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Abstract. We examine the strength of the Hilbert Basis Theorem for finitely generated
modules (HBTM) and the stronger version pertaining to finitely generated polynomial rings
(HBT) in the context of Reverse Mathematics and First-Order Arithmetic. More specifi-
cally, we show that the first-order consequences of HBTM for modules with a span-relation
are equivalent to those of the Infinite Pigeonhole Principle (BΣ2); this implies that the
first-order theory of HBTM for modules is incomparable with the Hilbert Basis Theorem
for finitely generated polynomial rings over fields, studied by Simpson in [Sim88]. Finally,
after noticing that HBTM for modules is reducible to the Hilbert Basis Theorem for mul-
tivariate polynomials with ring coefficients (HBT), we obtain that HBT also implies the
Infinite Pigeonhole Principle, and (via some previously known results in [Con]) allows us
to characterize the strength of HBT as the conjunction of the Infinite Pigeonhole Principle
(BΣ2) equivalent to HBTM and the principle that asserts the well-foundedness of the ordi-
nal number NN (WO(NN)) equivalent to the Hilbert Basis Theorem for finitely generated
polynomial rings with field coefficients.

1. Introduction

One of the oldest nonconstructive mathematical arguments is the Hilbert Basis Theorem
[Hil90], which says that the polynomial ring R[X] with coefficients in a Noetherian (com-
mutative) ring R and indeterminate variable X is Noetherian.1 The effective content of
the Hilbert Basis Theorem was examined first by Buchberger [Buc74], and his algorithm
was subsequently translated to the proof-theoretic context for finitely generated polynomial
rings with field coefficients (HBTF) by Simpson [Sim88] and others [Hat94]. By induction
it easily follows from the Hilbert Basis Theorem that if R is a Noetherian commutative
ring then the multivariate polynomial ring R[X1, X2, . . . , Xn] is Noetherian, for any natural
number n ∈ N. An even more general form of the theorem pertains to finitely generated
modules over Noetherian rings. The standard proof of the Hilbert Basis Theorem essentially
takes an infinite sequence of polynomials in R[X] such that no polynomial is generated via
its sequential predecessors (over R[X]), and produces a corresponding infinite sequence of
“minimal” leading R−coefficients (i.e. coefficients corresponding to polynomials of minimal
degree, modulo sequential predecessor polynomials) such that no coefficient is in the R−span
of its sequential predecessors. Finding these minimal coefficients in general necessitates the
use of nonconstructive methods.

Buchberger presented an algorithm for computing what are called Gröbner bases for ideals
in multivariate polynomial rings. More precisely, for any ideal I in the multivariate polyno-
mial ring R[X1, X2, . . . , Xn], n ∈ N, R a Noetherian ring, a Gröbner basis (for I) is a finite
generating set for I. In this way, Gröbner bases are essentially witnesses for the Hilbert
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1A ring R is Noetherian if every ascending chain of ideals eventually stabilizes. More background on
Algebra is given in the following section.
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Basis Theorem. However, Buchberger’s algorithm is iterative and to show its convergence
Buchberger used the fact that the ordinal number NN is well-ordered. Later, in [Sim88],
Simpson showed the necessity of Buchberger’s hypothesis by showing that if R is a field
then the proof of the Hilbert Basis Theorem for R[X1, X2, . . . , Xn], n ∈ N, is necessarily
nonconstructive because it is equivalent to (and therefore requires) the well-ordering of the
ordinal NN, denoted WO(NN).
More recently, in [Con], the author has shown that the first-order consequences of the

Hilbert Basis Theorem for a multivariate polynomial ring R[X1, X2, . . . , Xn] with finitely

many indeterminates X⃗n = {X1, X2, . . . , Xn}, n ∈ N, and coefficients in Noetherian ring
R, are contained within those of a principle called the Monomial Division Chain (principle)

MDC which says that “every infinite sequence of X⃗−monomials of strictly increasing degree
{mi}∞i=1 has an infinite subset corresponding to some I ⊆ N that forms a division chain such
that for all i, j ∈ I, i < j, mi dividesmj.” Moreover, MDC is equivalent to the conjunction of
WO(NN) mentioned in the previous paragraph, along with the Infinite Pigeonhole Principle,
deonted BΣ2, which we formally introduce in the following section and essentially says every
finite partition of N must contain an infinite member.

1.1. The Hilbert Basis Theorem for Modules. A different version of the Hilbert Basis
Theorem says that if R is Noetherian and M is a finitely generated R−module, then M is
Noetherian, and we will denote this principle by HBTM throughout the rest of the paper. The
main purpose of this article (see Section 3 below) is to show that the first-order consequences
of HBTM for rings R that possess a “generalized division algorithm” (which we describe in
the following section) are the same as those of the Infinite Pigeonhole Principle (BΣ2). A
consequence of this result, in the context of some previous results of Simpson [Sim88, Sim],
shows that the first-order consequences of our HBTM neither include, nor are included in,
the first-order consequences of the Hilbert Basis Theorem for polynomial rings with field
coefficients2.

1.2. The General Hilbert Basis Theorem for Finitely Generated Polynomial Rings.
The strongest and most general form of the Hilbert Basis Theorem says that if R is a Noe-
therian ring, then the finitely generated polynomial ring R[X⃗n] = R[X1, X2, . . . , Xn], n ∈ N,
in the n indeterminate variables X1, X2, . . . , Xn is also a Noetherian ring. We focus on the
first-order consequences of HBT by assuming that the coefficient ring R has a generalized
division algorithm, and we denote the resulting principle HBT. We will eventually observe
that HBT implies HBTM (over RCA0), and therefore also implies the equivalent principle
BΣ2. By definition, HBT trivially implies the version of the theorem where R = K is a field,
examined by Simpson in [Sim88], who showed that this weaker form of HBT is equivalent
to WO(NN). Therefore, our main theorem pertaining to HBTM will allow us to decompose
the more general and stronger Hilbert Basis Theorem for Noetherian rings HBT into the
conjunction of two strictly weaker and incomparable versions:

• HBTM, equivalent to the Infinite Pigeonhole Principle BΣ2; and
• HBTF, equivalent to the Well-Ordering Principle for NN.

Moreover, via [Con], this decomposition implies that HBT is equivalent to the Monomial
Division Chain Principle MDC.

2Note that, by definition, the (generalized) division algorithm for a field is trivial. Therefore, fields always
possess such an algorithm over RCA0, although a ring may not.
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2. Background

To begin with, let N = {0, 1, 2, . . .} denote a possibly nonstandard set of natural numbers,
and for any N ∈ N, define

NN = N× N× · · · × N︸ ︷︷ ︸
N

.

We identify N ∈ N with the set of natural numbers preceding it

N = {0, 1, . . . , N − 1}.

Since we are working exclusively in the context of Second-Order Arithmetic, all of the struc-
tures that we will consider are countable.

2.1. Basic Commutative Algebra. For any N ∈ N,
−→
X = {X0, X1, . . . , XN}

is a set of indeterminate variables, and we can speak of
−→
X−monomials that are products of

the form
N∏
i=0

Xαi
i , αi ∈ N.

We can identify a monomial m with its sequence of exponents

m ∼ ⟨α0, α1, . . . , αN⟩ = ⟨αi : i ∈ N + 1⟩ ∈ NN+1.

We say that a monomial m0 ∼ ⟨αi,0 : i ∈ N + 1⟩ divides a monomial m1 ∼ ⟨αi,1 : i ∈ N + 1⟩
whenever we have that

αi,0 ≤ αi,1, i = 0, 1, . . . , N,

and this corresponds to division in polynomial rings (see [DM22] for basic definitions and
facts about polynomial rings). We write x | y to mean that x divides y. Recall that the
degree of the monomial m = ⟨αi : i ∈ N + 1⟩ is

deg(m) =
N∑
i=0

αi ∈ N.

We assume a familiarity with basic Commutative Ring Theory, as found in [DF99, AM69,
Eis95, Mat04]. For us, R will always refer to a countable commutative ring with identity
element 1 = 1R ∈ R. Recall that an ideal of R (R−ideal) is a subset of R closed under
addition, subtraction, and multiplication by all R−elements. Recall that:

• an ideal P ⊆ R is prime whenever we have that a ·R b /∈ I, for all a, b /∈ P ;
• an ideal M ⊆ R is maximal whenever there is no ideal I ⊊ R such that M ⊊ I;
• if M is a maximal ideal, then M is also prime;
• we say that S ⊆ R is a subring if it contains 0R, 1R and is closed under +R, ·R;
• x ∈ R is a zero divisor whenever x · y =R 0, for some 0 ̸=R y;
• u ∈ R is a unit whenever there exists x ∈ R such that x ·R u = 1R;
• R is an integral domain whenever it contains no zero divisors, i.e. whenever {0R} is
a prime ideal; and finally

• x divides y, denoted by x | y, whenever there exists a ∈ R such that a ·R x = y.

For any finite sequence a0, a1, . . . , an ∈ R, n ∈ N, define

⟨a0, a1, a2, . . . , an⟩R =

{
n∑

i=0

ri · ai : ri ∈ R

}
⊆ R;
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this is the smallest R−ideal containing a0, a1, . . . , an. For a fixed R, the relation x ∈ ⟨y⟩R is
called the division algorithm; while the relation

x ∈ ⟨y1, y2, . . . , yn⟩R, n ∈ N,

is called the generalized division algorithm. Although we may not always have access to
a (generalized) division algorith when working over RCA0, we take it as an assumption in
our HBTM. If R is an integral domain and every ideal I possesses an element xI such that
⟨xI⟩R = I, then R is called an principal ideal domain. If U ⊆ R is multiplicative(ly closed)
and does not contain any zero divisors, then it is always possible to (effectively) construct the
localization R[U−1] in which R embeds via an injective ring homomorphism ψ : R → R[U−1]
and such that every ψ(u), u ∈ U , has an R[U−1]−inverse. Recall that R is Noetherian if
it satisfies the ascending chain condition (ACC) on its ideals. This means that R is not
Noetherian whenever it contains an infinite strictly ascending chain of ideals

I0 ⊊ I1 ⊊ I2 ⊊ · · · ⊊ Ik ⊊ · · · ⊊ R, k ∈ N.

An R−module M is an abelian group on which R acts both associatively and distributively
in each action-factor; modules are generalizations of vector spaces and the two notions are
equivalent whenever R is a field. A submodule N ⊆ M is closed under the action of R
on M . It follows that R is always a module over itself, and in this case the submodules
correspond to ideals. We say that M is finitely generated whenever there are finitely many
elements of M that span M via the R−action. We can also speak of chains of submodules,
i.e. sequences of submodules ordered by inclusion. We say thatM is Noetherian if it contains
no infinite strictly ascending submodule chains; i.e. whenever every infinite ascending chain
of submodules eventually stabilizes.

2.2. Reverse Mathematics. In this article we work exclusively in the context of Reverse
Mathematics and Second-Order Arithmetic; a good introduction to these topics is given
in the first two parts of [DM22]. More specifically, we will always assume an axiom sys-
tem known as RCA0 that allows for the construction of sets of natural numbers defined by
computable predicates, along with an induction scheme for formulas of sufficiently simple
arithmetic complexity; more details are given below.

2.2.1. Induction over RCA0. We assume familiarity with the arithmetical hierarchy consist-
ing of the Σn and Πn arithmetic formulas; more information on this topic can be found in
either [Soa16, Chapter 4] or [DM22, Section 5.2]. Throughout this article we will always
assume a hypothesis denoted RCA0 that, generally speaking, validates computable math-
ematical constructions via ∆0

1−comprehension, along with a restricted induction scheme
called IΣ1 that grants induction for arithmetic formulas of complexity Σ1 consisting of a
∆0

1−predicate preceded by a single existential quantifier. It is well-known that, over RCA0,
the Σn−induction scheme is equivalent to the Πn−induction scheme, and moreover the
Σn+1−induction scheme is strictly stronger than the Σn−induction scheme. For more in-
formation on the formalism of Reverse Mathematics and RCA0, we refer the reader to either
[Sim09, Chapter II] or [DM22, Chapter 5]. For us, Σ1−induction is subsumed in RCA0, and
IΣ2 will be the strongest arithmetical principle that we refer to throughout this article.

2.2.2. BΣ2 and the Infinite Pigeonhole Principle. There is another more relevant combina-
torial principle, denoted BΣ2, that is implied by IΣ2 and says that for any ∆0

1 formula ϕ with
free variables A, x, y, A ⊆ N, x, y ∈ N, and corresponding Σ2−predicate

φ = (∃x)(∀y > x)ϕ,
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for any given N ∈ N there exists xN ∈ N such that

φ(a) if and only if (∀y > xN)ϕ(a), for all a ∈ N + 1.

BΣ2 is called the Σ2−Bounding Principle, or simply Σ2−Bounding. Moreover, a well-known
result of Hirst says that, over RCA0, BΣ2 is equivalent to the Infinite Pigeonhole Principle
that says for any N ∈ N and function f : N → N there exists n ∈ N such that the fiber
f−1(n) ⊆ N is infinite. In light of Hirst’s result, we will use BΣ2 to refer to the Infinite
Pigeonhole Principle.

2.2.3. The well-ordering of NN. Recall that a linearly ordered set is well-ordered if it does not
contain any infinite strictly descending sequences. We use WO(NN) to denote the principle
that says, for each n ∈ N, the (standard) lexicographic ordering on set of length-n sequences
of natural numbers Nn is a well-ordering. By [Sim88, Proposition 2.6], this is equivalent to
saying that the length-lexicographic ordering on finite sequences of natural numbers NN is a
well-ordering. Moreover, Simpson has analyzed the reverse mathematical strength of HBTM
for polynomial rings of the form

K[
−→
X ] = K[X0, X1, . . . , XN ], N ∈ N,

where K is a field, and found that, over RCA0, WO(NN) is equivalent to the assertion that for

any field K and N ∈ N, K[
−→
X ] is a Noetherian ring. The proof is essentially a formalization

of Buchberger’s Algorithm [Eis95, Chapter 15] for computing Gröbner Bases via multivariate
polynomial division in RCA0.

2.3. The Hilbert Basis Theorem for modules (i.e. HBTM). The main theorem in this
article characterizes the first-order part (i.e. the arithmetical consequences) of the following
theorem in the context of Reverse Mathematics.

Theorem 2.1 (Hilbert Basis Theorem for modules (HBTM)). Let R be a Noetherian ring
possessing a generalized division algorithm, and let M be a finitely generated R−module.
Then M is Noetherian.

From a constructive point of view such as that of Reverse Mathematics and RCA0, it is
more useful to rephrase HBTM via the following contrapositive.

Theorem 2.2 ((HBTM)). Let R be a ring possessing a generalized division algorithm, and
let M be a finitely generated non-Noetherian R−module. Then R is not Noetherian; i.e.
there exists an infinite strictly ascending chain of R−ideals

J0 ⊊ J1 ⊊ J2 ⊊ · · · ⊊ Jn ⊊ · · · ⊊ R, n ∈ N.

2.4. The Significance of Our Main Theorem for the General Hilbert Basis The-
orem HBT. Our main theorem, i.e. Theorem 3.1 in the following section, says that in
the context of Reverse Mathematics RCA0 +HBTM implies BΣ2. We will present a proof of
HBTM via BΣ2 in the following subsection. Taken together, these results say that HBTM and
BΣ2 are equivalent over RCA0. This is interesting because Simpson has shown [Sim88] that,
the Hilbert Basis Theorem for polynomial rings with field coefficients HBTF is equivalent
to WO(NN), and moreover in [Sim] Simpson shows that WO(NN) and BΣ2 are incomparable
principles over RCA0. Therefore, in the context of Simpson’s prior work, our work shows that
HBTM has incomparable first-order strength with Hilbert’s original version of the theorem
studied by Simpson in [Sim88]. We now discuss how these results relate to the more general
Hilbert Basis Theorem for finitely generated polynomial rings.
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Theorem 2.3 (General Hilbert Basis Theorem). Let R be a Noetherian ring, N ∈ N, and
R[X⃗N ] = R[X1, X2, . . . , XN ] be the finitely generated polynomial ring with coefficients in R

and indeterminate varaibles {Xi}Ni=1. Then R[X⃗N ] is a Noetherian ring.

In our constructive context of RCA0, a more useful rephrasing of the previous theorem is
obtain via the following contrapositive form.

Theorem 2.4 ((HBT)). Let R be a ring, N ∈ N, and let R[X⃗N ] denote the polynomial

ring in the finitely-many indeterminates X1, X2, . . . , XN . Then, if RX⃗N contains an infinite
strictly ascending chain of ideals, so does R.

After proving Theorem 3.1, we will observe exactly how HBT is more general than HBTM,
and almost trivially implies it over RCA0. Thus, a consequence of our main theorem (Theorem
3.1) will say that HBT implies BΣ2 over RCA0. Meanwhile, in [Con] the author has previously
shown that MDC is equivalent to WO(NN) +BΣ2 and implies HBTM. Hence, after our main
theorem is proven, we will be able to cite Simpson’s result [Sim88] to conclude that HBT is
equivalent to MDC and also equivalent to WO(NN) + BΣ2, over RCA0. Moreover, a result of
Simpson [Sim] that is also referred to diagrammatically in [HP16, page 69], says that BΣ2

and WO(NN) are incomparable principles over RCA0, and therefore each has a strength that
is strictly weaker than the conjunction BΣ2 +WO(NN). Thus, when combined, all of these
results produce a decomposition of HBT into two related weaker principles, one of which is
HBTM.

2.5. HBTM via the Infinite Pigeonhole Principle.

Lemma 2.5 (RCA0). Assume that BΣ2 holds. Let R be a ring with a division algorithm,
and let M be a non-Noetherian finitely generated R−module. Then R is not Noetherian.

Proof. Let M be generated by η1, η2, . . . , ηn, n ∈ N. Then we can think of any m ∈ M as a
vector

m = (r1, r2, . . . , rn) ≡
n∑

k=1

rkηk ∈M, rk ∈ R.

Moreover, since R possesses a generalized division algorithm and M is finitely generated, M
also possesses a generalized division algorithm that says whether one element of M is the
R−span of several other given M−elements. Even more, we can use M ’s generalized divi-
sion algorithm to effectively row-reduce M−vectors in the following way: given a sequence
m0,m1, . . . ,mk ∈M , k ∈ N, and mk+1 ∈M , via M ’s generalized division algorithm, we can
effectively produce a linear combination of m0,m1 . . . ,mk via coefficients a0, a1, . . . , ak ∈ R
such that:

• mk+1 +
∑k

ℓ=0 aℓmℓ =
∑jk+1

i=1 xiηi, jk+1 ∈ N, jk+1 ≤ k, such that
– jk+1 = 0 if and only if mk+1 ∈ ⟨m0,m1, . . . ,mk⟩R; and otherwise
– jk+1 ≥ 1 and and xjk+1

̸=R 0.
Furthermore,

• for any coefficients c1, c2, . . . , ck ∈ R there do not exist corresponding coefficients
x1, x2, . . . , xjk+1−1 ∈ R such that

mk+1 +
k∑

ℓ=1

cℓmℓ =

jk+1−1∑
i=1

xiηi.

Now, since M is not Noetherian it has an infinite sequence {mk}k∈N such that m0 ̸= 0M and

mk+1 /∈ ⟨m0,m1, . . . ,mk⟩R ⊂M, k ∈ N.
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Furthermore, via the uniform row reductions described in the items above, we can assume
that each mk+1 is reduced via its predecessors, and that jk ∈ N, 1 ≤ jk ≤ n is as above.
Moreover, BΣ2 says that for some 1 ≤ n0 ≤ n, n0 ∈ N, there is an infinite subsequence of
the {jk}k∈N such that jk = n0. Without any loss of generality (i.e. by passing to an infinite
subsequence and re-indexing the row-reducedM−elements) we may assume that jk = n0 for
all k ∈ N. Furthermore, for each k ∈ N, let xk,n0 ∈ R denote the R−coefficient of ηn0 = ηjk
in (the row-reduced) mk. Then by our construction of jk it follows that for each k ∈ N we
have that

xk+1 /∈ ⟨x0, x1, . . . , xk⟩R.
From which it follows that R is not Noetherian, since if we define

Jk = ⟨x0, x1, . . . , xk⟩R
then we have that

J0 ⊊ J1 ⊊ · · · ⊊ Jk ⊊ · · · ⊊ R, k ∈ N.
□

2.5.1. The base ring R0,N . In this section we construct, for each N ∈ N, N ≥ 1. a general
ring R0 = R0,N that will form the basis of the construction of our main theorem. Fix a
natural number N ≥ 1, and let

X⃗ = X⃗N = {Xk,ℓ : 1 ≤ k ≤ N, k, ℓ ∈ N}
be a set of indeterminate variables. Define

Q∞ = QN,∞ = Q[X⃗]

to be the polynomial ring with Q−coefficients and indeterminate variables X⃗. For each
k = 1, 2, . . . , N it is not difficult to see that the ideal

Pk = PN,k = ⟨Xk,ℓ : ℓ ∈ N⟩ ⊆ Q∞

is prime since its complement

Pk = Q∞ \ Pk

is multiplicatively closed; it follows that

U = UN =
N⋂
k=1

Pk ⊆ Q∞

is multiplicatively closed and consists of those Q∞−polynomial elements x such that for each
k = 1, 2, . . . , N there exists a nonzero x−monomial summand consisting only of indetermi-
nates of the form Xk,ℓ, ℓ ∈ N. Since Q∞ is an integral domain and hence U contains no zero
divisors, we can construct the localization Q∞[U−1] in which Q∞ embeds and every x ∈ U
is invertible.

Now, for any given x ∈ Q∞, if m denotes the greatest common divisor of the monomial
summands of x (after all possible cancellations) thenm is a X⃗−monomial and after factoring
m out of each monomial summand of x we obtain a factorization of the form

x = m · u,
where u ∈ U . In other words, every element of the localized Q∞[U−1] is the product of a
unit and a Q∞−monomial. Furthermore, if I ⊆ Q∞[U−1] is an ideal, then it follows that
there is a unique Q∞−monomial m such that m ∈ I and m divides every x ∈ I; in other
words I is generated by m and Q∞[U−1] is a principal ideal domain. These arguments will
also hold for our ring RN in the following paragraph, although RN is not an integral domain.
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Finally, the construction of RN = R0,N from Q∞[U−1] requires introducing the following
RN−indeterminate multiplication relations:

(a) Xk1,ℓ1 ·Xk2,ℓ2 =RN
0, k1, k2, ℓ1, ℓ2 ∈ N, k1 ̸= k2; and

(b) X2
k,ℓ+1 =RN

Xk,ℓ, 1 ≤ k ≤ N , k, ℓ ∈ N.
Relation (a) is not essential to our construction but helps to simplify RN by eliminating
unnecessary monomial products, while (b) essentially says that for any 1 ≤ k ≤ N , k, ℓ ∈ N,
Xk,ℓ+1 is the square root of Xk,ℓ. It follows that, for each k ∈ N, 1 ≤ k ≤ N , the RN−ideal

Pk = PR,N,k = ⟨Xk,ℓ : ℓ ∈ N⟩RN

is maximal, and every RN−prime ideal is of this form. By our construction of Q∞[U−1] it
follows that if I ⊆ RN is an ideal then there exists k ∈ N, 1 ≤ k ≤ N , such that either:

• I = Pk; or else
• I = ⟨Xk,ℓ⟩ for some ℓ ∈ N.

It now follows that if

I0 ⊊ I1 ⊊ I2 ⊊ · · · ⊊ Ij ⊊ · · · ⊊ RN , j ∈ N,

is an infinite strictly ascending chain of ideals then, since each Pk ⊊ Rn, 1 ≤ k ≤ N , k ∈ N,
is maximal and Pk0 ∩ Pk1 = 0 whenever k0 ̸= k1, there exists an infinite strictly increasing
sequence of natural numbers

ℓ0 < ℓ1 < ℓ2 < · · · < ℓj < · · · , j ∈ N,

and 1 ≤ k0 ≤ N , k0 ∈ N, such that for each j ∈ N we have that

Ij = ⟨Xk0,ℓj⟩ ⊊ RN .

Moreover, since RN is effective and in the case that {Ik}k∈N has a uniformly effective presen-
tation then {ℓk}k∈N can be effectively determined (via search) as well. The same conclusions
can be drawn (via the same arguments) for any subring SN ⊆ RN such that u−1 ∈ S
whenever x = m · u ∈ S, m ∈ Q∞ a monomial, u ∈ U .

3. Our main result

Theorem 3.1 (RCA0). HBTM implies BΣ2.

Proof. We will prove the Infinite Pigeonhole Principle BΣ2 via RCA0 + HBTM. To do this,
first suppose that f : N → N , for some N ∈ N, N ≥ 1; we will prove BΣ2 by establishing
the existence of a number 1 ≤ k0 ≤ N such that the fibre f−1(k0) is infinite.
First of all, let RN be as in Section 2.5.1 above. Using f , we will construct a computable

subring R ⊆ RN and corresponding finitely generated R−module M such that M has an
infinite strictly ascending chain of submodules and so HBTM says that R must have an
infinite ascending chain of ideals. To construct R:

(I) for each x = 0, 1, 2, . . ., enumerate the indeterminate Xk,ℓ ∈ X⃗N ⊂ RN , 1 ≤ k ≤ N ,
ℓ ∈ N, into R whenever f(x) = k and

|f−1(k) ∩ {0, 1, 2, . . . , x− 1}| = ℓ,

as well as all polynomials p ∈ Q∞ in which Xk,ℓ appears. Also,
(II) for each polynomial p ∈ Q∞ ⊆ RN currently in R with factorization p = m ·u, u ∈ U ,

monomial (GCD) m ∈ Q∞, enumerate u−1 ∈ U−1 into R as well.

Let M be the free R−module generated by {ω1, ω2, . . . , ωN}, and define

• N0 = ⟨0⟩N ; and
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• Nx+1 = Nj +M ⟨Xk,ℓ ·N ωk⟩N , where x, k, ℓ ∈ N, 1 ≤ k ≤ N , are such that Xk,ℓ is
enumerated into R at stage x via item (I) above. By our construction of R and Nx

it follows that Xk,ℓ /∈ Nx since only Xk,0, Xk,1, . . . , Xk,ℓ−1 have been enumerated into
R before stage x, and X2

k,j+1 =R Xk,j for each j = 0, 1, . . . , ℓ− 1.

It follows that {Nx}x∈N is uniformly effectively definable infinite strictly increasing sequence
of M−submodules, which satisfies the hypothesis of our (contrapositive) principle HBTM.
Therefore, our assumption of HBTM says that R cannot be a Noetherian ring and thus
produces an infinite strictly ascending chain of ideals

I0 ⊊ I1 ⊊ I2 ⊊ · · · ⊊ Ij ⊊ · · · ⊊ R, j ∈ N.
However, we have already argued in Section 2.5.1 above that any such chain must be of the
form

Ij = ⟨Xk,ℓj⟩R
for a fixed k ∈ N and an infinite strictly increasing sequence

ℓ0 < ℓ1 < ℓ2 < · · · < ℓj < · · · , j, ℓj ∈ N.
By our construction of R it follows that the fibre f−1(k) must be infinite, thus witnessing
the Infinite Pigeonhole Principle BΣ2 for the given function f . □

Now that we have proven our main result and established the equivalence of HBTM and
BΣ2 over RCA0, we make an almost trivial observation of how HBTM follows from HBT in
a strong way, even over RCA0. The easiest way to see the implication is to interpret the
module-generators ω1, ω2, . . . , ωn as indeterminate variables of a polynomial ring

RN [ω⃗] = RN [ω1, ω2, . . . , ωN ] ∼= RN [X1, X2, . . . , XN ]

where “generator powers” of the form

ωℓ
k = ωk · ωk · · · · · ωk︸ ︷︷ ︸

ℓ

, k, ℓ ∈ N, 1 ≤ k ≤ N,

exist. Under this interpretation, the infinite strictly ascending chain ofM−submodules trans-
lates to an infinite strictly ascending chain ofRN [ω⃗]−ideals, witnessing the non-Noetherianness
of RN [ω⃗]. Our assumption of HBT then produces an infinite strictly ascending RN−chain,
which we explained in Section 2.5.1 above and utilized in previous proof, can be used in the
context of RCA0 to construct a witness for the Infinite Pigeonhole Principle BΣ2.

We have now shown how the proof of the previous theorem can be reinterpreted to prove
the following theorem.

Theorem 3.2 (RCA0). HBT implies BΣ2.

In [Sim88], Simpson shows that HBT implies WO(NN).

Corollary 3.3 (RCA0). HBT implies BΣ2 +WO(NN).

In [Con] the author shows that the Monomial Division Chain Principle MDC is equivalent
to WO(NN) + BΣ2, and proves HBT, over RCA0.

Corollary 3.4 (RCA0). HBT is equivalent to both MDC and BΣ2 +WO(NN).

Simpson [Sim] and others [HP16, page 69] have shown that BΣ2 and WO(NN) are incom-
parable principles over RCA0, neither of which implies the other in this context. Our results
here explain why HBTM is equivalent to BΣ2 over RCA0, while [Sim88] proves that HBTF
is equivalent to WO(NN) over RCA0. Thus, when taken together all of these results yield a
decomposition of HBT into two incomparable strictly weaker variants of the Hilbert Basis
Theorem, namely HBTM (equivalent to BΣ2) and HBTF (equivalent to WO(NN)), over RCA0.
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