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Abstract. We examine the complexity of the dichotomous decision procedure that divides
the standard proof of the Krull Intersection Theorem (KIT) into two cases by examining
the computability complexity of a uniform version of KIT for infinite uniformly computable
sequences of integral domains. In this context we show that, while the standard decision
procedure found in many texts can only be obtained via the ability to (uniformly) answer
two-quantifier questions via 0′′, there is a modified procedure of lesser complexity that also
yields KIT in this context.

1. Introduction

The Hilbert Basis Theorem [Hil90] for polynomial rings over commutative rings is con-
sidered one of the first nonconstructive mathematical arguments, and its effective context
was examined first by Buchberger [Buc74], and then by others such as Simpson [Sim88] and
[Hat94]. Generally speaking, the Hilbert Basis Theorem says that if R is a Noetherian1 com-
mutative ring (with identity), then the polynomial ring R[X] is also Noetherian; by induction
it follows that the multivariate polynomial ring R[X0, X1, . . . , Xn] is also Noetherian, and
a more general form of the theorem pertains to finitely generated modules over Noetherian
rings. The standard proof essentially takes an infinite sequence of polynomials in R[X] such
that no polynomial is generated via its sequential predecessors (over R[X]), and produces a
corresponding infinite sequence of “minimal” leading R−coefficients (i.e. coefficients corre-
sponding to polynomials of minimal degree, modulo sequential predecessor polynomials) such
that no coefficient is in the R−span of its sequential predecessors. Finding these minimal
coefficients in general requires the utilization of nonconstructive methods.

Two consequences of the Hilbert Basis Theorem, whose proofs always seem to require
it, are the Artin-Rees Lemma and the Krull Intersection Theorem. More specifically, the
Artin-Rees Lemma seems to require the Hilbert Basis Theorem, and is then used in the proof
of the Krull Intersection Theorem. Moreover, the proof of the Krull Intersection Theorem
is of a dichotomous nature in that it is essentially divided into two cases; one case utilizes
Nakayama’s Lemma, while the other case employs the Artin-Rees Lemma. Moreover, from
a constructive persepective, the witnesses (chains) satisfying the conclusion of the theorem
that are produced exist in “different parts” of the ring; i.e. the construction takes place in a
different subset of the ring.

Sometimes a logical analysis of a theorem from classical mathematics can yield new insights
and bring new aspects of the theorem to light that may have corresponded to previous
intuitions not yet formalized. For example, in the algebraic context, a well-known result of
Friedman, Simpson, and Smith [FSS83, FSS85] that examines the complexity of the theorem
“every ring has a prime ideal” in the context of Reverse Mathematics and show it to be weaker
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1R is Noetherian if every ascending chain of ideals eventually stabilizes.
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than saying “every ring has a maximal ideal.” From a model-theoretic perspective, [FSS83]
constructs a model of Second-Order Arithmetic in which every ring has a prime ideal, but
not every ring has a maximal ideal. A similar result is achieved in [Con19] for the theorem
that says “Every Artinian ring is Noetherian,” where the author shows the significant role
that annihilator ideals play in Artinian rings.

1.1. This Article. The purpose of this article is to examine the complexity of this di-
chotomy from an effective perspective. In particular, we will show that, while the decision
procedure for the classical dichotomy has a Turing complexity corresponding to sets that
are solutions for problems defined by two-quantifier formulas, there is a simpler alternative
dichotomy of strictly weaker Turing complexity corresponding to the decision procedure that
uniformly decides, for any given pair of computably enumerable sets W,V , such that W ∪V
is infinite, an infinite element of {W,V }.2

2. Background

Let ω = {0, 1, 2, . . .} denote the standard natural numbers. For any sets A,B we use
standard set-theoretic exponential notation |A| to denote the cardinality of A, and AB to
denote the set of functions from B to A. Also, A<ω denotes the set of finite sequences of
A−elements, and for any α ∈ A<ω, |α| ∈ ω denotes the length of α while α(k) ∈ A denotes
the (k + 1)th bit of α, 0 ≤ k < |α|, k ∈ ω. For any α, β ∈ A<ω we write α ⊆ β to mean that
α is a prefix of β; i.e. we have that |α| ≤ |β| and α(k) = β(k) for all k = 0, 1, . . . , |α| − 1.

2.1. Computability Theory. We assume some familiarity with basic Computability The-
ory, as found in [Soa16]. Recall that {φe}e∈ω denotes an effective (i.e. computable) enumer-
ation of the partial computable functions that such that φe, e ∈ ω, may or may not halt on
a particular input x ∈ ω, and

∅′ = {e ∈ ω : φe(e) halts}
Turing’s incomputable Halting Set. We say that X ⊆ ω is computable whenever we can
decide, for each x ∈ ω, whether or not x ∈ X via some total φe, e ∈ ω, such that φ(x) = 1
if x ∈ X and φe(x) = 0 otherwise. Also, we say that a sequence {Xn}n∈ω is uniformly
computable whenever there is a single algorithm with index e ∈ ω that computes every Xn in
the sense that φe(n, x) = 1 whenever x ∈ Xn and φe(n, x) = 0 otherwise. We also have the
notion of relative computability and oracle Turing machines, denoted {Φe}e∈ω. We identify
A,B ⊆ ω with their respective characteristic functions χA, χB ∈ 2ω, and we say that B
computes A, or that A is Turing reducible to B, whenever we have that

A = ΦB
e

for some e ∈ ω, and in this case we write A ≤T B. This leads to an equivalence relation
≡T on subsets of ω such that A ≡T B, A,B ⊆ ω, whenever we have that A ≤T B and
B ≤T A, and we call the resulting equivalence classes Turing degrees and denote them via
boldface letters such as x; we denote the Turing degree of ∅′ by 0′. If X ⊆ ω belongs to
the Turing degree x, then from the point of view of Computability Theory, X is essentially
indistinguishable from any other Y ∈ x because A ≤T X if and only if A ≤T Y , for any
A ⊆ ω. We also have a notion of the Halting Set relative to A ⊆ ω:

A′ = {e ∈ ω : ΦA
e (e) halts},

2More details on Computability Theory are given in the The Turing complexity for uniformly deciding
which of W,V is inifnite is called PA relative to Turing’s Halting Set. The way we describe it in the following
section involves computing infinite paths through infinite finitely branching trees computable from Turing’s
Halting Set. It is well-known that these definitions are equivalent.



ON THE COMPUTABILITY OF KIT 3

that allows for iterations of Turing’s Halting Set; one iteration of particular relevance for us
is the “double-jump”

∅′′ = {e ∈ ω : Φ∅′
e (e) halts} ∈ 0′′.

We say that A ⊆ ω is computably enumerable if it is the domain of some φe, namely

We = {x ∈ ω : φe(x) halts}.
Moreover, it is well-known that

Inf = {e ∈ ω : |We| = ∞} ≡T ∅′′.
The notion of uniform computability can be relativized to oracles A in a very natural way.
Recall that there is a computable function ψ : ω × ω → ω, and this allows us to speak of
the computability of sets X ⊆ ω × ω; we say that f : ω → ω, i.e. f ∈ ωω, is computable
whenever its graph is computable.

Fix a computable enumeration of finite sequences of natural numbers, ω<ω. It follows
that the prefix relation on ω<ω is computabe, and we say that T ⊆ ω<ω is a tree whenever
it is closed under the prefix relation. We say that T is finitely branching if there is a
T−computable function (i.e. f ≤T T ), f : T → ω, such that for any α ∈ T , the one-
bit extension αx /∈ T , for any x > f(α). In other words, f(α) ∈ ω bounds the single
extension bits of α ∈ T . A well-known combinatorial result known as König’s Lemma based
on iterating the Infinite Pigeonhole Principle3 says that any infinite finitely branching tree
T ⊆ ω, |T | = ∞, has an infinite path f ∈ ωω such that for each k ∈ ω,

αk = ⟨f(0), f(1), . . . , f(k)⟩ ∈ T ⊆ ω<ω.

The next definition is standard.

Definition 2.1. Given A ⊆ ω, we say that x is PA relative to A whenever every A−computable
tree T ⊆ ω<ω has an infinite path f ∈ ωω such that f ≤T x.

The technique of diagonalization allows one to construct, for any Turing degree x, an
infinite x−computable binary-branching tree with no x−computable path. Therefore, if x is
PA Turing degree relative to A ⊆ ω, then x cannot be computable via the oracle A. However,
a well-known consequence of the Jockusch-Soare Low Basis Theorem [JS74] says that, for
any given set A ⊆ ω, there is a Turing degree x that is PA relative to A and low over A, i.e.
x computes A and x′ ≡ A′. Since x <T x′ for any Turing degree x, there is a Turing degree
x that is PA over 0′ and

x <T x′ ≡T 0′′.

In the context of this article, the standard dichotomous proof has Turing complexity 0′′

(see Theorem 3.1 below), while our alternative dichotomous proof has the stictly weaker
complexity x (Theorem 4.1). Thus, the alternative dichotomy is of a strictly weaker logical
complexity than the standard one.

Our computable analysis of the alternative dichotomous proof of the Krull Intersection
Theorem is facilitated by those Turing degrees x that are PA relative to Turing’s Halting Set
∅′. Taking ∅′ as an oracle essentially allows the algorithms Φ∅′

e to have access to information
that is the solution set to any question given by a single quantifier (∀,∃) over a computable
predicate; one example is the characterization of ∅′ itself given via the solution set

∅′ = {e ∈ ω : (∃s ∈ ω)[Φe(e) halts after s−many steps]}.
Part of our construction in the alternative dichotomous proof of KIT, based on the Artin-
Rees Lemma, will involve constructing an infinite finitely branching tree T ∈ 0′ all of whose
infinite paths compute strictly ascending chains of ideals in a given ring. More details on

3Recall that the Infinite Pigeonhole Principle says that any finite partition of ω has an infinite member.



4 CHRIS J. CONIDIS

algebraic concepts, such as the notion of an ascending chain of ideals in a ring, can be found
in the following subsection.

2.2. Algebra. We assume some familiarity with basic Algebra, as can be found in the early
chapters of [DF99, Eis95, Mat04]. For us a ring A will always be countable, commutative,
with an indentity element 1 = 1A ∈ A. Recall that an ideal is a subset I ⊆ A closed under
addition and A−scalar multiplication, and if I, J ⊆ A are ideals we can define another ideal
via

I ·A J = I · J =

{
n∑

k=1

xk ·A yk : n ∈ ω, xk ∈ I, yk ∈ J

}
,

thus leading to the construction of

In = I ·A I ·A · · · ·A I︸ ︷︷ ︸
n

for any n ∈ ω. It follows that I · J ⊆ I, J , and hence In+1 ⊆ In, for all n ∈ ω, from which
we can obtain the ideal

I∞ =
⋂
k∈ω

Ik.

For any given X ⊆ R, let ⟨X⟩A = ⟨X⟩ ⊆ A denote the A−span of X; it follows that
⟨X⟩ is an A−ideal and it is called the ideal generated by X. Moreover, an ideal I ⊆ A is
called finitely generated (or, more simply, finite) whenever there is a finite X ⊆ A such that
⟨X⟩A = I. The notation a|b, a, b ∈ A, means that a divides b; i.e. b = c ·A a, for some c ∈ A.
An ascending chain of (A−)ideals is an ordered sequence of ideals indexed by a downward
closed N ⊆ ω such that

In ⊆ In+1, n, n+ 1 ∈ N.

A chain of ideals is strictly ascending whenever

In ⊊ In+1, n, n+ 1 ∈ N.

Recall that A is Noetherian whenever it contains no infinite strictly ascending chains of
ideals; i.e. every ascending chain of A−ideals eventually stabilizes. An element x ∈ A is
called a zero divisor whenever x · y =A 0, for some y ∈ A, and A is called an integral domain
if (it is commutative and) has no zero divisors.

Theorem 2.2 (Krull Intersection Theorem, [Mat04, Theorem 8.10]). Let A be a Noetherian
integral domain containing a proper (finitely generated) ideal I ⊊ A. Then I∞ = 0.

The previous theorem can be restated in the following more constructive form via contra-
positive.

Theorem 2.3 (Krull Intersection Theorem (KIT)). If A is an integral domain containing a
proper ideal I such that I∞ ̸= 0, then A is not Noetherian.

Definition 2.4. Let A be a ring as in Theorem 2.3; we say that A is a KIT−instance,
and we say that an infinite strictly ascending chain of A−ideals {Jn}n∈ω is a corresponding
(A−)KIT−solution.

In a natural way, we may also speak of uniform KIT−solutions {Jn,k}n,k∈ω to infinitely
many KIT−instances {An}n∈ω such that for each n ∈ ω we have that

Jn,0 ⊊ Jn,1 ⊊ · · · ⊊ Jn,k ⊊ · · · ⊊ An.

For each n ∈ ω, let In ⊊ An, I
∞
n = ∩k∈ωI

k
n ̸= 0, be as in Theorem 2.3 above, and let

Zn = {zn,1, zn,2, . . . , zn,Nn}, n,Nn ∈ ω be a finite I−generating set.
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In the computability context, none of An, In ⊂ An, I
∞ are necessarily computable, while

{Zn}n∈ω is not necessarily uniformly computable in the index n ∈ ω. For us, a uniform KIT−
instance is an infinite uniformly computable sequence

A = {An, In, I
∞
n , Zn}n∈ω

of computable KIT−instances An, In ⊊ An, I
∞
n = ∩k∈ωI

k
n ̸= 0, ⟨Zn⟩An = In, as in Theorem

2.3.

The standard proof of KIT can be found in [Mat04]. It has a dichotomous nature, being
divided into two cases depending upon whether or not I · I∞ = I∞. Moreover, each half
of the dichotomy is handled via a different algebraic technique that we will review more
explicitly later on in this subsection. More specifically, our examination of this dichotomy
from a computability perspective is achieved via a computability-theoretic analysis of the
uniform KIT−solutions {Jn,k}n,k∈ω to computable KIT−instances {An}n∈ω; the idea being
that for each n ∈ ω the KIT−solution {Jn,k}k∈ω is achieved via one half of the dichotomy
and the computational complexity of deciding which half of the dichotomy to use for An is
encoded in the uniform KIT−solution set.
From a purely algebraic (set-theoretic) perspective, while the standard dichotomous proof

of KIT (Theorem 2.3) always produces an infinite strictly ascending chain {Jn}n∈ω such that
either

• J0 ⊊ J1 ⊊ · · · ⊊ Jk ⊊ · · · ⊆ I∞, for all k ∈ ω; or else
• J0 ⊈ I∞;

depending on which half of the dichotomy is achieved by A, our alternative dichotomous
proof of KIT relaxes the second condition-item above to the following weaker condition:

• Jk ⊈ I∞, for some k ∈ ω,

and in doing so achieves a strictly weaker computational strength. This is the main differ-
ence between the standard and alternative dichotomies, and our main results highlight the
computational significance of this difference.

The following two subsections review the main algebraic techniques employed by each half
of the standard dichotomy in the proof of Theorem 2.3.

2.2.1. Nakayama’s Lemma. Nakayama’s Lemma [Mat04, Theorem 2.2] forms the core of
one half of the KIT−proof dichotomy; namely the half of the proof in which we have that
I · I∞ = I∞.

Theorem 2.5 (Nakayama’s Lemma). Let A be a ring, and M be a finite(ly generated)
A−module. Suppose that I ⊆ A is an ideal such that I ·M = M , then there exists a ∈ A
such that

a ·M = 0 and A ≡ 1 mod I.

In the context of integral domains no such a ∈ A can exist, and so Nakayama’s Lemma
becomes the following.

Theorem 2.6. Let A be an integral domain, and M be a finite(ly generated) A−module.
Then, if I ⊆ A is an ideal, we must have that

I ·M ⊊M.

In other words, if η1, η2, . . . , ηn generate M , then ηk /∈ I ·M for some 1 ≤ k ≤ n, k ∈ ω.

The proof of Nakayma’s Lemma involves the theory of determinants of finitely generated
modules, and so it comes as no surprise that it can be carried out effectively, and moreover
uniformly effectively if the generators are given in such a fashion. More information can be
found in [Mat04, Theorems 2.1, 2.2; pages 7-8].
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2.2.2. The Artin-Rees Argument. We now outline what we consider to be the core of the
proof of the Artin-Rees Lemma (especially from an effective point of view); see the proof
of [Mat04, Theorem 8.5], especially the part of the proof that begins with the phrase “set
c = max{d1, d2, . . . , dt} . . .” to the end, for more details. The following lemma summarizes
the content of that part of the proof in the context of the proof of the Krull Intersection
Theorem. In this context the moduleM is replaced by the finitely generated A−ideal I, and
the submodule N ⊆M becomes a subideal J ⊆ I. For a proof see the text.

Lemma 2.7. Let R be a ring, I a finitely generated ideal containing an ideal J ⊆ I. Then, if
α1, α2, . . . , αn, n ∈ ω, generate I and {pk}k∈ω is an infinite sequence of homogeneous polyno-
mials of strictly increasing degree in the indeterminates X1, X2, . . . , Xn with A−coefficients
such that for each k ∈ ω,

pk(α1, α2, . . . , αn) ∈ I \ I · J,
then for each k ∈ ω we have that

pk+1 /∈ ⟨p0, p1, . . . , pk⟩A[X0,X1,...,Xn],

because A is not Noetherian.

3. The Complexity of the Standard Dichotomy

The standard proof of KIT is divided into cases based on whether or not I · I∞ = I∞. The
purpose of this section is to show that in general the complexity of the standard KIT−proof
dichotomy is at least the double-jump 0′′. More specifically, in the next theorem we construct
an infinite uniformly computable KIT−sequence

{An}n∈ω = {An, In, I
∞
n }n∈ω

such that for each n ∈ ω

• An is an integral domain containing the ideal In, such that
• 0 ̸= I∞n = ∩k∈ωI

k
n.

Furthermore we will ensure that

{n ∈ ω : I ·An I
∞ = I∞} = {n ∈ ω : Wn is infinite} = Inf,

i.e. deciding the standard dichotomy for {An}n∈ω requires 0′′.

Theorem 3.1. The infinite uniformly computable sequence {An}n∈ω described in the previous
paragraph exists.

Proof. We describe a uniformly computable procedure for constructing each

An = (An, In, I
∞
n , xn), n ∈ ω,

with the properties described above. More specifically, however, when n ∈ Inf via the infinite
computable strictly increasing enumeration

Wn = {s1 < s2 < s3 < · · · < sk < · · · : k ∈ ω} ⊆ ω,

we ensure that
In · I∞n = I∞n · I∞n = I∞n

via elements {Xsk : k ∈ ω} ⊆ I∞n such that

I∞n = ⟨Xℓk : k ∈ ω⟩An

and
X2

ℓk+1
= Xℓk , k ∈ ω.

Let
X⃗ = {Xk : k ∈ ω}, Q∞ = Q[X⃗] = Q[xk : k ∈ ω];
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for each n ∈ ω we will have that

• An = A is a quotient of Q∞ via uniformly computable multiplication relations de-
scribed below;

• In = I = ⟨Xk : k ∈ ω⟩A;
• xn = x = X0 ∈ I∞n = I∞ = ∩k∈ωI

k ⊆ I ⊆ A;

Our construction of A proceeds in stages as follows:

Stage s = 0: set ℓ0 = 0, implying that X0 = Xℓ0 ∈ I∞ as specified in the third item above.
Stage s+ 1 > 0: let α ∈ ω be least such that Xα has not been mentioned yet in the construction.

There are two cases to consider; the first case says that s + 1 ∈ W = Wn. In this
case let k ∈ ω be largest such that ℓk ∈ ω is defined; we set ℓk+1 = α and introduce
the (uniformly computable) multiplication relation

X2
ℓk+1

= Xℓk .

Otherwise we have that s+ 1 /∈ W . In this case let k, α ∈ ω be as in the previous
paragraph, and introduce the (uniformly computable) multiplication relation

Xℓk =
α+d−1∏
j=α

Xj

, where d ∈ ω is chosen so that p = d+ 1 is a prime number greater than any prime
that we have considered so far in the construction. Note that d is also the degree of
the product term in the displayed relation.

This concludes our construction.
It follows from our (simple) construction above that the sequence

An = (An, In, I
∞
n , xn), n ∈ ω,

is uniformly computable in n. To verify that

In · I∞n = I∞n if and only if n ∈ Inf

note that if

n ∈ Inf: There are infinitely many s ∈ ω, s > 0 for which our construction realizes the case
one procedure, thus producing the infinite sequence of indices {ℓk : k ∈ ω} mentioned
above such that X2

ℓk+1
= Xℓk , k ∈ ω.

n /∈ Inf: There are only finitely many stages in which are construction realizes case one, and
therefore there exists s0 ∈ ω such that for all stages s ≥ s0 our construction realizes
the case two procedure. Now, by our construction it follows that if k0 is the value of
k at stage s0 then k0 is the value of k at all future stages as well and

I∞n = ⟨Xℓk : 0 ≤ k ≤ k0⟩
and moreover (since our construction never realizes case one at any stage s ≥ s0)

Xℓk /∈ In · I∞n .
• Finally, note that in either of the two items above we have that I∞ = ∩k∈ωI

k. In
the case n ∈ Inf we actually have that I∞ · I∞ = I∞, since the sequence {ℓk}k∈ω
is defined for all k. On the other hand, if n /∈ Inf then our construction at stages
s ≥ s0 ensures that Xℓk0

∈ I∞ and consequently Xℓk ∈ I∞, 1 ≤ k ≤ k0, since (by
construction) each Xℓk is a power of Xℓk0

.
We also have that A is an integral domain since there is an injective homomorphism

φ : A→ A,
where A is the field of algebraic numbers, such that:
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– φ(Xℓ0) = 1 ∈ A;
– φ(Xℓk), k > 0, k ∈ ω, is a primitive 2k−th root of unity; and
– φ(Xj), j = α, α + 1, . . . , α + d − 1 are distinct primitive (2kp)th roots of unity,
where α, k, d ∈ ω, p = d+1, are as in case two (i.e. s+1 /∈ W ) of our construction
above.

□

4. A Different Dichotomous Argument of Lesser Complexity

The previous section explains why the standard decision procedure employed by the proof
of KIT has Turing complexity at least 0′′ (at the uniform level). In this section we present
a different dichotomy that simplifies the standard one. Although much of the algebra will
not change, there will be some logical (i.e. set-theoretic) differences between our argument
here and the standard one presented in many standard texts on Commutative Algebra; we
discuss these differences afterwards.

Theorem 4.1. Suppose that

An = (An, In, I
∞
n , Zn), n ∈ ω,

is a uniform KIT−sequence, and let x be a Turing degree that is PA relative to 0′. Then x
computes a uniform sequence of chains of An−ideals,

Jn = {Jn,k : k ∈ ω},

uniformly in n ∈ ω, such that

Jn,0 ⊊ Jn,1 ⊊ · · · ⊊ Jn,k ⊊ · · · ⊊ An, k ∈ ω.

Proof. Recall that, by our hypothesis on x, x can answer single quantifier questions about
each integral domain An, uniformly in n ∈ ω. Consequently, for each n ∈ ω and finite set
of An elements, x can construct the ideal they generate, uniformly in both n and the given
finite set. For each n ∈ ω we will use our hypotheses on An and x to uniformly x−compute
an infinite sequence of An−elements {xn,k}k∈ω such that

xn,k+1 /∈ ⟨xn,0, xn,1, . . . , xn,k⟩An , k ∈ ω.

Therefore if we set

Jn,k = ⟨xn,ℓ : ℓ ≤ k⟩An , n, k ∈ ω,

we will have proven the theorem.
Fix n ∈ ω, and let A = An, I = In, I

∞
n = I∞, and Z = Zn. There are two phases to

the construction of the infinite strictly ascending chain of An = A−ideals {Jn,k = Jk}k∈ω,
Jk ⊊ Jk+1 ⊊ A. As we mentioned in the previous paragraph, we construct the sequence one
generator at a time, and there are essentially two types of generators:

(i) generators in I∞; and
(ii) generators in I \ I∞.

The construction begins by considering generators of type (i) exclusively, and proceeds so
that at some point it may switch to exclusively considering generators of type (ii) from that
point on.

The first part of our construction begins with any 0 ̸= x0 ∈ I∞. At stage s + 1 > 0,
s ∈ ω if we are still in phase one we assume that we are given a finite sequence of generators
x0, x1, x2, . . . , xs ∈ I∞ such that, for each 0 ≤ k < s,

⟨xk+1 /∈ ⟨xℓ : 0 ≤ ℓ ≤ k⟩A ⊂ I∞.
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Furthermore, by construction and induction it will follow that xk ∈ I · I∞ for all k < s, but
we might have that xs /∈ I · I∞, which 0′ can decide (uniformly in n, and x0, x1, . . . , xs). If
this is the case we proceed to the second phase of the construction (described in the following
paragraph) at the current stage s. Otherwise we have that xk ∈ I · I∞ for all 0 ≤ k ≤ s, and
in this case Nakayama’s Lemma [Mat04, Theorem 2.2] says that if ns ∈ ω and {ys,j}ns

j=0 ⊆ I∞

is such that

x0, x1, . . . , xs ∈ I · ⟨ys,j : 0 ≤ j ≤ ns⟩A ⊆ I∞,

then either:

• ys,j0 /∈ I · ⟨ys,j : 0 ≤ j ≤ ns⟩A, for some 0 ≤ j0 ≤ ns which x ≥T 0′ can effectively
decide (uniformly in n); or else

• there exists a ∈ A, a ≡ 1 mod A, such that

a · ys,j =A 0, j = 0, 1, . . . , ns.

However, this cannot be the case because A is assumed to be an integral domain.

Therefore, j0 of the first item above exists; we set xs+1 = ys,j0 which ensures that

⟨xk : 0 ≤ k ≤ s⟩A ⊆ I · ys,j : 0 ≤ j ≤ ns⟩A ⊊ ⟨xk : 0 ≤ k ≤ s+ 1⟩A,

as we require of xs+1. This completes phase one of our construction; it is possible that for
some n ∈ ω, A = An, we have that In · I∞n = I∞n and in this case our construction of

Jn,0 ⊊ Jn,1 ⊊ · · · ⊊ Jn,k ⊊ · · · ⊊ An, Jn,k = ⟨xn,j : 0 ≤ j ≤ k⟩An ,

will never leave phase one.
If we ever find ourselves in the second phase of the construction it is because at some

stage s0 + 1 > 0, s0 ∈ ω, we have discovered some xs0 ∈ I∞ \ I · I∞ after having already
constructed x0, x1, . . . , xs0 ∈ I∞ such that for each 0 ≤ k < s0, we have that

xk+1 /∈ ⟨xj : 0 ≤ j ≤ k⟩A ⊆ I∞.

Now, from the point of view of phase two, stage s0 is essentially stage 0, and so we assume
without any loss of generality that s0 = 0.4 Now, since xs0 = x0 ∈ I∞, and

Z = Zn = {z0, z1, . . . , zNn}

generates I (over A), for each j ∈ ω there is a homogeneous polynomial

pj ∈ A[X0, X1, . . . , XNn ]

of degree dj ≥ j such that x0 = pj(z0, z1, . . . , zNn) ∈ I∞ \ I · I∞. Furthermore, by passing
to an infinite computable subsequence of j’s we can essentially assume without any loss of
generality that deg(pj) = j for all j.5

Now the last part of of the proof of [Mat04, Theorem 8.5] beginning with “Set c =
max{d1, . . . , dt} . . .” until the end of the proof explains why for all j ∈ ω we have that

pj+1 /∈ ⟨p0, p1, . . . , pj⟩A[X0,X1,...,XNn ]
,

4The reader should keep in mind, however, the subtle fact that x cannot decide whether our construction
will ever enter phase two, uniformly in n ∈ ω, since this is essentially the same (i.e. Turing equivalent to)
deciding whether or not In · I∞n = I∞n , uniformly in n. In other words, in order for x to be able to handle
both phases of our construction, uniformly in n, requires that we “pad phase two out” by some instances of
phase one as we have already described how to do.

5We can also obtain the same result (algebraically) by absorbing appropriately many occurrences of
In−generators zi, 0 ≤ i ≤ Nn, into the coefficients of pj .
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and via 0′ ≤T x we can recursively compute, uniformly in n, j ∈ ω a leading pj−An−coefficient
xj ∈ A, along with a corresponding monomial summandmj such that for each ℓ = 0, 1, . . . , j−
1 we have that

xj /∈ ⟨xℓ : 0 ≤ ℓ < j, mℓ|mj⟩A.
Also, by the Hilbert Basis Theorem, for any given j0 ∈ ω, there exists j1 ∈ ω, j1 > j0, such
that if we let

Mj0,j1 = {mj0 ,mj0+1, . . . ,mj1 − 1}
for all j ≥ j1 the monomial mj is divisible by at least one of the monomials {mℓ}j1ℓ=j0

, and
by our construction of xj,mj it follows that

xj /∈ ⟨xℓ : j0 ≤ ℓ < j1, mℓ|mj⟩A.
Moreover, j1 can be uniformly effectively obtained from j0 via 0′. Setting j0 = 0 and
repeating this argument yields an infinite uniformly 0′−computable sequence

j0 < j1 < j2 < · · · < jk < · · · , k ∈ ω,

such that for each k ∈ ω and j ≥ jk+1, j ∈ ω, we have that

(i) the monomial mj is divisible by at least one of the monomials {mℓ}jk+1−1
jk

; and
(ii) xj /∈ ⟨xℓ : jk ≤ ℓ < jk+1⟩A.

Definition 4.2. Given any ℓ1, ℓ2 ∈ ω, ℓ1 < ℓ2, let k1 ∈ ω be greatest and k2 ∈ ω be least
such that

jk1 ≤ ℓ1 < jk1+1 < jk1+2 < · · · < jk2−1 ≤ ℓ2 ≤ jk2 .

For any monomials m ∈ Mjk1 ,jk1+1
and m′ ∈ Mjk2−1,jk2

, we say that m H−divides6 m′

whenever there is a sequence of monomials

m1,m2, . . . ,mk2−k1 , mi ∈Mji+k1−1,ji+k1
, i ∈ ω, 1 ≤ i ≤ k2 − k1,

such that for each 0 ≤ i ≤ k2 − k1 − 1, i ∈ ω, we have that mk1+i|mk1+i+1.

Remark 4.3. It follows that the H−division relation is transitive, and so gives rise to a
finitely branching tree structure on the monomials mi, i ∈ ω.

Via induction, the Infinite Pigeonhole Principle, and item (i) above, one can show that
for each k ∈ ω there is a monomial m ∈Mjk,jk+1

such that for each ℓ > k m divides at least
one monomial in Mjℓ,jℓ+1

. This implies that our H−division tree, call it T , is infinite. It
is obvious that the H−division relation is computable, however our construction of {jk}k∈ω
could only be carried out uniformly via 0′, and so we cannot necessarily conclude that T
is computable; rather, we only know that T is computable relative to 0′. However, by our
hypothesis on x it follows that x computes an infinite path f = ⟨f(k) : k ∈ ω⟩ ∈ ωω through
T corresponding to an infinite sequence of monomials M = ⟨mf(k) : k ∈ ω⟩ such that
mf(k)|mf(k+1) for all k ∈ ω and hence such that the corresponding A−coefficients {xf(k)}k∈ω
satisfy

xf(k+1) /∈ ⟨xf(ℓ) : ℓ ≤ k⟩A, k ∈ ω.

Finally, upon setting xs0+k = xf(k) and recalling that x0, x1, . . . , xs0−1 ∈ I∞ are obtained via
the first phase of the construction, we have that

J0 ⊊ J1 ⊊ · · · ⊊ Js0−1 ⊆ I∞ ⊊ Js0 ⊊ Js0+1 ⊊ · · · ⊊ Js0+k ⊊ · · · ⊊ A, k ∈ ω,

is an infinite strictly ascending chain of A = An−ideals, computable in x, uniformly in
n ∈ ω. □

6The H here stands for Hilbert; we are essentially reconstructing the argument of the Hilbert Basis
Theorem in a more constructive fashion.
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