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Abstract. Let R be a ring, and let
−→
X = {X0, X1, . . . , XN}, N ∈ N, finitely many indeterminate

variables. We introduce a combinatorial principle in this context called MDC that produces, for any
given infinite sequence of monomials

Z0, Z1, Z2, . . . , Zk, . . . ∈ R[
−→
X ], k ∈ N,

of strictly increasing degree, an infinite subsequence

Zk0 , Zk1 , · · · , Zkn , · · · , n ∈ N,

such that for each n we have that Zkn divides Zkn+1 . We show that, in the context of Reverse Math-
ematics and Subsystems of Second-Order Arithmetic, MDC is an arithmetical principle equivalent to
BΣ2+WO(NN), where BΣ2 is a bounding principle for Σ2 formulas equivalent to the Infinite Pigeonhole
Principle (over RCA0), and WO(NN) asserts that finite sequences of natural numbers NN are well-ordered
via the length-lexicographic ordering.

1 Introduction

If N = {0, 1, 2, . . .} denotes the set of natural numbers, then a well-known algebraic fact called the Hilbert Ba-

sis Theorem (HBT) says that, for any field F 1, the (finitely generated polynomial) ring F [
−→
X ] = F [X1, X2, . . . , Xn]

is Noetherian (i.e. satisfies the ascending chain condition on its ideals) for any natural number n. This classic
result was first established by Hilbert [7] via nonconstructive methods. Later on, Buchberger’s Algorithm [6,

Theorem 15.9] for computing Gröbner Bases in F [
−→
X ] yielded a constructive (computable) argument for the

Hilbert Basis Theorem using the well-foundedness of the ordinal NN. After Buchberger’s results, Simpson [12]
showed that, in the context of Reverse Mathematics and subsystems of Second-Order Arithmetic (see [13, 5]

for more details), the Hilbert Basis Theorem for F [
−→
X ] is logically equivalent to the First-Order statement

asserting the well-ordering of NN. The main aim of this article is to:

1. introduce a combinatorial principle called MDC, that assserts the existence of infinite monomial division
chains in any infinite sequence of monomials, and is employed in the standard proof of the Hilbert Basis
Theorem for finitely generated polynomial rings with coefficients in a given Noetherian ring,

2. catalog the relationship between MDC and other combinatorial principles previously studied in the
context of Reverse Mathematics, and finally

3. give two different proofs of MDC from two incomparable axiom systems in the context of Reverse Math-
emaics.

In particular, we will show that the strength of MDC is strictly stronger than the one for polynomial rings
over fields characterized by Simpson in [12]. Moreover, in addition to classifying its strength in the context
of Reverse Mathematics and subsystems of Second-Order Arithmetic, we will show (see Section 2.3 below for
more details) exactly how this principle is related to (i.e. yields) the Hilbert Basis Theorem in the context of
polynomial rings with coefficients in a given Noetherian ring R possessing a (generalized) division algorithm
that effectively determines when a given ring element is in the ideal generated by finitely many elements.
A final open question asks whether MDC is necessary to prove this version of the Hilbert Basis Theorem.
Along the way we observe that, under the assumption that NN is well-ordered, monomials under the division
relation form well-quasi-orderings. Moreover, a consequence of our main result characterizing MDC shows
that it is equivalent to a combinatorial principle for well-quasi-orderings called wqo(set) introduced and
studied by Cholak, Marcone, and Solomon in [2].

1 Recall that a field is essentially any “number system” with commutative addition and multiplication operations
such that any nonzero element has a multiplicative inverse.



2 Preliminaries

To begin with, let N = {0, 1, 2, . . .} denote a possibly nonstandard set of natural numbers, and for any
N ∈ N, define

NN = N× N× · · · × N︸ ︷︷ ︸
N

.

We identify N ∈ N with the set of natural numbers preceding it

N = {0, 1, . . . , N − 1}.

Since we are working exclusively in the context of Second-Order Arithmetic, all of the structures that we
will consider are countable.

For any N ∈ N,
−→
X = {X0, X1, . . . , XN}

is a set of indeterminate variables, and we can speak of
−→
X−monomials that are products of the form

N∏
i=0

Xαi
i , αi ∈ N.

We can identify a monomial m with its sequence of exponents

m ∼ ⟨α0, α1, . . . , αN ⟩ = ⟨αi : i ∈ N + 1⟩ ∈ NN+1.

We say that a monomial m0 ∼ ⟨αi,0 : i ∈ N + 1⟩ divides a monomial m1 ∼ ⟨αi,1 : i ∈ N + 1⟩ whenever we
have that

αi,0 ≤ αi,1, i = 0, 1, . . . , N,

and this corresponds to division in polynomial rings (see [5] for basic definitions and facts about polynomial
rings). We write x | y to mean that x divides y. Recall that the degree of the monomial m = ⟨αi : i ∈ N +1⟩
is

deg(m) =

N∑
i=0

αi ∈ N.

We assume a familiarity with basic Commutative Ring Theory, as found in [4, 1, 6, 10]. For us, R will
always refer to a countable commutative ring with identity element 1 = 1R ∈ R. Recall that an ideal of R
(R−ideal) is a subset of R closed under addition, subtraction, and multiplication by all R−elements. For
any finite sequence a0, a1, . . . , an ∈ R, n ∈ N, define

⟨a0, a1, a2, . . . , an⟩R =

{
n∑

i=0

ri · ai : ri ∈ R

}
.

Recall that R is Noetherian if it satisfies the ascending chain condition (ACC) on its ideals. This means that
R is not Noetherian whenever it contains an infinite strictly ascending chain of ideals

I0 ⊊ I1 ⊊ I2 ⊊ · · · ⊊ Ik ⊊ · · · ⊊ R, k ∈ N.

If R is a ring, then its division algorithm is the relation

x ∈ ⟨a0, a1, . . . , aN ⟩R,

N ∈ N, x, a0, a1, . . . , aN ∈ R. Finally, recall that the Hilbert Basis Theorem (HBT) says that, for each ring
R and n ∈ N, the polynomial ring

R[
−→
X ] = R[X0, X1, . . . , Xn]

is Noetherian whenever R is Noetherian.



2.1 Reverse Mathematics

Induction over RCA0 We assume familiarity with the arithmetical hierarchy consisting of the Σn and Πn

arithmetic formulas; more information on this topic can be found in either [14, Chapter 4] or [5, Section 5.2].
Throughout this article we will always assume a hypothesis denoted RCA0 that, generally speaking, validates
computable mathematical constructions via ∆0

1−comprehension, along with a restricted induction scheme
called IΣ1 that grants induction for arithmetic formulas of complexity Σ1 consisting of a ∆0

1−predicate
preceded by a single existential quantifier. It is well-known that, over RCA0, the Σn−induction scheme is
equivalent to the Πn−induction scheme, and moreover the Σn+1−induction scheme is strictly stronger than
the Σn−induction scheme. For more information on the formalism of Reverse Mathematics and RCA0, we
refer the reader to either [13, Chapter II] or [5, Chapter 5]. For us, Σ1−induction is subsumed in RCA0, and
IΣ2 will be the strongest arithmetical principle that we refer to throughout this article.

BΣ2 and the Infinite Pigeonhole Principle There is another logical principle denoted BΣ2 that is implied
by IΣ2 and says that for any ∆0

1 formula ϕ with free variables A, x, y, A ⊆ N, x, y ∈ N, and corresponding
Σ2−predicate

φ = (∃x)(∀y > x)ϕ,

for any given N ∈ N there exists xN ∈ N such that

φ(a) if and only if (∀y > xN )ϕ(a), for all a ∈ N + 1.

BΣ2 is called the Σ2−Bounding Principle, or simply Σ2−Bounding. Moreover, a well-known result of Hirst
says that, over RCA0, BΣ2 is equivalent to the Infinite Pigeonhole Principle that says for any N ∈ N and
function f : N → N there exists n ∈ N such that the fiber f−1(n) ⊆ N is infinite. In light of Hirst’s result,
we will use BΣ2 to refer to the Infinite Pigeonhole Principle.

The well-ordering of NN Recall that a linearly ordered set is well-ordered if it does not contain any
infinite strictly descending sequences. We use WO(NN) to denote the principle that says, for each n ∈ N, the
(standard) lexicographic ordering on set of length-n sequences of natural numbers Nn is a well-ordering. By
[12, Proposition 2.6], this is equivalent to saying that the length-lexicographic ordering on finite sequences of
natural numbers NN is a well-ordering. Moreover, Simpson has analyzed the reverse mathematical strength
of HBT for polynomial rings of the form

K[
−→
X ] = K[X0, X1, . . . , XN ], N ∈ N,

where K is a field, and found that, over RCA0, WO(NN) is equivalent to the assertion that for any field K

and N ∈ N, K[
−→
X ] is a Noetherian ring. The proof is essentially a formalization of Buchberger’s Algorithm

[6, Chapter 15] for computing Gröbner Bases via multivariate polynomial division in RCA0. One consequence
of Simpson’s result is that, over RCA0, WO(NN) proves that if

Z0, Z1, . . . , Zk, . . . , k ∈ N,

is an infinite sequence of
−→
X−monomials, then for some k ̸= ℓ, k, ℓ ∈ N, we have that Zk divides Zℓ. We

will use this fact later on to show that WO(NN) along with the Chain-Antichain Principle for infinite partial
orders implies MDC over RCA0.

2.2 Preliminary Combinatorics related to MDC

We begin this section by formally stating MDC, the combinatorial principle whose proof-theoretic strength
the following section examines in detail.

Theorem 1 (MDC). Fix a finite set of indeterminates
−→
X = {X0, X1, . . . , XN}, N ∈ N, and suppose that

Z0, Z1, Z2, . . . , Zk, . . . , k ∈ N,

is an infinite sequence of
−→
X−monomials of strictly increasing degree. Then there is a subsequence of natural

numbers
k0 < k1 < k2 < · · · < kn < · · · , n, kn ∈ N,

such that
Zkn |Zkn+1

for all n ∈ N.
We call {Znk

}n∈N a monomial division chain (for {Zk}k∈N).



Monomials under the division relation form a Well-Partial-Order, which is also a Well-Quasi-
Order

Definition 1. A partial order is a pair P = (P,≤P ) such that P ⊆ N and ≤P is a binary reflexive antisym-
metric and transitive relation on P .

Definition 2. A quasi-order is a pair Q = (Q,≤Q) such that Q ⊆ N and ≤Q is a binary reflexive transitive
relation on Q.

It is trivial to see that every partial order is a quasi-order.

Definition 3. A partial order P = (P,≤P ) is a well partial order (WPO) if for each function f : N → P
we have that f(n) ≤P f(m) for some n ≤N m.

A quasi-order Q = (Q,≤Q) is a well-quasi-order (WQO) if for each function f : N → Q we have that
f(n) ≤Q f(m) for some n ≤N m.

It is trivial to see that every well partial order is a well-quasi-order. Therefore, every claim about all
well-quasi-orders is also true for all well partial orders.

Remark 1. Let
−→
X = {X0, X1, . . . , XN}, N ∈ N, be a finite set of indeterminates generating the monomial set

M , and let ≤M denote the binary division relation such that for all m1,m2 ∈ M , we have that m1 ≤M m2

if and only if m1 divides m2. Then it follows that

M = (M,≤M )

is both a partial order and a quasi-order. Moreover, Simpson [12] has shown that, under the assumption of
WO(NN), M is a WPO and WQO. Thus, any statement pertaining to all WQOs is also true of M.

We now give two proofs of MDC that we will eventually make use of in the following section that proves
our main results. The first proof of MDC is essentially [2, Lemma 3.4], which says that the Chain-Antichain
Principle for infinite partial orders (CAC) implies that every infinite WQO has an infinite nondescending
sequence of elements; the reader can consult [8] for more details on the computational aspects of this in-
teresting combinatorial principle that is implied by the Ramsey’s Theorem for pairs. Our second proof of
MDC is more direct and follows from the relatively benign axiom that is RCA0 + IΣ2. More specifically, our
second proof of MDC uses the Σ2−induction axiom IΣ2 in its RCA0−equivalent form of Π0

2−comprehension
for finite (i.e. bounded) sets.

Definition 4. Let P = (P,≤P ) be a parial order with universe P and order relation ≤P , and let X ⊆ P .
We call X a chain if for any x, y ∈ P we have that either x ≤P y or y <P x. On the other hand, we say
that X is an antichain if for any x, y ∈ X, neither x ≤P y nor y ≤P x whenever x ̸= y.

Note that there is an infinite partial order that is neither a chain nor an antichain.

Theorem 2 (Chain-Antichain Theorem for Infinite Partial Orders (CAC)). Let P = (N,≤P ) be an
infinite partial order. Then there is an infinite X ⊆ N such that the partial (sub)order X = (X,<X), where
<X is the restriction of <P to X, is either a chain or an antichain.

Proof (First proof of Theorem 1; [2, Lemma 3.4]). Let
−→
X = {X0, X1, . . . , XN}, N ∈ N, be given, and let

{Zk}k∈N be an infinite sequence of
−→
X−monomials of strictly increasing degree. Define a partial order P =

(N, <P ) via

k <P ℓ, whenever Zk |Zℓ.

Now, CAC says that P contains an infinite suborder X = (X,<X) that is either a chain or an antichain.
However, Buchberger’s Algorithm for computing Gröbner Bases [6, Chapter 15], which follows from WO(NN)
(see [13, Section 3] for more details), implies that in any infinite sequence of monomials there exist two
monomials one of which divides the other. This excludes the possibility that X is an antichain, and so X is
a chain and (by our construction of <X) we have that

Zx |Zy

for any x, y ∈ X, x < y. In other words X corresponds to an infinite monomial division chain of {Zk}k∈N.



Proof (Second proof of Theorem 1). First note that, since |
−→
X | = N + 1 it has 2N+1−many subsets. We

identify each indeterminate X ∈
−→
X with its index, essentially identifying

−→
X with N + 1 ⊂ N, and, as we

previously discussed, every
−→
X−monomial m can be identified with a finite sequence of natural numbers

Zk ∼ ⟨α0,k, α1,k, . . . , αN,k⟩ ∈ NN , where Zk =

N∏
i=0

X
αi,k

i .

Now (via IΣ2 in the guise of Bounded Π2−Comprehension) let I ⊆ P(N + 1) be defined as follows:

I = {S ⊆ N + 1 : (∀n)(∃k)(∀i ∈ S)[αi,k ≥ n]}.

In other words I contains those subsets S ⊆
−→
X for which there exist infinitely many numbers k ∈ N such that

the coordinates (exponents) of those (indeterminate) indices in S strictly increase, uniformly in k. Moreover,
since deg(Zk) > k, by the Infinite Pigeonhole Principle it follows that there exists an indeterminate index
i ∈ N + 1 with a corresponding infinite strictly increasing sequence of natural numbers {kn}n∈N such that
for each n ∈ N we have that

αi,kn
≥ n.

Thus, I contains some nonempty element {i} ⊆
−→
X .

Let Y ∈ I, Y ⊆ N +1, be maximal with respect to inclusion. By our construction of I there is an infinite
strictly increasing sequence {kn}n∈N such that for each n,

αy,kn
≥ n, y ∈ Y,

and by the maximality of Y ∈ I, for each i ∈ (N + 1) \ Y there exists αi ∈ N such that

αi,kn
≤ αi, n ∈ N.

Now, since Y ⊂ N + 1 is finite, by BΣ2 there exists an exponent α ∈ N such that for each i ∈ (N + 1) \ Y
and n ∈ N we have that

αi,kn
≤ α.

Furthermore, via the Infinite Pigeonhole Principle applied to “monomial pigeons” Zkn
, n ∈ N, and pigeon-

holes made up of the finitely many α−bounded sequences of (natural numbers) exponents corresponding to
indeterminate indices in (N +1)\Y appearing in Zkn

, we can assume that αi,kn
is independent of n ∈ N (i.e.

constant), for each i ∈ (N + 1) \ Y . Finally, it follows from our construction of I and the fact that Y ∈ I,
that for each n ∈ N and i ∈ N + 1 we can refine {kn}n∈N by taking an infinite computable subsequence if
required so that without any loss of generality the following two conditions are satisfied:

– αi,kn
< αi,kn+1

when i ∈ Y , and
– αi,kn

= αi,kn+1
when i /∈ Y ,

from which it follows that the {Zkn
}n∈N are an infinite monomial division chain.

2.3 The significance of monomial division chains in the context of the Hilbert Basis Theorem

We show the signficance of MDC by revealing its role in the standard proof of the Hilbert Basis Theorem
first espoused by Hilbert, and now found throughout the field. Recall that the Hilbert Basis Theorem [4,

Section 9.6, Theorems 21 & 22] says that if R is a Noetherian ring, N ∈ N, and
−→
X = {X0, X1, . . . , XN},

then the polynomial ring

R[
−→
X ] = R[X0, X1, . . . , XN ]

in the indeterminates
−→
X with coefficients in R is also Noetherian. This is equivalent to saying that R is not

Noetherian whenever R[
−→
X ] is not a Noetherian ring, or that R contains an infinite strictly ascending chain

of ideals whenever R[
−→
X ] contains such a chain. We prove this via MDC in the following paragraphs. Before

that, however, recall that we can linearly (well) order the
−→
X−monomials based on the lexicographic ordering

on exponents, and this gives rise to the notion of the leading monomial and corresponding leading coefficient

of any nonzero R[
−→
X ]−polynomial.



Let {Ik}k∈N be an infinite strictly ascending chain of ideals in R[
−→
X ], and for each k ∈ N let xk ∈

Ik+1 \ Ik ⊆ R[
−→
X ]. It follows that for each k ∈ N,

xk /∈ ⟨x0, x1, . . . , xk−1⟩R[
−→
X ]

⊆ Ik.

For each k ∈ N, let rk ∈ R be the leading coefficient of xk, and let mk be its leading monomial, so that rkmk

is its leading summand. Under the assumption that R possesses a division algorithm we can take for granted
that, for each k ∈ N, we have that

rkmk /∈ ⟨r0m0, r1m1, . . . , rk−1mk−1⟩R[
−→
X ]

.

There are now two cases to consider.
The first case says that {deg(mk) : k ∈ N} is bounded (i.e. finite), then by the Infinite Pigeonhole

Principle2 there is an infinite set of natural numbers {kn}n∈N such that the monomial mkn
= m does not

depend on n. Now, since
rkn+1

mkn+1
/∈ ⟨rk0

mk0
, rk1

mk1
, . . . , rkn

mkn
⟩
R[

−→
X ]

,

or in this case
rkn+1

m /∈ ⟨rk0
m, rk1

m, . . . , rkn
m⟩

R[
−→
X ]

,

it follows that
rkn+1

/∈ ⟨rk0
, rk1

, . . . , rkn
⟩R,

for each n ∈ N, and so the ideals
Jn = ⟨rk0

, rk1
, . . . , rkn

⟩R, n ∈ N,
form an infinite strictly ascending R−chain.

The second case says that {deg(mk) : k ∈ N} is unbounded. In this case there is an infinite subsequence of
{mk}k∈N of strictly increasing degree. Furthermore we can apply MDC to this subsequence to obtain an infi-

nite sequence of natural numbers {kn}n∈N such that {mkn
}n∈N is an infinite division chain of

−→
X−monomials,

i.e. we have that
mka |mkb

for all a, b ∈ N, a < b. Similar to the previous paragraph, since

rkn+1
mkn+1

/∈ ⟨rk0
mk0

, rk1
mk1

, . . . , rkn
mkn

⟩
R[

−→
X ]

,

and
mk0 ,mk1 , . . . ,mkn |mkn+1 ,

it follows that
rkn+1

/∈ ⟨rk0
, rk1

, . . . , rkn
⟩R

for each n ∈ N, and so
Jn = ⟨rk0 , rk1 , . . . , rkn⟩R

forms an infinite strictly ascending R−chain.

3 Our main results: Two different proofs of MDC over RCA0 via two
incomparable subsystems of Second-Order Arithmetic

Theorem 3 (RCA0 + IΣ2). (MDC) Fix a finite set of indeterminates
−→
X = {X0, X1, . . . , XN}, N ∈ N, and

suppose that
Z0, Z1, Z2, . . . , Zk, . . . , k ∈ N,

is an infinite sequence of
−→
X−monomials of strictly increasing degree. Then there subsequence of natural

numbers
n0 < n1 < n2 < · · · < nk < · · · , k, nk ∈ N,

such that
Znk

|Znk+1

for all k ∈ N.
2 Later on we will show that MDC implies BΣ2 over RCA0. Therefore, our use of the Infinite Pigeonhole Principle
can be thought of as an implicit utilization of MDC.



Proof. The reader can verify that our second proof of Theorem 1 in the previous section utilizes

– Bounded Π0
2−Comprehension (equivalent to IΣ2);

– BΣ2 (which follows from IΣ2); and
– the Infinite Pigeonhole Principle (equivalent to BΣ2 which follows from IΣ2);

and is therefore valid in RCA0 + IΣ2.

The following theorem is a consequence of [2, Lemma 3.20], which is a more general statement regarding
WQOs. The proof given there is essentially the same as the one that follows here.

Theorem 4 (RCA0). MDC implies BΣ2.

Proof. Assume that BΣ2 fails via finitely many finite sets

A0, A1, A2, . . . , AN , N ∈ N,

that partition N. Let R = Q[
−→
X ] = Q[X0, X1, . . . , XN ], and define an infinite sequence of R−monomials

Z0, Z1, Z2, . . . , Zn, . . ., n ∈ N, via
Zn = Xn

j

for the unique j ∈ N, 0 ≤ j ≤ N , such that n ∈ Aj . Since each Zn is the power of some indeterminate Xj ,
it follows that

Zk |Zℓ

only if k, ℓ ∈ Aj , and since Aj is finite there cannot exist an infinite monomial division chain.

A proof of the following theorem is also given in [2, Lemma 3.4] in the more general context of WQOs.

Theorem 5 (RCA0 +WO(NN)). CAC implies MDC.

Proof. The reader can verify that our first proof of Theorem 1 in the previous section above is valid in
RCA0 + CAC + WO(NN). Recall that a consequence of [12, Lemma 3.4] is that RCA0 + WO(NN) can prove
that in any infinite sequence of monomials there must exist a pair of monomials one of which divides the
other.

The following corollaries summarize our work so far.

Corollary 1 (RCA0). MDC is implied by both the arithmetic axiom IΣ2, as well as the second-order axiom
CAC+WO(NN).

Corollary 2 (RCA0). MDC implies BΣ2 and WO(NN).

Now, since IΣ2 is an arithmetic axiom system, there are models of RCA0 in which IΣ2 holds, but CAC
does not. On the other hand an eventual consequence of the following theorem is that there exist models of
Second-Order Arithmetic in which CAC+WO(NN) is satisfied but IΣ2 is not. In summary, IΣ2 and CAC are
incomparable subsystems of Second-Order Arithmetic in which (we have now seen that) MDC holds.

Corollary 3 (RCA0). Let N be a model of First-Order Arithemtic in which BΣ2 +WO(NN) holds. Then N
is the first-order part of a model M of Second-Order Arithmetic in which WQO holds.

Proof. Our second proof of Theorem 1 can be applied in the context of WQOs to show that WQO is implied
by IΣ2. Meanwhile, [2, Lemma 3.4] (similar to our first proof of Theorem 1) explains why WQO follows from
CAC +WO(NN). Now, a result of Chong, Slaman, and Yang [3, Corollary 5.2] says that any model of BΣ2

can be extended to a model of CAC without changing its first-order part, and hence without changing its
arithmetical theory. Thus, if we begin with a model M1 of RCA0 + BΣ2 +WO(NN) with first-order part N,
then [3, Corollary 5.2] says that M1 can be extended to a model M2 of RCA0 +BΣ2 +WO(NN) +CAC with
first-order part N. Now, via our first proof of Theorem 1 in the previous section which also applies in the
more general context of WQOs via [2, Lemma 3.4], it follows that WQO holds in M2.

Corollary 4 (RCA0). MDC and WQO are each strictly stronger than either BΣ2 or WO(NN), and neither
implies IΣ2.



Proof. In an unpublished manuscript [11] Simpson has shown that BΣ2 and WO(NN) are incomparable over
RCA0, i.e. neither one implies the other and therefore the conjunction BΣ2+WO(NN) is strictly stronger than
either individual principle BΣ2, WO(NN). In the same manuscript Simpson also shows that BΣ2 +WO(NN)
is strictly weaker than (i.e. does not prove) IΣ2.

3

If we let N be a model of First-Order Arithmetic in which BΣ2 + WO(NN) holds but IΣ2 does not,
then Corollary 3 above says that N can be extended to a model of Second-Order Arithemtic M in which
CAC+ BΣ2 +WO(NN) + ¬IΣ2 holds, and Theorems 3 and 5 above say that WQO (and hence MDC) is valid
in M. Therefore, M witnesses the fact that WQO and MDC do not imply IΣ2.

4 Avenues for further research

Our results here suggest the following two avenues of further research, one of which pertains to MDC, and
another pertaining to HBT which we have not directly addressed here other than our remarks in Section
2.3 above that essentially show how HBT for rings that possess division algorithms follows from MDC over
RCA0.

4.1 Problem 1: characterizing MDC over RCA0

In general we desire characterizations of MDC and WQO over RCA0.

Question 1 (RCA0). Is MDC equivalent to WQO? Or are there models of MDC+ ¬WQO?

In the previous section we showed that our two proofs of Theorem 1 above are indeed different. More
precisely our results show that WQO and MDC are each

– implied by (CAC+WO(NN)) ∧ IΣ2, and
– imply BΣ2 +WO(NN),

and thus raises the following question.

Question 2 (RCA0). Characterize the strengths of WQO and MDC by showing, for each principle, that it is
either

– equivalent to (CAC+WO(NN)) ∧ IΣ2, or
– equivalent to BΣ2 +WO(NN), or else
– strictly between these upper and lower bounds.

Remark 2. Establising the first item would essentially involve a proof of CAC via RCA0+WQO+¬IΣ2, which
would be interesting to see.

4.2 Problem 2: characterizing HBT over RCA0

Recall that HBT denotes the Hilbert Basis Theorem which says that for each n ∈ N and Noetherian ring R

with a division algorithm, the polynomial ring R[
−→
X ] = R[X0, X1, . . . , XN ] is Noetherian.

Our analysis of MDC here is motivated by HBT because MDC plays the key role in every known proof of
HBT. However, we do not yet know the exact reverse mathematical strength of HBT over RCA0, and therefore
cannot say definitively whether or not MDC is an essential assumption in the proof of HBT. Simpson [12] has
shows that HBT impliesWO(NN), and our remarks in Subsection 2.3 above can be formalized in Second-Order
Arithmetic to show that HBT follows from MDC over RCA0.

Theorem 6 (RCA0). HBT implies WO(NN), and is implied by CAC+WO(NN) (MDC).

However, Simpson [11] has shown that WO(NN) is not equivalent to WO(NN) + BΣ2, and thus the exact
strength of HBT remains open.

Question 3. What is the exact strength of HBT over RCA0? Is HBT equivalent to WO(NN)? Is it equivalent
to BΣ2 +WO(NN)? Or is it strictly in between?

Remark 3. It is interesting to note that a proof of HBT via WO(NN) would require novel algebraic methods
that do not filter through MDC. On the other hand, if HBT is equivalent to WO(NN)+BΣ2 that would imply
that MDC is necessary to prove HBT (as suggested thus far by empirical evidence).
3 The results referred to in this paragraph were probably known prior to [11]; they are referred to diagrammatically
in [9, page 69].
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