring Theory. All of the rings R we consider here will be countable, commutative, and
possess additive and multiplicative identity elements, 0R and 1R, respectively. Recall that a
ring is Noetherian whenever it satisfies the ascending chain condition on its ideals. A ring
is said to be Artinian whenever it satisfies the descending chain condition on its ideals. A
prime ideal is minimal whenever it does not properly contain any prime ideals. Let R be a
ring and x1, x2, . . . , xN ∈ R, N ∈ ω. We will write

X = ⟨x1, x2, . . . , xN⟩R ⊆ R

to denote the R−span of (R−ideal generated by) x1, x2, . . . , xN .
The following construction is well-known.

Definition 2.7. Let R be a ring, and let U ⊂ R \ {0R} be a multiplicative(ly closed) subset
of R. Then

R[U−1] =
{ r
u
: r ∈ R, u ∈ U

}
is the localization of R at U .

Moreover, it is well-known that if U contains no zero divisors, then the function φ : R →
R[U−1] given by

φ(x) =
x

1R
∈ R[U−1], x ∈ R,

8Recall that a set A ⊆ ω is computably enumerable if it is the range of a computable function f : ω → ω.
More information can be found in [Soa16].
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is an injective ring homomorphism.

For more information on basic Algebra, consult [Lan93, Eis95, DF99, Mat04].

2.3.1. Computable Ring Theory.

Definition 2.8. A computable ring R is a computable subset of ω, R0 ⊆ ω, equipped with:

• computable functions +R, ·R : R → R, and
• a computable reflexive, symmetric, and transitive relation =R,

such that R = (R0,=R,+R, ·R) satisfies the ring axioms.
We say that an abstract ring R has a computable presentation or is computably presentable

whenever R is isomorphic to a computable ring.

The following are consequences of the previous definition.

• If R is a computable ring and I ⊆ R is a computable R−ideal, then R/I is also a
computable ring (i.e. R/I has a computable presentation).

• IfR is a computable ring containing x1, x2, . . . , xN , N ∈ ω, thenX = ⟨x1, x2, . . . , xN⟩R ⊆
R is Σ0

1−definable, but not always computable.
• If R is a computable ring and U ⊂ R \ {0R} is a computable multiplicative subset
of R containing no zero divisors, then R[U−1] has a computable presentation via the
equivalence relation

r1
u1

∼R[U−1]

r2
u2

if and only if r1u2 =R r2u1.

Definition 2.9. Let R be a computable ring. We say that R satisfies computable-ACC
whenever R satisfies the ascending chain condition for uniformly computable chains of ideals.
In other words, R does not contain an infinite uniformly computable strictly ascending chain
of ideals.

In the context of Reverse Mathematics (introduced in the following subsection), computable-
ACC corresponds to the Noetherian property over RCA0.

Definition 2.10. Let R be a computable ring. We say that an ideal X ⊂ R is PA-maximal
if there is a set A ⊆ ω of PA Turing degree that does not compute any ideal Y ⊂ R such that
X ⊂ Y .

Remark 2.11. It follows from [Sim09, Theorem IV.6.4] that, if X ⊂ R is PA-maximal as
in the previous definition, and z ∈ R \X, then there exists a = az ∈ R and x = xz ∈ X such
that

x+ az = 1R.

Corollary 2.12. If R is a computable ring and X ⊂ R is a PA-maximal ideal, then X is a
maximal R−ideal.

The next two definitions are made over RCA0.

Definition 2.13 (RCA0). Let R be a ring, and let P ⊂ R be a prime ideal. We say that P
is minimal if for all prime ideals Q ⊂ R such that Q ⊆ P , we have that Q = P .

Definition 2.14 (RCA0). Let R be a ring, and let M ⊂ R be an ideal. We say that M is
maximal if for every ideal X such that M ⊆ X ⊂ R, we have that M = X.
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2.4. Reverse Mathematics. Reverse Mathematics is the subfield of Computability The-
ory and Proof Theory that aims to classify mathematical theorems in the context of Second-
Order Arithmetic and countable structures, via their effective content. More specifically, in
Reverse Mathematics one works over a weak base theory known as the Recursive Compre-
hension Axiom RCA0 that, in the context of ω−models and full induction9, says:

• ∅ exists,
• whenever X ⊆ N exists and Y ≤T X, then Y also exists, and
• whenever X, Y ⊆ N exist, then

X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y } ⊆ N
exists.

Here N denotes the (possibly nonstandard) first-order part of a model of Second-Order
Arithmetic. The theorems typically analyzed in this context assert the existence of certain
sets within structures. Roughly speaking, to show that theorem T1 implies another theorem
T2 over RCA0 it suffices to show that, given an instance of T2–i.e. a computable structure X
that satisfies the hypotheses of T2–one can use finitely many iterations of solution sets for
instances of T1 (beginning with a computable T1−instance) to compute a solution set for X.
For more details consult [Sim09].

We now state some theorems of Second-Order Arithmetic that will be relevant throughout
the rest of our article. References (in order of appearance) for each of these theorems in
the context of Reverse Mathematics are [Sim09, HS07, HSS09, NS20]. More information on
Martin-Löf Randomness can be found in [DH10, Chapter 6]. A set X ⊆ N is MLR (Martin-
Löf Random) if it passes every Martin-Löf test. Furthermore, X is 2 -MLR if it passes every
Martin-Löf test relative to Turing’s Halting Set ∅′.
WKL0: (Weak König’s Lemma) Every infinite tree T ⊆ 2<N contains an infinite path/chain.

CAC: (Chain-Antichain Theorem) Every infinite partial order contains either an infinite
chain, or an infinite antichain.

ADS: (Ascending-Descending Chain Theorem) Every infinite linear order contains
either an infinite ascending chain, or an infinite descending chain.

It is well-known [HS07, LST13],[Pat16, Corollary A.2.10] that CAC is strictly stronger
than ADS over RCA0, even in the context of ω−models.

HYP : For every set X ⊆ N there is a set of pairs Y ⊆ N× N such that Y is the graph of a
function fY : N → N that is hyperimmune relative to X.

The following Ramsey-type König’s Lemma was first introduced by Flood in [Flo12], and
also studied by Bienvenu, Patey, and Shafer in [BPS17].

2−RWKL : For every infinite limit computable tree T ⊆ 2<N there exists a T−homogeneous
set H ⊆ N and c ∈ {0, 1} such that TH,c ⊆ T (as described in Definition 2.2
above) is infinite.

2−MLR: For every set X ⊆ N there is a set Y ⊂ N such that Y is 2−MLR relative to X
(i.e. Y is MLR relative to the Turing jump of X, denoted X ′ ⊂ N).

It is known that 2−MLR implies 2−RWKL over RCA0, from which it follows that every
instance T has measure one many (Turing oracle) solutions in Cantor space.
An introduction to diagonally nonrecursive functions in the context of Reverse Mathemat-

ics can be found in [NS20, Section 7]. Fix a nondecreasing function h : N → N.
h−2−DNR: For every set X ⊆ N there is a set Y ⊆ N× N that is the graph of a

function fY : N → N that is h− 2−DNR relative to X, i.e. fY is h−DNR

9More information on induction schemes in the context of Second-Order Arithmetic follows.
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relative to the Turing jump of X, denoted X ′ ⊂ N.
2−DNR : For every set X ⊆ N there is a set Y ⊆ N× N that is the graph of a

function fY : N → N that is 2−DNR relative to X, i.e. fY is DNR relative
to X ′.

An intermediate principle that is trivially implied by h−2−DNR, for any fixed h : N → N,
and implies 2−DNR, over RCA0, is the following.

O−2−DNR: For each set X ⊆ N there exists an order function hX : N → N and a set
Y ⊆ N× N that is hX − 2−DNR relative to X.

More information on DNR Turing degrees and their relationship to Martin-Löf randomness
can be found in [HS07, Nie09]. A well-known but unpublished result of J. Miller shows that
2−DNR is equivalent to the Rainbow Ramsey Theorem for Pairs RRT2

2 over RCA0; see [NS20,
Theorem 7.4] and the following paragraph for more details.

2.4.1. First-Order Reverse Mathematics. We assume that the reader is familiar with the
hierarchy of arithmetical formulas; for more information on this topic we invite the reader
to consult either [Soa16, Chapter 4] or [AK00, Chapter 2]. Now, RCA0 includes a restricted
induction scheme that only applies to Σ0

1 formulas where a computable predicate is preceded
only by existential quantifiers. Aside from asserting the existence of certain sets, theorems of
Second-Order Arithmetic may also have First-Order (i.e. arithmetical, or number-theoretic)
consequences and thus may require additional induction schemes (beyond Σ0

1−induction) in
their proofs. For example, it is well-known that CAC cannot be proved from Σ0

1−induction
alone. Rather, the first-order part of CAC includes the following bounding principle for
Σ0

2−formulas that implies, but is not equivalent to Σ0
1−induction, and will play a role in

some of our proofs below.

BΣ2: Let ψ(x) be a Σ0
2−formula. Then, for any given n ∈ N, if there exist x1, x2, . . . , xn ∈ N

such that ψ(xi) holds for 1 ≤ i ≤ n, then there exists N ∈ N and y1, y2, . . . , yn ∈ N
such that ψ(yi) holds for 1 ≤ i ≤ n and max{yi : 1 ≤ i ≤ n} < N .

One can easily generalize BΣ2 to BΣn, the corresponding bounding principle for Σ
0
n−formulas.

An ω−model is a model of Second-Order Arithmetic whose first-order part is the standard
natural numbers ω = {0, 1, 2, . . .} and therefore satisfies induction for all formulas. It is useful
to keep in mind that, in the context of Reverse Mathematics, to show that a theorem T1
does not imply another theorem T2 it suffices to produce an ω−model of RCA0 in which T1
holds but T2 does not.

Remark 2.15. It is well-known that IΣn (i.e. the Σ0
n−induction scheme) is equivalent to

each of the following:

• the Π0
n−induction scheme,

• the Well-Ordering Principle for Σ0
n/Π

0
n−definable sets10, and

• the comprehension scheme for bounded Σ0
n/Π

0
n−definable sets11.

Also, BΣ2 is equivalent to both:

• the Infinite Pigeonhole Principle12, and
• the statement that says “a finite union of finite sets is finite.”

10For every Σ0
n/Π

0
n−predicate φ(x), either no natural number x satisfies φ, or else there is a minimal

natural number x0 such that φ(x0) holds.
11For every Σ0

n/Π
0
n−predicate φ(x) and natural number N , the bounded set of natural numbers

{x : x ≤ N & φ(x)}
exists.

12For any natural number N , if the natural numbers are partitioned into N−many classes, then one of
the classes in the partition is infinite.
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Moreover, it is well-known that for all n ∈ ω the strict implications IΣn+1 → BΣn+1 → IΣn

exist.

2.4.2. Our Presentation. We will usually prove theorems in the context of Reverse Mathe-
matics (i.e. over RCA0) by first proving their corresponding effective versions in the context
of ω−models. Afterwards, we will state the (more general) reverse mathematical theorem
over RCA0 as a corollary to the effective version immediately preceding it. For us, translat-
ing effective proofs in the context of ω−models to their corresponding corollaries over RCA0

amounts to:

• interpreting computability as ∆0
1−definability,

• interpreting computable enumerability as Σ0
1−definability, and finally (and usually

most importantly)
• verifying that the first-order part of the argument can be carried out via the fragment
of First-Order Arithmetic corresponding to Σ0

1−induction, and nothing more.

For example, it is well-known and not difficult to show that every infinite computably
enumerable set contains an infinite computable subset (enumerated in strictly increasing
order). In the context of Reverse Mathematics, this leads to the following fact.

Proposition 2.16 (RCA0). Every infinite Σ0
1−definable set contains an infinite subset.

In other words, if φ(x) is a Σ0
1−fomula such that

(∀n)(∃xn)[x ≥ n & φ(xn)]

then there exists A ⊆ N such that

(∀n)(∃xn)[xn ∈ A & xn ≥ n & φ(xn)].

The issue here is that, in the absence of Arithmetic Comprehension (ACA0), the set {x :
φ(x)} ⊆ ω may not exist. However, given the hypotheses, over RCA0 the infinite set A ⊆ N
of Proposition 2.16 always does.

We will explicitly mention the level (i.e. strength) of the induction or bounding principle
being utilized in a proof of an effective theorem. Afterwards, we will include the strongest
such principle in the hypotheses of the corresponding reverse mathematical corollary. In the
end the only two subsystems of First-Order Arithmetic that we will end up using beyond
IΣ1 are:

• BΣ2 (mentioned above) and
• IΣ2 (the induction scheme for Σ0

2−formulas).

Recall that IΣ2 → BΣ2 → IΣ1, but the arrows are both irreversible.
Reverse mathematicians usually use ω = {0, 1, 2, . . .} to denote the standard natural

numbers, and N to denote a possibly nonstandard model of arithmetic that may not satisfy
full induction. In keeping with this convention, our effective theorems will mention ω, while
their corresponding (reverse mathematical) corollaries will mention N.

3. The Tree Antichain Theorem

We now introduce our main combinatorial principle, namely the Tree Antichain Theo-
rem. In the next section we will examine its reverse mathematical strength, and subsequent
sections reveal its relationship to the theory of Noetherian Rings.

Definition 3.1 (RCA0). We say that a tree T ⊆ 2<N is completely branching if for all σ ∈ T
such that σk ∈ T for some k ∈ {0, 1} we have that σ(1 − k) ∈ T as well. In other words,
every node σ ∈ T is either a leaf, or else {σ0, σ1} ⊂ T .
Additionally, for any given infinite completely branching tree T ⊆ 2<N, we say that {Ts :

s ∈ N} is an enumeration of T whenever:
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• T0 = {∅} ⊂ 2<N;
• for each s > 0, s ∈ N, there exists a unique Ts−1−leaf λ such that Ts = {λ0, λ1}∪Ts−1;
and

• T = ∪s∈NTs.

It follows that T is Σ0
1−definable (i.e. computably enumerable) if and only if there exists an

effective enumeration of T , i.e. a computable function that performs the enumeration of T
described in the items above.

Definition 3.2 (RCA0). Let TAC be the theorem that says “every infinite Σ0
1−definable

completely branching tree T ⊆ 2<N, contains an infinite (2<N−)antichain.”

Remark 3.3. TAC is not a standard theorem of mathematics that one would expect to find
featured in a textbook, and so requires a proof. To see why TAC holds in Second-Order
Arithmetic, let φ(x, t) be a Σ0

1−formula such that

T = {x : (∃t)[φ(x, t)]} ⊆ 2<N

is an infinite completely branching tree. Now, via Arithmetic Comprehension (ACA0), T
exists and corresponds to an infinite partial order via 2<N. Furthermore, by the Chain-
Antichain Principle (CAC), T either contains an infinite chain or an infinite antichain. If
T contains an infinite antichain then we are done, otherwise T ⊆ 2<N contains an infinite
chain/path f ∈ [T ] ⊆ 2N.
For each k ∈ ω let σk = f↾k ∈ T ⊆ 2<N denote the unique initial segment of f of length

k. Since T is completely branching, we have that both σk0, σk1 ∈ T , for all k ∈ N. For each
k ∈ N let τk = σkj ∈ T for the unique j ∈ {0, 1} such that τk ̸= σk+1 ⊂ f ∈ 2N, i.e. τk ⊈ f .
It follows that {τk : k ∈ N} ⊆ T ⊆ 2<N is an infinite antichain, as required.

It is not difficult to eliminate our use of ACA0 in the argument above, and produce an
effective proof of TAC via RCA0 + CAC. More specifically, a Σ0

1 formula such as φ above
easily corresponds to an effective enumeration T = ∪s∈ωTs ⊆ 2<ω as in Definition 3.1. Now
we can construct a computable partial order on ω by associating

• 0 ∈ N with ∅ ∈ T , and
• 2s+ 1, 2s+ 2 ∈ N, s ∈ N, with the pair of nodes σ0, σ1 ∈ Ts+1 \ Ts.

By Σ0
1−induction this process yields a computable partial order P with domain N and com-

putable isomorphism F : ω → T . Furthermore, CAC says that P contains either an infinite
chain or an infinite antichain, which (via F ) corresponds to a Σ0

1−definable subset of T .
Now, Proposition 2.16 above says that (over RCA0) every infinite Σ0

1−definable set contains
an infinite subset, thus yielding an infinite T−antichain (via our comments above).

Building on our elementary analysis here, in the next section we will provide a similar proof
of TAC via the Kleene-Brower construction TKB = (T,<KB) described above (Definition 2.1
and the following sentence) and the Ascending-Descending Chain Principle for infinite linear
orders (ADS).

Definition 3.4 (An alternate characterization of TAC over RCA0). The following equivalent
version of TAC does not mention Σ0

1−definability or enumerations.

TAC1 : Let T ⊆ 2<N be an extendable tree containing infinitely many splittings,
i.e. infinitely many σ ∈ T such that σ0, σ1 ∈ T . Then T contains
an infinite (2<N−)antichain.

The next two propositions show how to use solutions to TAC1 to derive solutions to TAC,
and vice versa in the context of ω−models. They also verify that each argument can be car-
ried out via Σ0

1−induction, implying Corollary 3.7 below which says that TAC1 is equivalent
to TAC over RCA0, and exemplifies our presentation of Reverse Mathematics, as described
in Subsection 2.4.2 above.
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Proposition 3.5. Let T = ∪s∈ωTs ⊆ 2<ω be the enumeration of an infinite Σ0
1 completely

branching tree as described in Definition 3.1 above. Then there is a computable extend-
able tree T1 ⊆ 2<ω with infinitely many splittings such that any T1−antichain computes a
T−antichain.

Proof. Let T = ∪s∈ωTs ⊆ 2ω be as in the statement of the current proposition. We enumerate
an infinite computable extendible tree T1 = ∪s∈ωTs,1 ⊆ 2<ω with infinitely many splittings,
and a corresponding one-to-one 2<ω−strict-extension-preserving map F = ∪s∈ωFs : T → T1
such that the range of F is the set of completely branching nodes of T1, uniformly in stages
s ∈ ω, as follows:

• T0,1 = {∅} = T0 ⊆ 2<ω, F0(∅) = ∅;
• at stage s+1 ∈ ω, s ∈ ω, assume that every Ts,1−leaf λ ∈ Ts,1 has a unique prefix of
the form Fs(ρ), for some Ts−leaf ρ. Now, let ρ0 ∈ Ts be the unique Ts−leaf such that
Ts+1 \ Ts = {ρ00, ρ01}, and (by Σ0

1−induction) let λ0 ∈ Ts,1 be the unique maximal
Ts,1−extension of F (ρ0); it follows that λ0 is a Ts,1−leaf. We define Ts+1,1 ⊃ Ts,1 and
Fs+1 ⊃ Fs via:

– Ts+1,1 = Ts,1 ∪ {λ00, λ01} ∪ {λ0 : λ ̸= λ0 a Ts,1 − leaf}, and
– Fs+1(ρ0i) = λ0i, i ∈ {0, 1}.

By our construction (and Σ0
1−induction) it follows that every Ts+1,1−leaf ρ has a unique

prefix of the form Fs+1(λ) ⊆ ρ for some Ts+1−leaf λ, from which it follows that our con-
structions of T1 = ∪s∈ωTs,1 ⊆ 2<ω and F = ∪s∈ωFs : T → T1 are well-defined. The reader
can also verify that:

• T1 ⊆ 2<ω is an infinite computable extendible tree containing infinitely many split-
tings, and

• F : T → T1 is one-to-one, computable, and 2<ω−extension-preserving.

Now, given any infinite antichain

A = {ak : k ∈ ω} ⊂ T1,

by our construction of T1 above it follows that for each k ∈ ω there is a unique maximal
initial segment of ak ∈ T1, αk ⊆ ak, that completely branches in T1, i.e. {αk0, αk1} ⊂ T1,
and moreover F (βki) = αki for a unique βk ∈ T and all i ∈ {0, 1}. For each k ∈ ω let
ik ∈ {0, 1} be such that

F (βkik) = αkik ⊆ ak ∈ T1.

Finally, since F is 2<ω−extension-preserving we have that

B = {βkik : k ∈ ω} ⊂ T

is an infinite T−antichain. □

Proposition 3.6. Let T ⊆ 2<ω be a computable extendable tree with infinitely many split-
tings. Then there is an infinite Σ0

1 completely branching tree T0 ⊆ 2<ω such that every infinite
T0−antichain computes an infinite T1−antichain.

Proof. Let T ⊆ 2<ω be as in the statement of the current proposition. Let

R = {ρk : k ∈ ω} ⊆ T

be the length-lexicographic enumeration of the infinitely many splittings of T , i.e. R is an
infinite subset of T such that for all k ∈ ω we have that ρk0, ρk1 ∈ T . Let

R1 = {ρki : k ∈ ω, ρk ∈ R, i ∈ {0, 1}} ⊂ T.

There is a partial computable function F1 : R1 → R such that for all ρki ∈ R1, k ∈ ω,
ρk ∈ R, i ∈ {0, 1},

F1(ρki) = ρ ∈ R,



COMPUTABILITY AND COMBINATORIAL ASPECTS OF MINIMAL PRIMES IN NOETHERIAN RINGS13

where ρ is the unique node of least length in R extending ρki, if such a ρ exists. Construct
an infinite Σ0

1 completely branching tree T0 ⊆ 2<ω along with a partial computable function
F0 : T0 → R, in stages s ∈ ω+, via R and F1 as follows:

• at stage s = 1 set T1 = {∅, 0, 1} ⊂ 2<ω and define F0(∅) = ρ0 ∈ R, and
• at stage s > 1, s ∈ ω, assume we are (uniformly computably) given a finite tree
Ts−1 ⊂ 2<ω and Fs : Ts → R such that:

– the domain of Fs : Ts → R at the current stage s ∈ ω is exactly (the uniformly
computable tree of) all non-leaf nodes of Ts, and

– the range of F0 at the current stage s ∈ ω is exactly {ρk : 0 ≤ k ≤ s− 1} ⊂ R.
By our construction of R it follows that at each stage s > 1, s ∈ ω, there is a unique
Ts−leaf λ such that

F1(λ) = ρs.

Furthermore, if i ∈ {0, 1} is the final bit of λ then we have that

F0(λ
−)i ⊂ ρs.

In this case we set F0(λ) = ρs and enumerate the splitting above λ, namely λ0 and
λ1 in Ts. Finally, we proceed to the next stage s+1, where our induction hypotheses
about the domain and range of F0 (given above) remain valid. This completes our
construction of T = ∪s∈ωTs.

By our constructions of T0 = ∪s>0Ts ⊆ 2<ω, F0 : T0 → R ⊆ T , and Σ0
1−induction, it

follows that the domain of F0 is exactly the set of non-leaves of T0, which is computably
enumerable. Let

A = {αk : k ∈ ω} ⊆ T0

be an infinite T0−antichain. Then, either A contains an infinite subset of the domain of F0,
or not. If A contains an infinite subset of the domain of F0, then via Proposition 2.16 above
it follows that there is an infinite A−computable subset of A in the domain of F0. By our
construction of F0 : T0 → T above, it follows that F0 preserves the extension relation on
nodes (binary strings), from which it follows that

F0(A) = {F0(α) : α ∈ A} ⊆ T

is a T−antichain. On the other hand, if A does not contain an infinite subset of the domain of
F0 then it follows that cofinitely many elements of A are T−leaves for which F1 is undefined.
In this case, let k0 ∈ ω be such that

Ak0 = {αk : k ≥ k0} ⊆ A ⊆ T

contains only T−leaves. Let Ik0 = {ik : k ≥ k0} be the corresponding enumeration of the
last bits of Ak0 . It follows that

• α−
k is not a T0−leaf and thus is in the domain of F1, but

• F0(αk) is undefined.

Furthermore, F0(α
−
k ) ∈ R ⊆ T defines a T−splitting for all k ≥ k0, k ∈ ω, and since αk is

not in the domain of F0 for all k ≥ k0, F (α
−
k )ik ∈ T1 has no splittings extending it, from

which it finally follows that

B = {F (α−
k )ik : k ≥ k0, k ∈ ω}

is an infinite T1−antichain. □

Corollary 3.7 (RCA0). TAC is equivalent to TAC1.

Proof. The previous two propositions. □
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3.1. TAC in the context of infinite computable completely branching trees. One
might ask about the reverse mathematical strength of TAC in the context of computable
(rather than computably enumerable) trees T ⊆ 2<ω. In this case one can argue that every
infinite computable completely branching tree T ⊆ 2<N has an infinite computable antichain
A ⊆ T , from which it follows that TAC with computable trees is provable in RCA0. Let
T ⊆ 2<ω be an infinite computable completely branching tree. Then, either:

• there exists σ ∈ T such that σ0∞ ∈ [T ] ⊆ 2ω, or else
• no such σ exists.

If such a σ ∈ T exists then
A = {σ0k1 : k ∈ ω} ⊂ T

is an infinite computable T−antichain. Otherwise, since T is computable, for any given
σ ∈ T there exists kσ ∈ ω, computable uniformly in σ, such that

λσ = σ0kσ ∈ T is a T − leaf.

It follows that the set A = {λσ : σ ∈ T} is an infinite computable T−antichain. A similar
argument shows that every infinite Σ0

1 completely branching tree has an infinite antichain
that is computable via Turing’s Halting Set ∅′ (i.e. an infinite ∆0

2 antichain).

3.2. TAC is not equivalent to any “known” subsystem of Second-Order Arith-
metic. One consequence of our analysis of TAC says that TAC is not equivalent to any other
subsystem of Second-Order Arithmetic that has thus far been studied and is included in
the “Reverse Mathematical Zoo”13 that has been developed and promulgated by Dzhafarov
and others (it suffices to do so in the context of ω−models). Now, to see why this is the
case, via the diagram given in https://production.wordpress.uconn.edu/mathrmzoo/

wp-content/uploads/sites/841/2014/09/diagram oi.pdf, which we will refer to as sim-
ply diagram oi.pdf, the reader can verify that, in the context of ω−models and RCA0, the
strongest consequences of ADS are

• AMT+ COH, whose strongest consequences, in turn, are:
– AMT, and
– COH;

and
• SADS, whose strongest consequence is AMT.

Here

• COH denotes the Cohesive Principle (see [CJS01, HS07] for more details),
• AMT denotes the Atomic Model Theorem (see [HSS09] for more details), and
• SADS denotes the Stable Chain-Antichain Principle for (stable) infinite linear orders
(see [HS07]) for more details.

From our description of diagram oi.pdf above, it follows that every consequence of ADS
(over RCA0 and in the context of ω−models) either:

• implies one of COH, AMT, or
• is implied by one of COH, AMT.

Now, when taken together

• [Pat16, Theorem 9.1.2],
• the paragraph following [Pat16, Definition 7.3.2] (which generalizes a result in [Wan13]),
and

• Corollary 4.8 below

13See rmzoo.math.uconn.edu for more details, and rmzoo.math.uconn.edu/diagrams for visualizations
of the Reverse Mathematical Zoo.
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imply that TAC does not prove either COH or AMT, since (as we shall see in the next section)
TAC follows from 2−MLR, but our references to [Pat16] above say that 2−MLR does not
imply either COH or AMT. On the other hand, the conservativity considerations of [HS07,
Corollary 2.21] and [HSS09, Corollary 3.15] say that neither COH nor AMT imply TAC.
Therefore, TAC cannot be equivalent to any principle mentioned in diagram oi.pdf.

4. The Reverse Mathematics of the Tree-Antichain Theorem

4.1. Upper bounds on TAC. We establish the weakness of TAC in several respects, in the
context of Reverse Mathematics.

Theorem 4.1. Let T ⊆ 2<ω be an infinite Σ0
1 completely branching tree. Then there is a

computable infinite linear order L such that any infinite ascending or descending chain in L
computes a T−antichain.

Proof. Given an infinite Σ0
1 completely branching tree T ⊆ 2<ω, let TKB = (T,<KB)

be the (Σ0
1) Kleene-Brower linearization of T (viewed as a partial order) as described in

the previous section. We can construct a computable linear order L ∼= TKB with do-
main ω as we did for partial orders in Remark 3.3 above. Now, via ADS, let C ⊆ L be
an infinite (ascending/descending) L−chain. By construction, C corresponds to an infi-
nite Σ0

1 (ascending/descending) TKB−chain, C0. Proposition 2.16 yields an infinite com-
putable C ⊆ C0 ⊆ TKB, and any such C is an infinite computable (ascending/descending)
TKB−chain.

Let C = {ck : k ∈ ω} ⊆ TKB be a TKB−ordered enumeration of C (in either increasing or
decreasing order). If C is an ascending TKB−chain, then by construction of TKB = (T,<KB)
it follows that the set

{ck : k ∈ ω, ck+1 is left of ck}
is an infinite T−antichain. On the other hand, if C is a descending TKB−chain, then there
are two subcases to consider. First, suppose that there exists k0 ∈ ω such that for all
k ≥ k0 we have that ck ⊂ ck+1 (here ⊂ denotes the extension relation on 2<ω); in this case
we can construct an infinite T−antichain as we did in Remark 3.3 above. Otherwise the
(computable) set

{ck : k ∈ ω, ck+1 is right of ck}
is an infinite T−anchain, as required by TAC. □

Corollary 4.2 (RCA0). ADS implies TAC.

The following theorem will be useful in showing that 2−MLR implies TAC below; it is
essentially due to Kučera and we refer the reader to [NS20, Section 7] and [BPS17, Theorem
2.8] for more details on the following theorem and subsequent corollary.

Theorem 4.3. Let h(x) = 2x, x ∈ ω. Then every 2−MLR set X ⊆ ω computes an h−2−DNR
function f .

Corollary 4.4 (RCA0 + IΣ2). 2−MLR implies h−2−DNR for h(x) = 2x, x ∈ N.

Theorem 4.5. Let T = ∪s∈ωTs ⊆ 2<ω be an enumeration of an infinite Σ0
1 completely

branching tree, and let h : ω → ω be a computable order function and f : ω → ω h−2−DNR.
Then f computes an infinite T−antichain.

Proof. Let T ⊆ 2<ω, h, f : ω → ω satisfy the hypotheses of the current theorem; we will
construct an infinite Σ0

1 (i.e. computably enumerable) finitely branching tree

A =
⋃
s∈ω

As ⊆ ω<ω, As ⊆ As+1 finite,
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along with a partial computable oracle reduction

Ψ : A× ω → T, Ψ =
⋃
s∈ω

Ψs, Ψs ⊆ Ψs+1, Ψs : As → T,

such that for every h− 2−DNR function f : ω → ω computes some g ∈ [A] ⊆ ωω such that

A = {Ψg(k)↓= ak : k ∈ ω+} ⊆ T

is an infinite T−antichain, as required by TAC.
We now describe the basic moduleMλ, λ an As−leaf, |λ| = ℓ, for constructing As+1 ⊃ As,

s ∈ ω and corresponding Ψs+1 ⊃ Ψs. For each As−leaf λ, the moduleMλ uniformly attempts
to uniformly and computably enumerate λi, 0 ≤ i ≤ nλ into As+1, for some nλ ∈ ω+, and
define Ψλi

s+1(ℓ+ 1) for each 0 ≤ i ≤ nλ. Now, suppose (by Σ0
1−induction) that

Aλ = {Ψλ(k) : 1 ≤ k ≤ |λ|}

is an A−antichain. First, Mλ seeks infinitely many numbers eλ,i, tλ,i ∈ ω, i ∈ ω, such that
for each i the (finite) tree

Ttλ,i ⊂ T ⊆ 2<ω

has at least h(eλ,i)−many leaves that are each (individually) incomparable with all a ∈ Aλ
14.

WhenMλ finds such numbers eλ,i, tλ,i, for some i ∈ ω, then it effectively enumerates/indexes
the corresponding (Aλ−incomparable) Ttλ,i−leaves

ρ0,i, ρ1,i, . . . , ρnλ,i,i ∈ Ttλ,i , nλ,i = h(eλ,i) ∈ ω+.

If there exist infinitely many candidate pairs {(eλ,i, tλ,i) : i ∈ ω} ⊆ ω×ω, for some As−leaf
λ, then by the Recursion Theorem [Soa16, Theorem 2.2.1], there exists i0 ∈ ω such that

Φ∅′
eλ
(eλ) = n ∈ ω, 0 ≤ n ≤ nλ = nλ,i0 , nλ > 0, eλ = eλ,i0 ∈ ω,

is the index of the unique extendable leaf ρn = ρn,i0 ∈ Ttλ , if such a leaf exists, and is
undefined otherwise, for some corresponding tλ = tλ,i0 , i0 ∈ ω, in the previous paragraph.
Moreover, by the uniformity and effectiveness of the Recursion Theorem it follows that
eλ, tλ ∈ ω are uniformly computable in λ, assuming that infinitely many eλ,i, tλ,i exist. Now,
once we have (uniformly and computably) selected nλ = nλ,i0 ∈ ω, nλ > 1, via the Recursion
Theorem, we enumerate the nodes

λ0, λ1, . . . , λnλ ∈ As+1.

Finally, set

Ψλi(ℓ+ 1) = Ψλi(|λ|+ 1) = ρi ∈ T, i = 0, 1, 2, . . . , nλ ∈ ω.

By our construction of As+1 and Ψs+1 it follows that

Aλi = {Ψλi
s+1(k) : 1 ≤ k ≤ ℓ+ 1} ⊂ T

is a T−antichain of size ℓ+ 1, for all 0 ≤ i ≤ nλ. This completes our construction of the Σ0
1

tree A ⊂ ω<ω. The rest of our proof verifies that:

• A is infinite, and
• any h−2−DNR function f : ω → ω computes an infinite path g ∈ [A] ⊂ ωω.

14In the following paragraphs we will argue that infinitely many eλ,i, tλ,i ∈ ω, i ∈ ω, always exist for at
least one As−leaf λ that can be uniformly and effectively computed by an h− 2−DNR function f .
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By our construction of Ψ and g it follows that

A = {Ψg(x) : x ∈ ω}

codes an infinite T−antichain, as required.
We claim that for all s ∈ ω there exists an As−leaf λs ∈ ω<ω with infinitely many

corresponding eλ,i, tλ,i ∈ ω as we hypothesized in the previous paragraph. Moreover, we aim
to show that (via IΣ2) λs is uniformly computable in s, relative to any h−2−DNR oracle
f : ω → ω. To do so, however, we require an important (Π0

2) definition.

Definition 4.6. Let λ ∈ A ⊂ ω<ω. By our construction of A it follows that Ψλ(x)↓ , x ∈ ω,
for all 1 ≤ x ≤ |λ| and moreover

Aλ = {Ψλ(x) : 1 ≤ x ≤ |λ|, x ∈ ω} ⊂ T

is a finite T−antichain. We say that λ is T−antichain−extendible if for every n ∈ ω there
is a set B ⊆ T , |B| = n, such that Aλ ∪B is a T−antichain.

Above, we argued (via Σ0
1−induction) that λ ∈ A is T−antichain−extendable whenever

the module Mλ described above enumerates infinitely many eλ,i, tλ,i ∈ ω, i ∈ ω. It is clear
that the converse also holds. Now, suppose that λ ∈ A is T−antichain−extendable and let
eλ, tλ, nλ ∈ ω, nλ > 1, and

ρ0, ρ1, . . . , ρnλ
∈ Ttλ ⊆ 2<ω

be obtained from the infinite sequence of eλ,i, tλ,i ∈ ω, i ∈ ω, (via some i = i0 ∈ ω obtained
via the Recursion Theorem) in our construction of Mλ above. Then, since each of the ρk,
0 ≤ k ≤ nλ, are leaves of Ttλ , it follows that they are mutually incomparable and furthermore
(by construction)

Aλ ∪ {ρk : 0 ≤ k ≤ nλ} ⊆ Ttλ

is a Ttλ−antichain. Now, since T ⊆ 2<ω contains no cycles, it follows that there can be
at most one ρi, 0 ≤ i ≤ nλ, i ∈ ω, such that all but finitely many σ ∈ T extend ρi,
and moreover this ρ is Σ0

2, uniformly in λ. In other words, at most one ρi, 0 ≤ i ≤ nλ,
is not T−antichain−extendable, from which it follows that that some ρi, 0 ≤ i ≤ nλ is
T−antichain−extendable, since nλ > 1. Furthermore, by our use of the Recursion Theorem
above in producing i0 ∈ ω for Mλ and our comments here, it follows that any h−2−DNR
function f : ω → ω can compute a T−antichain−extendable ρi, 0 ≤ i ≤ nλ, uniformly in
λ ∈ A. We have now verified the induction step for an instance of Π0

2−induction relative
to any h−2−DNR function f : ω → ω that (given the trivial base case15) produces a total
Turing reduction

g ≤T f

where g ∈ [A] ⊆ ωω and

{Ψg(x) : x ∈ ω} ⊆ T

is an infinite T−antichain. □

Corollary 4.7 (RCA0 + IΣ2). O−2−DNR implies TAC.

Corollary 4.8 (RCA0 + IΣ2). 2−MLR implies TAC.

Proof. Corollary 4.4 and Theorem 4.5 above. □

Finally, we come to a natural uniform proof of TAC via 2−RWKL.

15The base case says that ∅ ∈ T is T−antichain−extendible, which is obviously true since T is assumed
to be infinite and completely branching.
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Theorem 4.9. Let T = ∪s∈ωTs ⊆ 2<ω be an infinite Σ0
1 completely branching tree, and (via

2−RWKL) let H ⊆ ω be such that H is homogeneous for T (via some c ∈ {0, 1}). Then H
computes an infinite T−antichain.

Proof. By Definition 2.2 above, let c ∈ {0, 1} ⊂ ω be such that TH,c ⊆ T ⊆ 2<ω is infinite,
and for each ℓ ∈ H, let σℓ ∈ T be a node of length ℓ. Then, by construction of H and the
fact that T is completely branching it follows that

{σℓ(1− c) : ℓ ∈ H} ⊂ T

is an infinite T−antichain. □

Corollary 4.10 (RCA0). 2−RWKL implies TAC.

4.2. Coding into TAC. The main goal of this subsection is to establish the non-trivial
strength of TAC by showing that TAC does not follow from WKL0, even in the context of
ω−models.

Theorem 4.11. For any order function h : ω → ω there exists an infinite Σ0
1 completely

branching tree T ⊆ 2<ω such that every infinite T−antichain, AT ⊂ T , is not the image of
an h−c.e. function.

Proof. Let h : ω → ω+ be a computable order function. We will employ a finite injury
argument (see Section 2.2.1 above for an introduction and references) that computably enu-
merates an infinite (Σ0

1) completely branching tree T ⊆ 2<ω, T = ∪s∈ωTs, such that

Ts = {Fs(x) : 0 ≤ x ≤ 2s}, s ∈ ω,

is an enumeration of T via a computable function F (as outlined in the previous section).
Moreover, our main goal here is to enumerate T (i.e. construct F ) to ensure that for every
strictly increasing h−c.e. function f : ω → ω we have that

A = Af = {F (f(x)) : x ∈ ω} ⊆ T,

is not a T−antichain.
To achieve our goal, for now assume that there exists a uniform computable approximation

f(e, x, s) : ω3 → ω to every strictly increasing h−c.e. function fe : ω → ω such that:

(a) for every e, x ∈ ω we have that:
– f(e, x, s) = x whenever 0 ≤ s ≤ x, and
– f(e, x, s) ≤ s, for all e, x, s ∈ ω, s ≥ x.

(b) for every s ∈ ω there is at most one pair of numbers e, x ∈ ω such that f(e, x, s) ̸=
f(e, x, s+ 1) and 0 ≤ x ≤ s.

(c) For every e ∈ ω, fe(x) = lims→∞ f(e, x, s) is strictly increasing in x ∈ ω.

The first subitem in (a) above implies that s ≥ x whenever f(e, x, s) ̸= f(e, x, s + 1).
Moreover, items (a) and (b) above imply the existence of an infinite computable sequence of
stages

0 = s0 < s1 < s2 < s3 < · · · < sk < sk+1 < · · · , k ∈ ω,

such that for each k ∈ ω there exists a unique pair of numbers ek, xk ∈ ω, 0 ≤ xk ≤ sk, such
that

− f(ek, xk, sk) ̸= f(ek, xk, sk − 1) and
− f(ek, xk, sk), f(ek, xk, sk − 1) ≤ sk.

We will construct f : ω3 → ω immediately following the current proof; for now we assume
that f exists. We will use f to satisfy the following requirement for each e ∈ ω:
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Re : There exists xe, te ∈ ω such that for all t ≥ te, t ∈ ω, we have that
F (fe(xe)) ⊂ F (t) ∈ T .

It follows that σe cannot be included in any infinite antichain of T and so the image of
F ◦ fe : ω → T is not an infinite T−antichain.

We now construct T = ∪s∈ωTs ⊆ 2<ω in stages s ∈ ω via

F =
⋃
s∈ω

Fs, Fs : {0, 1, 2, . . . , 2s} → Ts, s ∈ ω,

as above. At superstage k = 0 16 and stage s = 0 we set

• T0 = {∅} ⊆ 2<ω,
• F0(0) = ∅ ∈ T0,
• x0,0 = 0, and finally we
• set ε0 = 0, and reset all requirements Re, e ∈ ω+.

At the next superstage k > 0, assume that we are given

• a number ε = εk−1 ∈ ω such that the requirements that are currently reset (at the
start of superstage k) are exactly those requirements Re such that e > ε;

• a finite Σ0
1 completely branching enumeration up to stage sk−1 ∈ ω, Tsk−1

= ∪sk−1

t=1 Tt ⊆
2<ω;

• a finite sequence of bijections Ft : {0, 1, 2, . . . , 2t} → Tt, 0 ≤ t ≤ sk−1, such that
Ft−1 ⊂ Ft for all 0 < t ≤ sk−1; and

• a nonempty finite sequence of superstages

0 = k0 < k1 < · · · < kε ≤ ks−1

and corresponding

0 = 2k0 = x0 = x0,k−1 < 2k1 = x1 = x1,k−1 <

< 2k2 = x2 = x2,k−1 < · · · < 2kε = xε = xε,k−1 ≤ 2sk−1

such that

σ0 = σ0,k−1 ⊂ σ1 = σ1,k−1 ⊂ · · · ⊂ σε−1 = σε−1,k−1,

where
σe = Fsk−1(f(e, xe, sk−1)) ∈ Tsk−1

⊆ 2<ω, 0 ≤ e < ε.

Let ek, zk ∈ ω, 0 ≤ zk ≤ sk, be such that

f(ek, zk, sk) ̸= f(ek, zk, sk − 1), and 0 ≤ f(ek, zk, sk) ≤ sk ≤ 2sk.

There are two cases to consider. The first case says that zk = xe0 for some 0 ≤ e0 ≤ ε,
and in this case (by our construction of σe0 = σe0,k−1 ∈ Tsk−1

above) we have essentially17

witnessed a change in σe0 at the current superstage k. Let λ = λk ∈ Tsk−1
⊆ 2<ω be the

leftmost Tsk−1
−leaf extending σe0 . We proceed to the next superstage k+1 with the following

definitions/constructions:

• εk = e0, and reset all requirements Re, e > e0;
• xe,k = xe,k−1, 0 ≤ e ≤ e0;

16Our main goal here is to produce an enumeration of an infinite Σ0
1 completely branching tree T = ∪s∈ωTs

in stages s, as in Definition 3.1 above. Our enumeration is via “standard” stages s ∈ ω, and so it follows
(essentially by our construction of f : ω3 → ω) that k ∈ ω must refer to “superstages” (i.e. an infinite subset
of stages).

17We will eventually set σe0,k = Fsk(f(e0, xe0 , sk)) ̸= Fsk−1
(f(e0, xe0 , sk)) = σe0,xe0

,sk−1
, and although

f(e0, xe0 , sk) ≤ sk may not be in the domain of Fsk−1
, our construction will ensure that (by the end of the

current superstage k) it is in the domain of Fsk .
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• – Tℓ = Tℓ−1 ∪ {λ0ℓ−sk−1 , λ0ℓ−sk−1−11}, and
– Fℓ(2ℓ− 1) = λ0ℓ−sk−1 , Fℓ(2ℓ) = λ0ℓ−sk−1−11,
for ℓ = sk−1 + 1, sk−1 + 2, . . . , sk;

It now follows that f(e0, xe0 , sk) ≤ sk is in the domain of the bijection Fsk : {0, 1, 2, . . . , sk} →
Tsk . Finally, note that

σe0,sk = Fsk(f(e0, xe0 , sk)) ⊃ λ ⊇ Fsk(f(e0 − 1, xe0−1, sk)) = σe0−1,sk .

The second case of our construction says that zk ̸= xe0 , for any 0 ≤ e0 ≤ ε = εk−1. In
this case we do not need to act to satisfy any requirement Re, 0 ≤ e ≤ ε, and so our main
objective now is to focus on the least currently unsatisfied requirement Rε+1 and construct
xε+1,sk ∈ ω for its satisfaction. Let λ = λk ∈ Tsk−1

⊆ 2<ω denote the leftmost Tsk−1
−leaf

extending σε, and then proceed as follows:

(2a) set εk = εk−1 + 1 = ε+ 1 ∈ ω and Rε+1 is no longer reset for now (but may be reset
again at some later superstage k′ > k);

(2b) xe,k = xe,k−1, 0 ≤ e ≤ ε;
(2c) Construct Tℓ ⊃ Tsk−1

and Fℓ ⊃ Fsk−1
, exactly as in item (1c) above (with our current

λ ∈ Tsk−1
), for all ℓ = sk−1 + 1, sk−1 + 2, . . . , sk;

(2d) set xε+1,sk = 2sk.

By our construction of Tsk ⊆ 2<ω and Fsk : {0, 1, 2, . . . , 2sk = xε+1,sk} → Tsk . It follows that
xε+1,sk is in the domain of Fsk and Fsk(xε+1,sk) ∈ Tsk , and by our induction hypotheses and
our definition of λ ∈ Tsk−1

above it follows that

σ0 ⊂ σ1 ⊂ · · · ⊂ σε ⊆ λ ⊂ σε+1,

where

σε+1 = σε+1,sk = Fsk(f(ε+ 1, xε+1,sk , sk)) =

= F (f(ε+ 1, 2sk, sk)) = F (2sk) = λ0sk−sk−1−11 ∈ Tsk .

Proposition 4.12.

lim
k→∞

εk = ∞.

Proof. It is not difficult to verify that εk ∈ ω for every k ∈ ω, and so to show that limk εk = ∞
it suffices to show that lim infk εk is not finite. Suppose for a contradiction that lim infk εk =
ε ∈ ω. Then there exists k0 ∈ ω such that

• εk ≥ ε for all k ≥ k0, and
• there exist infinitely many k ≥ k0 such that εk = ε.

It follows that the requirement Rε is never again reset on or after stage k0, since we only
reset requirements of index strictly greater than εk at superstage k (and this only happens
via Case 1–we do not reset any new requirements via Case 2). Now, by our construction
above it follows that xε,k = xε,k0 = xε ∈ ω for all k ≥ k0.
Recall that in the second case of our construction above (at superstage k ∈ ω, k > 0,) we

set εk = εk−1 + 1; therefore, the only way that εk = ε when k > k0 is if:

• εk−1 > ε,
• we land in Case 1 at superstage k − 1 of the construction, and
• f(ε, x, sk−1) ̸= f(ε, x, sk).

It follows that there are infinitely many superstages k ≥ k0, k ∈ ω such that our uniform
approximation to fε(x) changes, contradicting our assumption that

|{s : f(ε, x, s) ̸= f(ε, x, s+ 1)}| ≤ h(x).
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Therefore, we must have that
lim
k→∞

εk = ∞.

□

The following corollary itemizes several immediate consequences of the previous lemma,
all of which are easily verified (in order). The end result is that every requirement Re, e ∈ ω,
is eventually satisfied.

Corollary 4.13. For each e ∈ ω there exists a superstage ke ∈ ω such that

• εke = e;
• all requirements Re′, e

′ > e, are reset at the end of stage ske; and
• for all k > ke we have that εk > e and thus ke is the last supserstage at which we
act (via our actions at stage s = 0 or else Case 1 above) to satisfy any Re′, e

′ ≤ e,
e′ ∈ ω.

Consequently, it follows that:

• xe = xe,k = xe,ke, for all e ∈ ω and k ≥ ke;
• σe = σe,k = F (f(e, xe, s)), for all e ∈ ω and s ≥ ske;
• at superstage k ≥ ke we have that εk > e and consequently

σ0 = σ0,k ⊂ σ1 = σ1,k ⊂ · · · ⊂ σe = σe,k ⊂ · · · ⊂ σεk = σεk,k ∈ Tsk .

By our construction above (both Case 1 and Case 2), and Σ0
1−induction on k ≥ ke, it

follows that τ ⊃ σe for every τ ∈ Tsk \Tsk−1
, from which it follows that all but finitely

many nodes in T = ∪s∈ωTs ⊆ 2<ω extend σe. Thus, Re is satisfied with te = ske.

Let AT ⊆ T ⊆ 2<ω be an infinite T−antichain, and let

A = F−1(AT ) = {a ∈ ω : F (a) ∈ AT} ≤T AT

be the pullback of AT via (the total computable function) F = ∪s∈ωFs : ω → T , and let

A = {ak : k ∈ ω}, ak < ak+1, k ∈ ω,

be the enumeration of A in strictly increasing order. Since AT is an infinite T−antichain, it
follows that σe = limk σe,k ∈ T \ AT , from which it follows that xe = limk xe,k /∈ A, for all
e ∈ ω. Therefore, AT computes a function, namely g(k) = ak ∈ ω, k ∈ ω, that is not equal
to any h−c.e. function fe : ω → ω, e ∈ ω. □

As we previously mentioned, the proof of Theorem 4.11 requires the following lemma.

Lemma 4.14. For any given order function h, there is a uniform computable approximation
f(e, x, s) : ω3 → ω to every h−c.e. strictly increasing function, fe, e ∈ ω, such that for any
given e ∈ ω,

fe(x) = lim
s→∞

f(e, x, s), for all x ∈ ω,

and satisfies items (a)–(c) above.

Proof. Recall that {φe : e ∈ ω} denotes a computable enumeration of all partial computable
functions. Moreover, via various elementary effective modifications we can assume, without
any loss of generality, that:

(i) for each e ∈ ω we have that φe = φe(x, t) = φe(⟨x, t⟩), for some fixed computable
bijection (i.e. pairing function) ⟨·, ·⟩ : ω2 → ω,

(ii) φe,s(x, t)↓ (i.e. φe(x, t)↓ in s−many stages) only if e, x, t ≤ s,
(iii) for any given e, x, s ∈ ω

φe,s(x, t) < φe,s(x+ 1, t) whenever φe,s(x, t)↓ , φe,s(x+ 1, t)↓ ,
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(iv) φe,s(x, t)↓ whenever φe,s(x, t+ 1)↓ 18, and
(v) for each s ∈ ω there is at most one triple ⟨e, x, t⟩ ∈ ω3, t > 0, such that

φe,s−1(x, t)↑ but φe,s(x, t)↓ ,

and moreover any such triple satisfies e, x ≤ t ≤ s.

The rest of the proof describes a somewhat less trivial effective modification that essentially
turns our uniform effective enumeration {φe(x, t) : e ∈ ω} into f .

For each e, x, s ∈ ω, let te,x,s ∈ ω be maximal such that

φe,s(x, t)↓≥ x, 0 ≤ t ≤ te,x,s, t ∈ ω,

and let ne,x,s ∈ ω count the number of 0 < t ≤ te,x,s for which we have that

φe,s(x, t) ̸= φe,s(x, t− 1).

Although te,x,s may not always exist, we always start counting ne,x,0 = 0 (even though te,x,0
will not exist at stage s = 0); moreover, if te,x,s does not exist then we necessarily have that
ne,x,s = 0. We should also note that if te,x,s ∈ ω exists, then so does te,x,s+1 ≥ te,x,s. Now, we
define

f(e, x, s) =


x, if te,x,s does not exist,

φe,s(x, te,x,s), if te,x,s exists and ne,x,s < h(x),

f(e, x, s− 1), if ne,x,s ≥ h(x).

By our construction of f and

• by (ii) above it follows that f satisfies (a);
• by (iii) above it follows that f satisfies (c); and
• by (iv) and (v) above it follows that for any given s ∈ ω, there is at most one pair
e, x ∈ ω, e, x ≤ s, such that te,x,s < te,x,s+1 = te,x,s + 1, and so f satisfies (b).

□

Theorem 4.11 is interesting in the context of the following lemma and ω−models.

Lemma 4.15 (Folklore; [LMP19] Lemma 4.7). Let P be a predicate of the form (∀X)[Φ(X) →
(∃Y )Ψ(X, Y )], where Φ is an arbitrary predicate and Ψ is Π0

2. If some PA degree does not
compute a solution of P , then every solution of P has hyperimmune degree.

Following the reasoning of Nies and Shafer in [NS20, Section 7], via [NS20, Theorem 7.6]
let P ⊆ ω be of superlow PA degree (see [Nie09, Chapter 1; Theorem 1.8.37] for more details
on superlow Turing degrees and the Superlow Basis Theorem) such that every Q ≤T P ,
Q ⊆ ω, is h−c.e. for h(n) = kn, and some k = kQ ∈ ω. Now, let h0(n) = nn, n ∈ ω;
then h0 is an order function that grows faster than every exponential function of the form
hk(n) = kn, k ∈ ω. Let T = Th0 = ∪s∈ωTs,h0 ⊆ 2<ω be the corresponding infinite Σ0

1

completely branching tree that we construct in Theorem 4.11 above. Theorem 4.11 implies
that P does not compute an infinite T−antichain, and moreover Lemma 4.15 implies that
every infinite antichain AT ⊆ T is of hyperimmune Turing degree. This argument leads to
the following two corollaries.

Corollary 4.16. TAC implies HYP in the context of ω−models.

Corollary 4.17. TAC does not follow from WKL0, even in the context of ω−models.

18We can assume item (iv) without any loss of generality since in the end we are only really interested in
the total computable functions, i.e. those partial computable functions that converge on all inputs.
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Proof. A well-known consequence of the Hyperimmune-Free Basis Theorem [JS72] says that
WKL0 does not imply HYP, even in the context of ω−models. However, the previous corollary
says that TAC implies HYP in the context of ω−models, contradicting the premise thatWKL0
implies TAC. □

5. Rings with infinitely many minimal prime ideals

The main goal of this section is to prove that Noether’s Primary Decomposition Lemma
PDL follows from RT2

2 + WKL0; along the way we will establish some contextually useful
elementary algebraic properties of Noetherian rings in RCA0. More specifically, these prop-
erties will be useful in any analysis of PDL including the next section where we show how
RPDL follows from TAC+WKL0 over RCA0.

5.1. Maximal Annihilators are Minimal Primes in the Noetherian context.

Lemma 5.1. Let R be a computable ring satisfying computable-ACC, and such that

R = {xi : i ∈ ω}
is an effective enumeration of the elements of R. Now, suppose that i0 ∈ ω is least such that
x = xi0 ∈ R satisfies x2i0 = 0R and define I ⊂ R recursively via

• I0 = {xi0} ⊂ R,

• Is+1 =

{
Is ∪ {xx0+s+1}, if x2x0+s+1 = 0R & xi0+s+1 ∈ Ann(Is) = ∩y∈IsAnn(y),

Is, otherwise.

• I = ∪s∈ωIs.

Then it follows that I ⊂ R is an ideal of R such that I2 = ⟨0R⟩R.

Proof. By our construction of I ⊂ R it is easy to verify that 1 /∈ R and that I2 = ⟨0R⟩R. It
remains for us to show that I ⊂ R is indeed an ideal of R.
Suppose that a, b ∈ I and let s0 ∈ ω be least such that a, b ∈ Is ⊆ I. Then it follows that

• a+ b ∈ Ann(Is0) and
• ra ∈ Ann(Is0), for all r ∈ R,

from which it follows that a+ b, ra ∈ I for all r ∈ R. Hence I ⊂ R is an ideal of R. □

Note that, under the assumption of the existence of i0 ∈ ω, the construction of the
previous lemma is uniform in the computable ring R. This means that, assuming that
i0 ∈ ω always exists in the following construction, we can uniformly and computably iterate
the construction of I ⊂ R in the previous lemma to obtain a uniformly computable sequence
of rings and corresponding ideals

In ⊂ Rn, n ∈ ω,

Rn+1 = Rn/In, n ∈ ω,

R0 = R,

yielding an infinite strictly ascending chain of ideals

J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn ⊂ · · · ⊂ R, n ∈ ω,

such that Jn ⊂ R corresponds to In ⊂ Rn under the canonical quotient homomorphism
φn : R → Rn. Therefore, it follows that either R contains a uniformly computable strictly
ascending chain of ideals

J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn ⊂ · · · ⊂ R,

which would violate our assumption that R satisfies computable-ACC, or else there exists
n ∈ ω such that the R−quotient ring Rn does not contain any nilpotent elements. Moreover
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by (Π0
1−)induction it is not difficult to see that each Jn ⊂ Rn satisfies J2n

n = ⟨0R⟩R–i.e. the
product of any 2n−many elements in Jn is equal to zero, implying that Jn ⊂ R is uniformly
nilpotent. We have thus proven the following proposition and corollary.

Proposition 5.2. Let R be a computable ring satisfying computable-ACC. Then R contains
a computable uniformly nilpotent ideal J ⊂ R such that R/J contains no nilpotent elements.

Lemma 5.3. (RCA0) Let R be a Noetherian ring. Then there is a uniformly nilpotent ideal
J ⊂ R such that R/J contains no nilpotent elements. In other words, J ⊂ R is a maximal
(uniformly) nilpotent ideal.

This leads us to the following important proposition.

Proposition 5.4. Let R be a computable ring satisfying computable-ACC, and containing
no nilpotent elements. Then, for each 0R ̸= x ∈ R, there exists r ∈ R such that 0 ̸= rx ∈ R
and Ann(rx) ⊂ R is a minimal prime ideal containing neither r nor x.

Proof. Let 0R ̸= x ∈ R be given, and suppose that {ri : i ∈ ω} = R is an effective
subenumeration of R in which each element of R appears infinitely often. Now, construct
the uniformly computable sequence of elements {xi : i ∈ ω} ⊂ R such that

• x = x0 ∈ R,

• xi+1 =

{
ri ·R xi, if ri ·R xi ̸= 0 ∈ R,

xi, otherwise.

By construction it follows that

(1) 0R ̸= xi ∈ R and
(2) xi+1 is an R−multiple of x = xi, and therefore (by Σ0

1−induction) xi is an R−multiple
of x = x0,

for all i ∈ ω.
Now, consider the corresponding sequence of annihilator ideals {In : n ∈ ω} defined by

In = Ann(xn) ⊂ R, n ∈ ω.

It follows that
I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · ⊂ R

is a uniformly computable increasing chain of ideals in R since xi+1 ∈ R is an R−multiple
of xi ∈ R for all i ∈ ω, and via computable-ACC this ascending chain of ideals eventually
stabilizes–i.e. there is an N ∈ ω such that

Ann(xN) = IN = In = Ann(xn) ⊂ R, n ≥ N.

We claim that Ann(xN) = IN = P ⊂ R is a prime ideal not containing x.
To see that P is prime, let a, b ∈ R be such that ab ∈ P = IN = Ann(xN) ⊂ R. Then we

have that abxN = 0 ∈ R. Assume that a /∈ Ann(xN) so that axN ̸= 0 ∈ R; in this case we
will show that b ∈ Ann(xN). Note that since abxN = 0 ∈ R we have that b ∈ Ann(axN) ⊂ R.
Let ia ∈ ω, ia > N , be such that a = ria ∈ R, then by our definition of N ∈ ω and our
construction of xia ∈ R, ia ∈ ω, it follows that

Ann(xN) ⊆ Ann(axN) ⊆ Ann(xia) = Ann(xN) ⊂ R

and so we have that Ann(axN) = Ann(xN). Therefore b ∈ Ann(axN) = Ann(xN) = IN and
hence P = IN ⊂ R is a prime ideal.
Finally, note that if xN = rx ̸= 0 ∈ R, r ∈ R, the, since R contains no nilpotent elements,

we have that (rx)2 ̸= 0 ∈ R and hence rx /∈ Ann(rx) = P ⊂ R hence r, x /∈ P . Furthermore,
note that since xN ·R P = 0 then it follows that any prime ideal Q ⊂ R must either contain
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xN = rx, or else it must contain all of P . It follows that P is a minimal prime ideal of R
(characterized by the fact that it does not contain xN). □

Corollary 5.5 (RCA0). Let R be a Noetherian ring with no nilpotent elements. Then every
minimal prime ideal P ⊂ R is the annihilator of some x ∈ R \ P .

One can use Corollary 5.5 to characterize the nonzero elements of a Noetherian ring with
no nilpotent elements, as follows.

Corollary 5.6 (RCA0). Let R be a Noetherian ring with no nilpotent elements, and let
x ∈ R. Then x = 0R if and only if x is contained in every minimal prime ideal of R.

Proof. It is clear that if x = 0R then x belongs to every prime ideal. On the other hand, if
x ̸= 0R then by Corollary 5.5 it follows that there exists a ∈ R such that 0 ̸=R a · x = y and
P = Ann(y) is a minimal prime ideal not containing x. □

The following relevant converse of Proposition 5.4 above also holds.

Proposition 5.7. Let R be a computable ring satisfying computable-ACC and with no nilpo-
tent elements. Let P ⊂ R be a minimal prime ideal, and a ∈ R \ P . Then there exists
x ∈ R \ P such that Ann(ax) = P .

Proof. Let

{a = a0, a1, a2, a3, · · · , aN , · · · } = R \ P, N ∈ ω,

be an enumeration of R \ P , and for each N ∈ ω define

xN =
N∏
i=0

ai.

By construction it follows that

Ann(x0) ⊆ Ann(x1) ⊆ Ann(x2) ⊆ · · · ⊆ Ann(xN) ⊆ · · · , N ∈ ω,

and since R satisfies computable-ACC there exists N0 ∈ ω such that for all N ≥ N0 we have
Ann(xN) = Ann(xN0). To prove the current lemma it suffices to show that P = Ann(xN0).
It is easy to see that Ann(xN0) ⊆ P , since xN /∈ P and P is prime. To see that P ⊆

Ann(xN0), let c ∈ P and suppose for a contradiction that cxN0 ̸= 0 ∈ R. Then, by Proposi-
tion 5.4 above there exists rc ∈ R such that rccxN0 ̸= 0 ∈ R and Q = Ann(rccxN0) ⊂ R is a
minimal prime ideal with rc, c, xN0 /∈ Q. Note that c ∈ P \Q and thus Q ̸= P , and since Q
and P are minimal prime ideals of R, there exists q ∈ Q \ P ⊂ R \ P such that

0R = q · rccxN0 = (crc) · qxN0 .

Now, by definition of N0 it follows that

0R = (crc) · xN0 = rccxN0 ,

a contradiction. □

Corollary 5.8 (RCA0). Let R be a Noetherian ring with no nilpotent elements. Let P ⊂ R
be a minimal prime ideal of R and let a ∈ R \ P . Then there exists x ∈ R \ P such that
P = Ann(ax).

Remark 5.9. (RCA0) Let R be a ring, P ⊂ R a minimal prime ideal, and x ∈ R \ P such
that P = Ann(x). Then it follows that x ∈ Q for any other R−minimal prime ideal Q ̸= P .
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5.2. Prime Avoidance. We require one more well-known and important algebraic lemma
before can give a proof of PDL via WKL0 + RT2

2.

Lemma 5.10 (Prime Avoidance Lemma, RCA0). Let R be a ring, let I ⊆ R be an ideal, and
let P1, P2, . . . , PN ⊂ R, N ∈ ω be prime ideals such that I ⊈ Pi, i = 1, 2, . . . , N ∈ ω. Then
there exists 0 ̸= x ∈ R such that

x ∈ I \
N⋃
i=1

Pi ⊆ R.

Proof. We employ Σ0
1−induction on N ∈ N and set parameters I, P1, P2, . . . , PN ⊂ R. The

base case N = 1 is trivial given our assumptions. Now, for the induction step, for each
i = 1, 2, . . . , N let

zi ∈ I \
N⋃
j=1
j ̸=i

Pj.

If we have that zi /∈ Pi for some 1 ≤ i ≤ N then we are done, so we can assume that zi ∈ Pi

for all 1 ≤ i ≤ N . Now, set
z = z1z2 · · · zN−1 + zN ;

it follows that z ∈ I \ ∪N
i=1Pi as required. □

5.3. Proving PDL in Second-Order Arithmetic. We are finally ready to prove PDL in
Second-Order Arithmetic.

Theorem 5.11. Let R be a computable ring with infinitely many computable minimal prime
ideals that satisfies computable-ACC. Then there is a computable 2-coloring c : ω×ω → {0, 1}
such that any infinite homogeneous set H ⊆ ω (see [DH09, Definition 1.3] for more details)
for color c0 ∈ {0, 1} computes either:

(a) an infinite strictly ascending chain of (annihilator) ideals if c0 = 0, or else
(b) an infinite sequence x0, x1, . . . ∈ R such that for each i ∈ ω we have that

xi+1 /∈ ⟨x0, x1, . . . , xi⟩R,
if c0 = 1.

Proof. Let R be a ring with infinitely many minimal prime ideals P0, P1, P2, . . . ⊂ R and
enumeration R = {rn : n ∈ ω} such that for every n0 ∈ ω there are infinitely many n ∈ ω
such that rn0 = rn. By passing to the quotient ring R/J , where J ⊂ R is as in Proposition
5.2 above, we may assume that R has no nilpotent elements in which case Proposition 5.7
above says that for each n ∈ ω there exists pn ∈ R \ P such that Pn = Ann(pn). Via
our construction in the proof of Proposition 5.4 above, we can uniformly and computably
construct a subenumeration of the R−minimal prime ideals {Ai : i ∈ ω} such that

• ai,0 = ri, and
• for all k > i, k ∈ ω, either

– rk ·R ai,k−1 ̸= 0 ∈ R, in which case we set ai,k+1 = rk ·R ai,k−1, or else
– rk ·R ai,k−1 = 0 ∈ R and we have that rk ∈ A.

As in the proof of Proposition 5.4 above, since R satisfies computable-ACC it follows that
for each i ∈ ω there exists ni ∈ ω, ni ≥ i, such that

A = Ann(ai,ni
) = Ann(ai,k) for any k > ni, k ∈ ω

is a minimal prime ideal of R. Moreover, for each n ∈ ω there exists i ∈ ω such that ri = pn
and since we have that Pn = Ann(pn) by our construction of Ai it follows that Ai = Pn.
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Thus we can assume that we have a uniformly computable subenumeration of R−minimal
prime ideals {Pn : n ∈ ω}, which we can effectively refine to an infinite sequence of distinct
minimal primes {Qn : n ∈ ω} ⊆ {Pn : n ∈ ω}. Now, by Lemma 5.10, there exists an infinite
computable sequence of elements x0, x1, x2, . . . such that for each n ∈ ω we have that

xn ∈ Qn \

(
n−1⋃
i=0

Qi

)
.

For each n1 ≤ n2, n1, n2 ∈ ω, let

c(n1, n2) =

{
0, xn1 /∈ Qn2 ,

1, xn1 ∈ Qn2 .

and let H be an infinite homogeneous set for c with uniform color c0 ∈ {0, 1}. Let H = {nk :
k ∈ ω} be a strictly increasing enumeration of H.
If c0 = 0 then for any i, j ∈ ω, i < j, we have that xni

/∈ Qnj
. Now, for each N ∈ ω, if we

set

aN =
N∏
i=0

xni
∈ R and AN = Ann(aN) ⊂ R,

then by Lemma 5.6 above and the fact that xnN
∈ QN (by construction) but xnN

/∈ AN+1

(which follows from the fact that c0 = 0) we have that qN+1 ∈ AN+1 \ AN , where qN ∈ R is
such that QN = Ann(qN)

19 and so

A0 ⊂ A1 ⊂ · · · ⊂ AN ⊂ · · · ⊂ R

is a strictly increasing chain of ideals, uniformly computable in H.
On the other hand, if c0 = 1 we have that xn1 ∈ Qn2 for any given n1, n2 ∈ ω, n1 < n2. In

this case, for all N ∈ ω we have that

⟨xn0 , xn1 , . . . , xnN+1
⟩R ⊆

∞⋂
k=N+1

Qnk
but ⟨xn0 , xn1 , . . . , xnN+1

⟩R ⊈
∞⋂

k=N

Qnk

since xnN+1
/∈ QnN

by construction. It follows that

xnN+1
/∈ ⟨xn0 , xn1 , . . . , xnN

⟩

for each N ∈ ω. □

Corollary 5.12. (RCA0) WKL0 + RT2
2 implies PDL.

Proof. Let R be a commutative ring such that for each N ∈ N R contains N minimal prime
ideals. In the previous theorem we described

• why we can assume, without any loss of generality, that R has no nilpotent elements,
and also

• how we can use our hypotheses to effectively construct an infinite sequence of mutu-
ally distinct minimal prime ideals {Qn :∈ N} in R.

If c : ω× ω → 2 is the effective coloring that we described in the previous theorem, then via
RT2

2 c has an infinite homogeneous set H ⊆ N with uniform color c0 ∈ {0, 1}. If c0 = 0 then
we described how to effectively produce an infinite strictly ascending chain of (annihilator)
ideals in R via H. On the other hand, if c = 1 then we constructed an infinite sequence of
elements x0, x1, x2, . . . ∈ R such that for each N ∈ N, xN+1 is not an R−linear combination

19Note that qN ∈ R exists via Lemma 5.7 above.
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of x0, x1, . . . , xN . In this case, via WKL0, it follows that there exists a strictly ascending
chain of ideals

I0 ⊂ I1 ⊂ · · · ⊂ IN ⊂ · · · ⊂ R

such that for each N ∈ N we have that xN+1 ∈ IN+1 \ IN (see [Con19, Lemma 4.2, Corollary
4.3] and the discussion in between for more details and references). □

6. Upper Bounds for RPDL and URPDL

We now leave the general Primary Decomposition Lemma (PDL) behind and focus on
its restrictions RPDL and URPDL in relation to the Tree Antichain Theorem TAC, over
RCA0 + BΣ2. Our overall goal in this context is to provide proofs of RPDL and URPDL in
Second-Order Arithmetic that differ from our proof of PDL above (i.e. Corollary 5.12) by
showing that:

• RPDL follows from TAC+WKL0, and
• URPDL follows from TAC.

Definition 6.1. Let R be a computable ring with infinitely many minimal prime ideals
satisfying computable-ACC. In the proof of Theorem 5.11 above we showed how to uniformly
and effectively enumerate the minimal prime ideals of R. Fix such an enumeration O =
{Pk : k ∈ ω}, and for each 0R ̸= x define

Px = Px,O = {k ∈ ω : x ∈ Pk}

to be the prime type of x (relative to O).

Remark 6.2. Let R be a computable ring with infinitely many prime ideals that satisfies
computable-ACC. Going forward we will always aim to construct an infinite strictly ascending
chain of ideals in R. Therefore we can assume, by taking the quotient of R by the computable
(∆0

1−definable) ideal of nilpotent elements in Proposition 5.2 and Corollary 5.3, that R does
not contain any nilpotent elements. Furthermore, in the proof of Theorem 5.11 above we
showed how to construct a uniformly computable enumeration of all the minimal prime ideals
of R,

O = OR = {Pk : k ∈ ω}.
Going forward we will always implicitly assume that such a fixed enumeration O = OR is
given along with any such R.

Remark 6.3. Corollary 5.6 says that if R in the previous definition has no nilpotent ele-
ments, then x = 0R if and only if the prime type of x is ω. Moreover, in light of Corollary
5.6 above, for any x ∈ R we have that

Ann(x) = {y ∈ R : Px ∪ Py = ω} =
⋂
k/∈Px

Pk ⊂ R.

Also, if x, y ∈ R are such that ax+ by = 1R for some a, b ∈ R. Then Px and Py must be
disjoint sets of natural numbers. More generally, if x0, x1, . . . , xN ∈ R are such that

N∑
i=0

aixi = 1R

for some a0, a1, . . . , aN ∈ R, then we have that

N⋂
i=0

Pxi
= ∅ ⊂ ω.
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The following lemma will be very useful in constructing infinite strictly ascending chains
of annihilator ideals in computable rings with infinitely many minimal primes.

Lemma 6.4. Let R be a computable ring with infinitely many minimal primes satisfying
computable-ACC, and suppose that there is an incomputable sequence of elements X = {xk :∈
ω} ⊆ R such that for each k ∈ ω,

∅ ≠ Pxk+1
\

k⋃
ℓ=0

Pxℓ
= Pxk+1

\ PXk
⊆ ω,

where Xk =
∏k

ℓ=0 xℓ. Then we have that

Ann(X0) ⊂ Ann(X1) ⊂ · · · ⊂ Ann(XN) ⊂ · · · ⊂ R

is an X−uniformly computable infinite strictly ascending chain of R−annihilator ideals, and
thus R does not satisfy X−computable-ACC.

Proof. Let PXk
= ∪k

ℓ=0Pxℓ
⊆ ω, for each k ∈ ω. Then by our hypothesis we have that

PX0 ⊂ PX1 ⊂ PX2 ⊂ · · · ⊂ PXN
⊂ · · · ⊂ ω,

from which it follows that⋂
ℓ/∈PX0

Pℓ ⊂
⋂

ℓ/∈PX1

Pℓ ⊂
⋂

ℓ/∈PX2

Pℓ ⊂ · · · ⊂
⋂

ℓ/∈PXN

Pℓ ⊂ · · · ⊂ R.

The conclusion now follows from Remark 6.3 above. □

Theorem 6.5. Let R be a computable ring with infinitely many computable minimal prime
ideals and satisfies computable-ACC. For each n ∈ ω define the Σ0

1 set

Cn = CR,n = {x ∈ R : |Px| ≥ n} ⊂ R

and suppose that there exists a partial computable function f : R → R× R such that for all
x ∈ C2 we have that f(x)↓= ⟨y, z⟩ for some y, z ∈ R such that Py,Pz form a nontrivial20

partition of Px. Then there exists a Σ0
1−definable completely branching tree TR ⊆ 2<ω such

that any infinite TR−antichain computes an infinite strictly ascending chain of R−ideals.

Proof. We enumerate an infinite Σ0
1 completely branching tree T = TR = ∪s∈ωTs ⊆ 2<ω

and corresponding uniformly computable functions Fs : Ts → R, Fs+1 ⊃ Fs, computable
F = ∪s∈ωFs, in stages s ∈ ω. Moreover, for each s ∈ ω we will have that:

(a)
∏

λ∈Λs
F (λ) = 0R, and

(b) for any α ∈ Ts and any prefix-free set A ⊂ Ts such that [A] = [α] ⊆ 2ω, we have that
{PF (β) : β ∈ A} is a nontrivial21 partition of PF (α),

where Λs denotes the (finite) set of leaves of Ts. Now, if A = {αk : k ∈ ω} ⊆ T is an infinite
T−antichain, then by (a) and (b) above it follows that the sequence {F (αk) : k ∈ ω} ⊆ R
satisfies the hypotheses of Lemma 6.4, which yields an infinite strictly ascending chain of
R−ideals. Therefore, to prove the current theorem it suffices to construct the aforementioned
T .

At stage s = 0, define T0 = {∅} and F0(∅) = 0R. Note that, by our construction of
T0, F0 and Σ0

1−induction, property (a) will follow from property (b) via Remark 6.3 above.
Furthermore, via Σ0

1−induction, to verify property (b) it suffices to assume that A = {α0, α1}
is the set of successor nodes (children) of α.

At stage s + 1 > 0, s ∈ ω, assume that we are given a finite completely branching tree
Ts ⊂ 2<ω with (s + 1)−many leaves. Via Σ0

1−induction we can assume that property (b)

20Py,Pz ̸= ∅.
21Every PF (β) ⊂ ω is nonempty.
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holds for Ts. Let Λ denote the leaves of Ts. By the Finite Pigeonhole Principle there is a
λ0 ∈ Λ such that F (λ0) ∈ C2. Now, suppose that f(F (λ)) = ⟨y, z⟩, y, z ∈ R, and define

• Ts+1 = Ts ∪ {λ0, λ1}, and
• Fs+1(λ0) = y, Fs+1(λ1) = z.

The verification of property (b) for Ts+1 follows from our hypotheses on f and Σ0
1−induction.

□

Corollary 6.6 (RCA0). TAC implies URPDL.

Proof. Via Remark 6.3 above it follows that any ring with infinitely many uniformly coprime
minimal prime ideals satisfies the hypotheses of Theorem 6.5, which is valid in RCA0. □

Our main goal for the remainder of the section is to show that RPDL follows from WKL0+
TAC.

Lemma 6.7. Let R be a computable ring with infinitely many computable minimal prime
ideals, each of which is PA-maximal. Assume that x, y ∈ R are such that Px∩Py = ∅. Then
there exist a, b ∈ R such that ax+ by = 1R.

Proof. The argument is similar to the one we outlined in Remark 2.11 above. Assume for
a contradiction that no such a, b ∈ R exist. Then, by [Sim09, Theorem IV.6.4], there is an
infinite computable tree T = Tx,y ⊆ 2<ω such that every infinite path through T codes a
prime ideal P ⊂ R containing both x and y. By our minimality and maximality assumptions
on the primes of R it follows that

x, y ∈ P ⊂ R,

for some minimal prime ideal P , contradicting our assumption that Px ∩ Py = ∅. □

Lemma 6.8. Let R be a computable ring with infinitely many computable minimal prime
ideals, each of which is PA-maximal. Then for each k ∈ ω there exists xk ∈ R such that

Pxk
= {k}.

Proof. By Proposition 5.7 above, for each k ∈ ω there exists pk ∈ R \ Pk such that Pk =
Ann(pk) ⊂ R. Now, Remark 2.11 says that

xk + apk = 1R,

for some xk ∈ Pk and a ∈ R. Furthermore, by definition of pk and Remark 6.3 above it
follows that Ppk = ω \ {k}, from which it follows that Pxk

= {k} as the lemma claims. □

Lemma 6.9. Let R be a computable ring with infinitely many computable prime ideals, each
of which is PA-maximal. Then, either

• R does not satisfy computable-ACC, or else
• for each 0R ̸= x ∈ ∪k∈ωPk we can uniformly and effectively find 0R ̸= y ∈ ∪k∈ωPk

such that Px,Py form a nontrivial partition of ω.

Proof. Let x = x0. Since 0R ̸= x0, by Remark 6.3 above and the previous two lemmas it
follows that there exists (and we can effectively find) some a0 ∈ R such that 1R = ⟨x0, a0⟩R.
Now, if x0a0 = 0R we can take y = a0; otherwise we have 0R ̸= x1 = x0a0 and repeat the
argument to (uniformly and effectively) construct a1 ∈ R such that ⟨x1, a1⟩R = 1R and it
follows that Pa0 ∩ Pa1 = ∅. If 0R = x1a1 = x0a0a1, set y = a0a1; otherwise keep repeating
the argument. . .

In the end either we end up with a valid y ∈ R, or else we end up generating a uniformly
computable infinite sequence of elements {ak : k ∈ ω} such that {Pak : k ∈ ω} are mutually
disjoint sets, and it follows that

Ann(b0) ⊂ Ann(b1) ⊂ Ann(b2) ⊂ · · · ⊂ Ann(bN) ⊂ · · · ⊂ R, N ∈ ω,
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is a uniformly computable infinite strictly ascending chain of R−ideals. □

Theorem 6.10. Let R be a computable ring satisfying computable-ACC and containing
infinitely many computable minimal prime ideals, each of which is PA-maximal. Then there is
an infinite Σ0

1 completely branching tree T = TR ⊆ 2<ω such that every infinite T−antichain
computes an infinite strictly ascending chain of R−annihilator ideals.

Proof. By Theorem 6.5 above it suffices to construct a partial computable function f : R →
R × R, such that for all x ∈ C2 = {x ∈ R : |Px| ≥ 2}, f(x) = ⟨y, z⟩, y, z ∈ R, are such that
Py,Pz form a nontrivial partition of Px. If x = 0R then any y, z ∈ R such that yz = 0R = x
and 1R ∈ ⟨y, z⟩R will suffice. On the other hand, if x ̸= 0R, x ∈ C2, then by Remark
6.3 and Lemmas 6.9, 6.7 above there exists a ∈ R such that xa = 0R and 1R ∈ ⟨x, a⟩R.
Furthermore, by our hypothesis on x and Lemma 6.8 above it follows that there exists (and
we can uniformly and effectively locate some) y ∈ R such that

1R ∈ ⟨ax, y⟩R and axy ̸= 0R.

Furthermore, via Lemma 6.9 implies that there exists (and we can uniformly and effectively
locate some) z ∈ R such that

axyz = 0R and 1R ∈ ⟨axy, z⟩R.
It follows that Py,Pz form a nontrivial partition of Px. Finally, upon (uniformly and ef-
fectively) setting f(x) = ⟨y, z⟩ ∈ R × R for all x ∈ C2, Theorem 6.5 says that the desired
infinite Σ0

1 completely branching tree T = TR ⊆ 2<ω exists. □

Corollary 6.11 (WKL0). TAC implies RPDL.

7. A lower bound for URPDL over RCA0 + BΣ2

Theorem 7.1. Let T = ∪s∈ωTs ⊆ 2<ω be an infinite completely branching tree. Then there
is a computable ring R = RT with infinitely many computable minimal prime ideals and such
that every infinite strictly ascending chain of R−ideals computes an infinite T−antichain.

Proof. Let R0 = Q[Xt : t ∈ ω], and define a computable function h : ω × {0, 1} → T ⊆ 2<ω

h(t, 0) = σt0 ∈ 2<ω and h(t, 1) = σt1 ∈ 2<ω, t ∈ ω, where σt ∈ Tt ⊂ 2<ω is the unique
Ts−leaf such that {σt0, σt1} = Tt+1 \ Tt. Then we have a computable isomorphism

H : R0 → Q[Xσ : σ ∈ T ]

generated by the computable reindexing of R0−indices t ∈ ω given by:

H(Xt) =

{
Xh(t/2,0) = Xσt0, t even,

Xh((t−1)/2,1) = Xσt1, t odd.

Let RT,0 = Q[Xσ : σ ∈ T ] ∼= R0.

Definition 7.2. Let X ∈ R0 be a monomial. We have

H(X) =
∏
σ∈Tt

Xασ
σ ∈ RT,0, ασ, t ∈ ω,

where t is least such that {σ ∈ T : ασ > 0} ⊆ Tt. Let

ℓ = max{|σ| ∈ ω : σ ∈ Tt},
and for each τ ∈ 2<ω such that |τ | ≥ ℓ let

c(τ) = cX(τ) =
∑
σ∈Tt
σ⊆τ

ασ ∈ ω
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and note that c(τ) ∈ ω is uniformly computable in the monomial X ∈ R0
∼= RT,0 and node

τ ∈ 2<ω, |τ | ≥ ℓ. Now, for any given k ≥ ℓ we define

C(k) = CX(k) = ⟨c(τ1), c(τ2), · · · , c(τ2k)⟩ ∈ ω2k ,

where τ1, τ2, . . . , τ2k ∈ 2=k is the unique lexicographic ordering of 2=k ⊂ 2<ω, to be the
multiplicity-covering code (MC-code) corresponding to X ∈ R0

∼= RT,0 of length k ∈ ω.
We think of each monomial X ∈ R0

∼= RT,0 as corresponding to an open covering of 2ω

given by the indices of the indeterminates σ ∈ T of RT,0 that appear as factors in X ∈ RT,0,
and thus a given τ ∈ 2<ω can be covered by more than one index σ ⊆ τ , or it can be covered
by the same index “multiple times” if ασ ≥ 2, σ ⊆ τ .

Remark 7.3. For all k > ℓ, k, ℓ ∈ ω, in Definition 7.2 above, we have that C(k) ∈ ω2k is

determined by C(ℓ) ∈ ω2ℓ.

Definition 7.4. Let M0,M1 ∈ R0
∼= RT,0 be Q−monomials such that Σ0,Σ1 ⊂ T ⊂ 2<ω are

the finite sets of RT,0−indeterminate indices appearing in M0,M1, respectively, and let

ℓ0 = max{|σ| : σ ∈ Σ0} ∈ ω, ℓ1 = max{|σ| : σ ∈ Σ1} ∈ ω.

Without any loss of generality assume that ℓ0 ≤ ℓ1. In this case we say that M0 and M1 are
MC-equivalent whenever CM0(ℓ1) = CM1(ℓ1) ∈ ω2ℓ1 .
It is not difficult to verify that MC-Equivalence is an equivalence relation.

Definition 7.5. For any given (Q−)monomial M ∈ R0
∼= RT,0, let

ΣM = {σ ∈ T : Xσ appears in M} ⊂ T ⊆ 2<ω, ℓM = max{|σ| : σ ∈ Σ} ∈ ω.

For each τ = τi ∈ 2=ℓM , 1 ≤ i ≤ 2ℓM , as in Definition 7.2 above, let

CM = CM(ℓM) ∈ ω2ℓM , CM(i) = c(τi) ∈ ω.

Remark 7.6. For any two monomials M0,M1 ∈ R0
∼= RT,0 with product monomial M =

M0M1 ∈ R0
∼= RT,0 we have that ℓM = max{ℓM0 , ℓM1} ∈ ω and

CM = CM0(ℓM) + CM1(ℓM) ∈ ω2ℓM ,

where the sum above denotes coordinate-wise (i.e. vector) addition in ω2ℓM .

Definition 7.7. Recall that two finite binary strings are comparable whenever one is a prefix
of the other.

Let X, Y ⊆ 2<ω. We say that Y covers X whenever every σ ∈ X is comparable to some
τ ∈ Y .
Finally, note that if T ⊆ 2ω is a completely branching tree and X ⊆ 2<ω, then X covers

T if and only if X covers 2<ω.

Let M ⊂ R0
∼= RT,0 be the set of monomials of R0, and let

M2<ω = {M ∈ M : (∀0 ≤ i ≤ 2ℓM )[CM(i) > 0]}.
In other words,M2<ω denotes the set ofRT,0−monomialsM ∈ M such that the (2<ω)−indices
appearing in M cover 2<ω. Now, if

I0,0 = ⟨M2<ω⟩Q ⊂ R0
∼= RT,0

denotes the Q−span of M2<ω in R0
∼= RT,0 then it easily follows that I0,0 is a computable

subset of R0
∼= RT,0. Moreover, by Remark 7.6 above, it follows that I0,0 is actually a

computable ideal of R0
∼= RT,0.

Now, for any given ℓ ∈ ω and C ∈ ω2ℓ , let

MC = MC,ℓ = {M ∈ M : CM = C and ℓM ≤ ℓ} ⊂ M ⊂ R0
∼= RT,0
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be the set of R0−monomials with the fixed MC-code C, and define

HC =


∑

M∈F⊂MC ,
F finite

qMM : qM ∈ Q,
∑
M∈F

qM = 0

 ⊂ R0
∼= RT,0

to be the set of “homogeneous” polynomials in R0 all of whose monomial summands have
MC-code C and whose rational coefficients sum to zero. It follows that HC ⊂ R0

∼= RT,0 is

uniformly computable in C ∈ ω2ℓ . It is not difficult to check that for any given C ∈ N2ℓ we
have that the setHC ⊂ R0

∼= RT,0 is closed under addition and scalar (i.e.Q−)multiplication.
Furthermore, via Remark 7.6 above it follows that the larger set

H =
⋃

C∈ω2ℓ ,
ℓ∈ω

HC ⊂ R0
∼= RT,0

is also closed under multiplication byM ⊂ R0
∼= RT,0, from which it follows that the Q−span

I0,1 = ⟨H⟩Q ⊂ R0
∼= RT,0

is an R0−ideal. Furthermore, we have that I0,1 is a computable ideal since to decide whether
a given polynomial p ∈ R0

∼= RT,0 is in I1,0, one can effectively partition the Q−monomial
summands qM ∈ R0

∼= RT,0, q ∈ Q, M ∈ M ⊂ R0
∼= RT,0, of p by their corresponding

MC-equivalence classes CM ∈ ω2ℓM , lM ∈ ω, and then check to see if the rational coefficients
in each MC-equivalence class sum to zero.

We can now define

I0 = I0,0 +R0 I0,1 ⊂ R0
∼= RT,0.

It follows that I0 is a computable ideal of R0
∼= RT,0. To decide whether or not a given

polynomial p ∈ R0
∼= RT,0 is in I0, first remove all Q−monomial summands of p that belong

to I0.0, thus obtaining a new polynomial p′ ∈ R0
∼= RT,0. Then check whether p′ ∈ I1,0 as in

the previous paragraph. Let

R1 = R0/I0.

Although it will not serve a purpose for us and so we omit its proof, we invite the motivated
reader to show that in fact we have

R1 = RT,0/⟨X0 = X∅, Xσ −Xσ0Xσ1 : σ, σ0, σ1 ∈ T ⟩RT,0
.22

Now, for any given p ∈ R0
∼= RT,0 we can write

p =
N∑
i=1

qiMi, qi ∈ Q, Mi ∈ M, N ∈ ω,

expressing p as a Q−linear combination of monomials in R0
∼= RT,0. Now, let

ℓp = max{ℓMi
: 1 ≤ i ≤ N} ∈ ω;

22Let I ′0 = ⟨X∅, Xσ − Xσ0Xσ1⟩RT,0
⊂ RT,0

∼= R0 and note that every generator of I ′0 is contained in
I0 from which it follows that I ′0 ⊆ I0. To prove that I0 ⊆ I ′0 it is very helpful to first show that, given

any MC-code C ∈ ω2ℓ , ℓ ∈ ω, there is a unique monomial MC ∈ R0
∼= RT,0 of minimal degree such that

0 ≤ ℓMC
≤ ℓ, ℓMC

∈ ω, CMC
(ℓ) = C, and M − MC ∈ I ′0 for any monomial M ∈ RT,0

∼= R0 that is MC-
equivalent to MC . Finally, if M1,M2, . . . ,MN , N ∈ ω, is a finite sequence of monomials as in the previous

sentence with corresponding rational coefficients q1, q2, . . . , qN ∈ Q such that
∑N

k=1 qk = 0 then we have that

qk(Mk −MC) ∈ I ′0 for each k = 1, 2, . . . , N and it follows that
∑N

k=1 qk(Mk −MC) =
∑N

k=1 qkMk ∈ I ′0.
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it follows that ℓp is the length of a longest node appearing as an index in p ∈ RT,0. Now, we
construct a computable set U ⊂ R0 with p ∈ U if and only if for all 1 ≤ k ≤ 2ℓ, k ∈ ω, there
exists 1 ≤ ik ≤ N , ik ∈ ω, such that

CMik
(k) = 0 ∈ ω,

where CMik
∈ ω2ℓ is the multiplicity covering code ofMi at level ℓ ∈ ω, ℓ ≥ ℓMi

, and moreover∑
0≤i≤N,

Mi MC−equivalent to Mik

qi ̸= 0.

It follows that for every p ∈ U ⊂ R0
∼= RT,0 we have that p ̸= 0R1 ∈ R1 = R0/I0 and also

that any given ℓ′ ≥ ℓ witnesses that p ∈ U just as ℓ ∈ ω did above. It is clear that U is
a computable subset of R0 since we have already seen that I1,0 ⊂ R0 is computable and
computing the MC code of a given monomial/polynomial can be done uniformly.

We claim that U ⊂ R0 is multiplicative. To see why, let p1, p2 ∈ U ⊂ R0
∼= RT,0,

p1 =

N1∑
i=1

qi,1Mi,1, qi,1 ∈ Q, Mi,1 ∈ M, N1 ∈ ω,

p2 =

N2∑
i=1

qi,2Mi,2, qi,2 ∈ Q, Mi,2 ∈ M, N2 ∈ ω,

ℓ1 = max{ℓMi,1
: 1 ≤ i ≤ N1} ∈ ω,

ℓ2 = max{ℓMi2
: 1 ≤ i ≤ N2} ∈ ω,

and
ℓ = max{ℓ1, ℓ2} ∈ ω.

Now, for any given 1 ≤ k ≤ 2ℓ, if C1, C2 ∈ ω2ℓ are the ω−lexicographically least MC codes
corresponding to monomials of p1, p2, respectively, such that C1(k) = C2(k) = 0, then by

Remark 7.6 above it follows that the MC code C1 + C2 ∈ ω2ℓ , (C1 + C2)(k) = 0 ∈ ω
corresponds to some monomial appearing in the polynomial product p1p2 ∈ R0, and is
the ω−lexicographically least such MC code. Moreover, it is not difficult to check that if
0 ̸= Q1, Q2 ∈ Q are the sums of the coefficients of monomials with MC code C1, C2 in p1
and p2, respectively, then 0 ̸= Q1Q2 ∈ Q is the sum of the Q−coefficients corresponding to
those monomial summands of p1p2 with MC code C1 +C2. It follows that U ⊂ R0

∼= RT,0 is
a multiplicative set not containing any element of I0 = I0,0+ I1,0 ⊂ R0

∼= RT,0, and therefore
we can localize the ring R1 = R0/I0 = R0 at this computable subset U ⊂ R1, 0R1 /∈ U . Let
R = RT denote the resulting computable ring; R will be our main ring of interest for the
rest of the proof.

Before we proceed we should note two key facts about R, both of which follow easily from
our previous remarks.

• For all σ ∈ T , if σ0, σ1 ∈ T then Xσ = Xσ0Xσ1 ∈ R, Xσ, Xσ0, Xσ1 ∈ R0
∼= RT,0

(R inherits this property from R1 = R0/I0). Therefore, any prime ideal P ⊂ R
containing X0 ∈ R must also contain either Xσ0 ∈ R or else Xσ1 ∈ R. However, as
we shall see in the next item, any proper ideal such as P ⊂ R cannot contain both
of these indeterminates.

• If σ, τ ∈ 2<ω are incomparable, then any R−ideal containing both Xσ, Xτ ∈ R must
also contain the identity element 1R. To see why note that by our construction of
U ⊂ R (more specifically, by our localization in going from R1 to R) it follows that
Xσ +Xτ is a unit in R.
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The following lemma is a useful generalization of the second item above.

Lemma 7.8. Every element 0R ̸= r ∈ R \ U can be expressed in the form

r = uM ∈ R

for some unit u ∈ U ⊂ R0
∼= RT,0 and some monomial M ∈ RT,0 \ I0.

Proof. Let 0R ̸= r ∈ R, r = p, p ∈ R0 \ U ,

p =
N∑
i=1

qiMi, qi ∈ Q, Mi ∈ M, i ∈ ω.

For each i = 1, 2, . . . , N ∈ ω let Σi ⊂ T ⊆ 2<ω be the finite set T−indices of indeterminates
appearing in the monomial Mi ∈ M, and define

ℓi = max{|σ| : σ ∈ Σi} ∈ ω,

and also
ℓ = max{ℓi : 0 ≤ i ≤ N} ∈ ω.

Now, by repeatedly replacing indeterminates of the form Xσ, σ ∈ T , |σ| < ℓ, appearing in a
given monomial summand of p, Mi ∈ M ⊂ RT,0

∼= R0, 1 ≤ i ≤ N , with the R−equivalent
productXσ0Xσ1 ∈ M ⊂ RT,0

∼= R0, σ0, σ1 ∈ T , we can assume without any loss of generality
that each indeterminate Xτ , τ ∈ T ⊆ 2<ω appearing in p ∈ RT,0

∼= R0 satisfies |τ | = ℓ ∈ ω.
Then, if we let M0 ∈ M ⊂ RT,0 \ I0 be the unique greatest common divisor monomial of
M1,M2, . . . ,MN in M, and factorize

p =M0 ·RT,0

N∑
i=1

qiM
′
i , M

′
i =

Mi

M0

, i ∈ ω,

then by our construction of U ⊂ R0
∼= RT,0 and the fact that M0 is the greatest common

divisor of the monomial summands of p ∈ R0
∼= RT,0, it follows that∑

i=1

qiM
′
i ∈ U ,

and so we can set M = M0 ∈ M ⊂ R0
∼= RT,0 and u =

∑N
i=1 qiM

′
i ∈ U thus proving the

current lemma. □

The following can be easily verified by our previous remarks about R.

• For each s ∈ ω, and finite Ts ⊂ 2<ω, Ts has exactly (s+1)−many leaves λs,1, λs,2, . . . , λs,s+1.
Let Λs = {λs,k : 1 ≤ k ≤ s+1} denote the set of Ts−leaves. It follows that Λs covers
Ts, and since T is completely branching we have that Λs also covers 2<ω.

• For each s ∈ ω:
–
∏s+1

k=1Xλs,k
= 0R and

– for any 0 ≤ k < ℓ ≤ s + 1 we have that Xk + Xℓ ∈ U ⊂ R0
∼= RT,0 and so

Xk +Xℓ is an R−unit.
• Let P ⊂ R be prime. Then, by the previous point, for each s ∈ ω, P contains exactly
one Ts−leaf λ = λs,P = λs,kP ∈ Ts, 1 ≤ kP ≤ s+ 1. Moreover, we have that

Xλ ∈ As,k = Ann(
s+1∏
k=1
k ̸=kP

Xλs,k
) ⊆ P.

• Conversely, for each s ∈ ω and 1 ≤ k ≤ s + 1, there is at least one minimal prime
ideal P = Ps,k ⊂ R such that λs,k ∈ As,k ⊆ P .

• Let P ⊂ R be prime. Either:
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– there is a T−leaf λ ∈ T , λ0, λ1 /∈ T , such that P = ⟨Xλ⟩R,23 or else
– there is a unique f ∈ [T ] ⊆ 2ω such that for all σ ⊂ f , σ ∈ 2<ω, Xσ ∈ P .24

• For any two distinct R−prime ideals P ̸= Q, there is a unique maximal σ ∈ T such
that Xσ ∈ P ∩Q. Moreover, since P ̸= Q we must have that σ0, σ1 ∈ T , and by our
construction of R we have that

P ∩Q = ⟨Xσ⟩R.

It follows that any x ∈ P ∩Q is an R−multiple of Xσ = Xσ0 ·RXσ1 and Xσ0 +RXσ1

is an R−unit. In other words, the minimal prime ideals of R are uniformly coprime.
• For each s ∈ ω, R contains (s + 1)−many distinct minimal prime ideals. In our
proof of Theorem 5.11 above we showed how to use this fact to construct a uniformly
computable enumeration of infinitely many distinct minimal R−prime ideals.

• R contains a uniformly computable enumeration of infinitely many minimal prime
ideals, each pair of which is uniformly coprime.

• RCA0 proves that R satisfies the hypotheses of URPDL, and URPDL says that any
such ring is not Noetherian.

Let

J0 ⊂ J1 ⊂ · · · ⊂ JN ⊂ · · · ⊂ R, N ∈ ω,

be an infinite strictly ascending chain of R−ideals. Moreover, Lemma 7.8 says that for each
i ∈ ω there exists xi ∈ Ji+1 \ Ji ⊂ R, for some R0−monomial xi ∈ M. For each i ∈ ω let
Σi ⊂ T ⊆ 2<ω be the set of 2<ω−indices that appear in xi and define

ℓi = max{|σ| : σ ∈ Σi} ∈ ω.

By the Finite Pigeonhole Principle we must have that lim supi ℓi = ∞, and by passing to
an infinite computable subset of i ∈ ω we can assume without any loss of generality that
ℓi < ℓi+1 for all i ∈ ω. Furthermore, since xi ∈ Ji+1 \ Ji ⊂ R, we must have that the
monomial xi ∈ M properly divides the monomial xi+1 ∈ M via a non−R−unit quotient. In
terms of MC-codes this means that

Ci(k) ≥ Ci+1(k) and Ci(k0) > Ci+1(k0),

for all i ∈ ω, 1 ≤ k ≤ 2ℓi+1 , and at least one 1 ≤ k0 ≤ 2ℓi+1 . Here Ci = Cxi
, Ci+1 = Cxi+1

∈
ω2ℓi+1

denote the MC-codes of the R0−monomials xi, xi+1, respectively.
For each i ∈ ω write

xi =

Ni∏
j=1

Xαi,j
σi,j

∈ M ⊂ R0
∼= RT,0, σi,j ∈ T, αi,j ∈ ω, αi,j > 0,

and for each i ∈ ω, let ti ∈ ω be least such that

σi,j ∈ Tti ⊂ T, for all j = 1, 2, . . . , Ni.

From our hypothesis that ℓi < ℓi+1 in the previous paragraph it follows that ti < ti+1.
Furthermore, by our construction of I0,1 ⊂ I0 = I0,0 + I0,1 ⊂ R0

∼= RT,0 and R1 = R0/I0, it
follows that if Λt ⊂ Tt denotes the leaves of Tt ⊂ T , then for any given i ∈ ω and t ≥ ti there
is an R0−monomial xi,t that is MC-equivalent (and thus R−equivalent) to xi, and such that
the T−indices of every indeterminate appearing in xi,t comes from Λt. Also, for each t ≥ ti,

23In this case P is called isolated.
24In this case P is called embedded.
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i ∈ ω, xi,t can be obtained uniformly and effectively from xi = xi,ti . Now, for all i ∈ ω and
t ≥ ti write

xi,t =

Ni,t∏
j=1

Xαi,t,j
σi,t,j

∈ M ⊂ R0
∼= RT,0, σi,t,j ∈ Λt, αi,t,j ∈ ω αi,t,j > 0.

In the previous paragraph we explained that we have Ci > Ci+1 for all i ∈ ω, and so it follows
that for each i ∈ ω there is some Tti+1

−leaf τi ∈ Λti+1
such that the RT,0−indeterminate Xτi

appears in the RT,0−monomial xi,ti+1
with strictly larger exponent than it has in xi+1,ti+1

. Let
α(i) ∈ ω denote the exponent of Xτi in xi+1,ti+1

, i ∈ ω. Since xi+1 divides xi, xi+1, xi ∈ M,
for all i ∈ ω, it follows that

0 ≤ α(i) ≤M,

whereM ∈ ω is the maximal exponent appearing in x0
25 Therefore, by the Infinite Pigeonhole

Principle (i.e. BΣ2) there exists some 0 ≤ m ≤ M , m ∈ ω, and infinitely many i ∈ ω such
that

α(i) = m.

Finally, by our construction of α(i) ∈ ω it follows that the computable set

A = {τi : α(i) = m} ⊂ T

is an infinite T−antichain, as required by TAC. □

Corollary 7.9 (RCA0 + BΣ2). TAC is equivalent to URPDL.

Corollary 7.10 (RCA0 + BΣ2). RPDL implies TAC.

We leave the following question open.

Question 7.11. What is the reverse mathematical strength of RPDL over either RCA0 or
RCA0 +BΣ2? In particular, is RPDL equivalent to either TAC+WKL0 (our upper bound) or
TAC (our lower bound) over RCA0(+BΣ2)?

7.0.1. Restricting the Induction Scheme. Define

WTAC: For any infinite Σ0
1 completely branching tree T ⊂ 2<N with splitting enumeration

T = ∪s∈NTs, Ts ⊂ Ts+1, there exists a nonincreasing26 function f : T → N such that

(∀N ∈ N)(∃k > N, σ1, σ2, . . . , σk ∈ T ) such that for all i = 1, 2, . . . , k

f(σi) > min{f(σi0), f(σi1)}.
It is not difficult to show that, over RCA0, TAC is equivalent to WTAC with the added

restriction that f(∅) = 1 (from which it follows that f(σ) ∈ {0, 1} for all σ ∈ T ), and so TAC
implies WTAC. Moreover, using the techniques that we developed in the proof of Theorem
7.1 above, one can also show that URPDL implies WTAC over RCA0. To get a brief sense
of why this is the case, suppose that we are given an infinite Σ0

1 completely branching tree
T ⊂ 2<N, if R = R0/I0[U−1] is the corresponding principle ideal ring27 that we constructed
in the proof of Theorem 7.1 above, and

I1 ⊂ I2 ⊂ · · · Ik ⊂ · · · ⊂ R, k ∈ N,
is an infinite strictly ascending chain of R−ideals with corresponding principle monomial
generators

xk =
∏
σ∈Sk

Xασ
σ ∈ R, Sk ⊂ T, ασ ∈ N,

25M is well-defined up to both MC− and R−equivalence.
27R is not a domain here.
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where S ⊂ T is prefix-free and finite. In this case we create a correspondence between xk
and the values

f(σ) = ασ ∈ N, σ ∈ Sk

via the exponents ασ of the indeterminates of Xk, namely Xσ, σ ∈ Sk ⊂ T . We leave it to
the reader who has read and understood our proof of Theorem 7.1 above to fill in the rest
details.

The following theorem summarizes our results over RCA0, without the additional assump-
tion of BΣ2.

Theorem 7.12 (RCA0).
TAC → URPDL → WTAC.

Question 7.13. What are the first-order parts of PDL, RPDL, URPDL, TAC, and WTAC?

8. An algebraic characterization of WKL0 + TAC over BΣ2

In the previous subsection we established that URPDL is equivalent to TAC over RCA0 +
BΣ2. Although we do not know the exact strength of RPDL over RCA0+BΣ2, we can specify
a related algebraic principle, given in [Eis95, Theorem 2.14], and verify that it is equivalent
to WKL0 + TAC over RCA0 + BΣ2.

NMMA : If R is a Noetherian ring such that every prime ideal of R is maximal, then R is
Artinian.

NMMA is the conjunction of the following two weaker principles.

FNMMA : If R is a Noetherian ring with finitely many prime ideals, each of which is both
minimal and maximal, then R is Artinian.

INMMA : If R is a Noetherian ring with infinitely many prime ideals28, each of which is both
minimal and maximal, then R is Artinian.

It is clear that INMMA follows from RPDL, since RPDL implies that (the antecedent of)
INMMA is vacuous. Therefore, via Corollary 6.11 above, WKL0 + TAC implies INMMA.
Furthermore, if T is a given infinite Σ0

1 completely branching tree, and R = RT is the
corresponding computable ring that we constructed in Theorem 7.1 above, then

R ⊃ ⟨X0⟩R ⊃ ⟨X2
0 ⟩R ⊃ ⟨X3

0 ⟩R ⊃ · · · ⊃ ⟨XN
0 ⟩R ⊃ · · ·

is a uniformly computable infinite strictly descending chain of ideals in R and thus R does
not satisfy computable-DCC (i.e. R is not Artinian). Moreover, Theorem 7.1 shows that
every infinite strictly ascending chain of ideals in R computes an infinite T−antichain (over
RCA0 + BΣ2). Therefore, Theorem 7.1 above essentially shows that INMMA implies TAC
over RCA0 + BΣ2.

Lemma 8.1 (RCA0 + BΣ2). INMMA implies TAC, and is implied by WKL0 + TAC.

Now, to show that NMMA = FNMMA+ INMMA is equivalent to WKL0+TAC over RCA0+
BΣ2, it suffices to show that FNMMA is equivalent to WKL0 over RCA0. The proof that
WKL0 implies FNMMA is very similar to the proof that WKL0 implies ART given in [Con19,
Theorem 8.3]; in particular the following theorem is a computable structure theorem for rings
R containing finitely many minimal prime ideals that are also PA-maximal, similar to the
Computable Structure Theorem for (Local) Artinian Rings [Con19, Theorem 7.1, Corollary
7.3].

Theorem 8.2 (Computable Structure Theorem for Rings with finitely many minimal prime
ideals that are also PA-maximal). Let R be a computable ring with (only) finitely many
prime ideals that are both minimal and PA-maximal, and satisfies computable-ACC. Then,
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if M1,M2, . . . ,MN , N ∈ ω, enumerate (all of) the distinct minimal prime ideals of R, N is
a uniform bound on the length of any strictly ascending (or descending) chain of R−ideals.

Proof. The proof is very similar to various arguments found in [Con10, Con19]; we will
outline the main points of the proof (valid in RCA0).

• Since each Mi, 1 ≤ i ≤ N , is PA-maximal it follows that for all m,n ∈ ω and
1 ≤ i ̸= j ≤ N there exists mi,m ∈ Mm

i and mj,n ∈ Mn
j such that mi,m +mj,n = 1R.

Otherwise, for some 1 ≤ k ≤ N we could construct an infinite computable tree
T ⊆ 2<ω such that every infinite path f ∈ [T ] ⊆ 2ω codes an R−ideal If such that
Mk ⊂ If ⊂ R, contradicting our assumption that Mk is PA-maximal.

• Additionally, our proof of Lemma 5.3 above says that J is uniformly nilpotent, i.e.
there exists N0 ∈ ω such that

Jn =
N∏
i=1

Mn
i = ⟨0R⟩.

Now, via Bounded Π0
1−Comprehension let

⟨n0, n1, · · · , nN⟩ ∈ (n)N

be (n)N−minimal such that

N∏
i=1

Mni
i = ⟨0R⟩.

• Now, it follows from the previous two points that for each 1 ≤ i ̸= j ≤ N , Mni
i +

M
nj

j = R, and in this case the Chinese Remainder Theorem says that there is a
computable isomorphism

φ : R →
N∏
i=1

R/Mni
i with kernel J =

N⋂
i=1

Mni
i =

N∏
i=1

Mni
i = ⟨0R⟩.

• For each 1 ≤ k ≤ N , let xk,1, xk,2, . . . , xk,nk−1 ∈ R/Mnk
k be such that

∏nk−1
i=1 xk,i ̸=

0R/M
nk
k
. The annihilator ideals

Ann(xk,1) ⊂ Ann(xk,1xk,2) ⊂ . . . ⊂ Ann(

nk−1∏
i=1

xk,i) ⊂ R/Mnk
k

can be used to construct a finite chain of R−ideals

⟨0R⟩ = I0 ⊂ I1 ⊂ · · · ⊂ I∑
i ni

such that each successive quotient Ii+1/Ii, 0 ≤ i <
∑

i ni is an R/Mj−vector space,
for some 1 ≤ j ≤ N . This is the Structure Theorem for Rings with finitely many
minimal primes that are also PA-maximal.

• Finally, if R contains an infinite uniformly computable strictly descending chain of
ideals, then the finite chain described in the previous point (and the corresponding
vector spaces mentioned there) can be used to construct an infinite computable tree
T ⊆ 2<ω all of whose infinite paths code infinite strictly ascending chains of R−ideals.

□

Corollary 8.3 (RCA0). WKL0 implies FNMMA.

We now turn our attention to showing that FNMMA implies WKL0 over RCA0. To do so,
given any two nonempty disjoint computably enumerable sets A,B ⊂ ω, we will eventually
construct a ring R = RA,B such that:
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• R does not satisfy computable-DCC,
• R contains exactly two minimal prime ideals that are also maximal, and
• every infinite strictly ascending chain of ideals in R codes an (A,B)−separatorD ⊂ ω
such that A ⊆ D and D ∩B = ∅.

Lemma 8.4. Let A,B ⊂ ω be nonempty computably enumerable disjoint sets. There is a
computable integral domain R0 = R0,A,B containing an infinite uniformly computable strictly
descending chain of ideals

R0 ⊃ I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ IN ⊃ · · · , N ∈ ω,

and such that every infinite strictly ascending chain of R0−ideals codes an (A,B)−separator
D ⊂ ω.

Proof. The proof is very similar to that of [DLM07, Theorem 3.2], with which we assume
the reader is familiar. The following items sketch the proof of the current theorem. Let A,B
be given infinite disjoint computably enumerable sets.

• Let R0 = Q[Xk : k ∈ ω], and let F denote the field of fractions of R0. We rep-
resent every nonzero p ∈ R0 as a finite sum of unique monomials with nonzero
Q−coefficients, and we say that each such monomial appears in p. We will construct
R as a computably enumerable subring of F by effectively enumerating the generators
of R.

• For each 0 ̸= p ∈ R, let Np ∈ ω denote the largest index of any indeterminate
appearing in p, and let GCD(p)∈ R0 denote the greatest common divisor of the
monomials appearing in p. Note that GCD(p) is itself a monomial. We enumerate
the generators of R as follows:

R0 ∪
{
Xk

p
: p ∈ R0, GCD(p) = 1, k ∈ A, k > Np

}
∪

∪
{
1−Xk

p
: p ∈ R0, GCD(p) = 1, k ∈ B, k > Np

}
⊂ F.

• Our construction is very similar to that of [DLM07, Theorem 3.2]; the only real
difference being that we have required our denominators to have GCD equal to
one. Now, whereas every nontrivial ideal of [DLM07, Theorem 3.2] computes an
(A,B)−separator, our restriction on the GCD of denominators leads to the conclu-
sion that every R−ideal that is not generated by a single monomial computes an
(A,B)−separator, and every R−ideal that is generated by a single monomial is com-
putable. This essentially the heart of (the difference between) our arugment and the
proof of [DLM07, Theorem 3.2], which we now outline:

– Let I ⊂ R be an ideal. Via the Π0
1−Well-Ordering Principle, let X ∈ R0 be the

unique monomial of maximal degree such that X divides the numerator of every
x ∈ I. Then it follows that

I = ⟨X⟩R ·R J,
for some R−ideal J , and by our construction of X and the GCD requirement
on the denominators of R, we can apply the argument of [DLM07, Theorem 3.2]
to J and show that if J ̸= ⟨0R⟩ and J does not compute an (A,B)−separator,
then J = R and thus I = ⟨X⟩R.

– Furthermore, our GCD criterion onR−denominators imply that for anyR0−monomial
X, X divides the numerator of any x ∈ ⟨X⟩R. It follows that ⟨X⟩R is com-
putable, for any R0−monomial X.
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• Note that R does not satisfy computable-DCC, since

R ⊃ ⟨X0⟩R ⊃ ⟨X2
0 ⟩R ⊃ · · · ⊃ ⟨XN

0 ⟩R ⊃ · · · , N ∈ ω

is an infinite uniformly computable strictly descending chain of R−ideals.
• Finally, we claim that every infinite strictly ascending chain of ideals

⟨0⟩R = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ IN ⊂ · · · ⊂ R, N ∈ ω,

contains an ideal IM ⊂ R, M ∈ ω, that computes an (A,B)−separator. Otherwise,
by our previous remarks we would have that

I0 = ⟨Xα
N⟩R, and, more generally, Ik = ⟨Xα−k

N ⟩R, N, α, k ∈ ω;

contradicting the (Σ0
1−)Well-Ordering Principle (IΣ1).

□

Corollary 8.5 (RCA0). FNMMA implies WKL0.

Lemma 8.6 (RCA0). FNMMA is equivalent to WKL0.

Proof. Corollaries 8.3 and 8.5 above. □

Theorem 8.7 (RCA0 + BΣ2). NMMA = FNMMA+ INMMA is equivalent to WKL0 + TAC.

Proof. Lemmas 8.1 and 8.5 above. □
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