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Abstract. We prove that if S is an ω-model of weak weak König’s lemma and
A ∈ S, A ⊆ ω, is incomputable, then there exists B ∈ S, B ⊆ ω, such that A and
B are Turing incomparable. This extends a recent result of Kučera and Slaman
who proved that if S0 is a Scott set (i.e. an ω-model of weak König’s lemma) and
A ∈ S0, A ⊆ ω, is incomputable, then there exists B ∈ S0, B ⊆ ω, such that A
and B are Turing incomparable.

1. Genericity, Randomness, Logic, and Computability

1.1. Introduction. The primary goal of this article is to compare the logical (i.e.
foundational) nature of two distinct, but similar mathematical concepts. Both con-
cepts were first introduced in the context of mathematical analysis. Furthermore,
they are both over 100 years old, and play a central role in mathematics. The first,
called Baire category, was introduced by Baire in his 1899 PhD thesis [Bai99]. The
second, called measure, was introduced by Lebesgue in his 1902 PhD thesis [Leb].

Since the introduction of Cohen forcing in the early 1960s, the Baire category
theorem has played a central role in mathematical logic and computability theory.
However, logicians usually refer to the Baire category theorem as forcing, and the
objects that the theorem produces as generics. Forcing is a widely used tool in
mathematical logic and computability theory to construct objects that have various
mathematical properties. The simplest construction of this kind in computability
theory is cone avoidance or Turing incomparability. Computability theorists typi-
cally use forcing constructions to produce sets of natural numbers that are Turing
incomparable (for more information on Turing reducibility and basic computability
theory, see Section 2 or [Soa]), among other things. More generally, however, one
can use forcing to solve the extension of embeddings problem for the Turing degrees
D [Ler, Theorem II.4.11].

Measure theory was first introduced as a tool for proving a converse to the fun-
damental theorem of calculus. Since then, it has been widely used in many different
areas of mathematics, including mathematical logic and computability theory. The
earliest well-known measure-theoretic result on computability is a theorem of Sacks
and others [Nie, Theorem 5.1.12], which says that A ⊆ ω = {0, 1, 2, . . .} is incom-
putable if and only if the set of oracles f ∈ 2ω that compute A has measure zero (for
more information on Cantor space 2ω, consult Section 2). More recently, however,
the study of effective measure theory (i.e. computable measure theory) has seen sig-
nificant growth in scope and depth. In particular, the subfield of effective measure
theory called algorithmic randomness has seen a tremendous growth spirt over the
last 10 years, and many interesting connections between measure, randomness, and
computability have been established in that time.
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1.1.1. Comparing Genericity with Randomness. We have already mentioned that
the canonical example of forcing in computability theory is the construction of Tur-
ing incomparable sets A,B ⊆ ω (and, more generally, the solution of the extension
of embeddings problem [Ler, Theorem II.4.11]). Therefore, a natural way to com-
pare genericity and randomness is to see whether or not there is a proof of Turing
incomparability via algorithmic randomness. This is the content of the main the-
orem of this article (Theorem 4.1). It gives a proof of Turing incomparability via
randomness (i.e. measure theory). There are reasons for thinking that genericity
and randomness are similar concepts, and reasons for thinking of them as distinct.
The main similarity between these two notions is that they both talk about “big
sets” and “small sets.” In particular, both of these concepts say that “big sets”
(where the definition of “big” depends on the concept) are nonempty. On the other
hand, the Baire category theorem (i.e. genericity) builds a set that meets a “big set”
(i.e. a comeager set), while randomness builds a set that avoids every “small set”
(i.e. set of measure zero of a certain low complexity). Thus, while the overall phi-
losophy behind the Baire category theorem is the same as that of randomness (both
notions say that sets that satisfy a type of largeness requirement are nonempty),
the philosophies behind their proofs are different. It is well-known that, from the
point of view of reverse mathematics and ω-models (which is the point of view that
we take in this article), these concepts are distinct [BS93, Theorem 3.2].

1.2. The Main Theorem. The main theorem of this article (Theorem 4.1) says
that a particular subsystem of second order arithmetic proves the sentence

(∀A)(∃B)[∅ <T A ⇒ A ≰T B & B ≰T A]

in the context of ω-models (for more information on reverse mathematics and subsys-
tems of second order arithmetic including ω-models, consult Section 2 or [Sim]). This
subsystem of second order arithmetic is called weak weak König’s lemma (WWKL)
and is related to effective randomness. WWKL says that every Π0

1-class (i.e. effec-
tively closed set) of positive measure is nonempty, and it is equivalent to saying that
for every set A ⊆ ω, there exists a set B ⊆ ω such that B is random relative to
A (for more information on randomness and Π0

1-classes, consult either Section 2 or
[Nie]).

1.3. The Kučera/Slaman Theorem. Recently, Kučera and Slaman [KS07]
proved that if S is a Scott set (i.e. an ω-model of WKL weak König’s lemma; see
Section 2 for more details) then for every incomputable set A ∈ S, A ⊆ ω, there
exists B ∈ S, B ⊆ ω, such that A ≰T B and B ≰T A. This problem was originally
posed by Friedman and McAllister [CJ00, Problems 3.2,3.3] and remained unsolved
for many years. In particular, it was advances in the theory of algorithmic random-
ness that eventually yielded a solution to the problem. More specifically, the recent
work of Hirschfeldt, Nies, and Stephan [HNS07] and Nies [Nie05] on K-triviality
(for more information on K-trivials, consult either Section 2 or [Nie, Chapter 5])
were key steps in solving this problem.

To prove the main theorem [KS07, Theorem 2.1], Kučera and Slaman divided the
proof into two parts. The first part handles the case when the incomputable set
A ⊆ ω of the previous paragraph is not K-trivial, while the second part deals with
the case when A is K-trivial. Thus, the proof of [KS07, Theorem 2.1] is nonuniform.
This nonuniformity is the source of some serious obstacles when one tries to extend
or generalize [KS07, Theorem 2.1]. We give a brief overview of the method of the
proof of [KS07, Theorem 2.1] in Section 4 below.

The main significance of the Kučera/Slaman theorem [KS07, Theorem 2.1] is
that it provides a (nonuniform) proof of Turing incomparability via the axiom WKL
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(weak König’s lemma). In other words, if we denote the axiom given by the Baire
category theorem by BCT (i.e. BCT says that for every A ⊆ ω there exists a B ⊆ ω
such that B is 1-generic relative to A; for the precise definition of 1-genericity, see
[Soa, Exercise VI.3.6]), then in the context of ω-models BCT and WKL both prove
the sentence

(1) (∀A ⊆ ω)(∃B ⊆ ω)[∅ <T A ⇒ A ≰T B & B ≰T A].

However, via BCT the proof is uniform, while viaWKL the proof is nonuniform, since
it is divided up into cases (based upon randomness considerations). In addition to
exploring the similarities between BCT and WKL, we feel that our new randomness-
theoretic (i.e. measure-theoretic) proof of Turing incomparability (Theorem 4.1)
directly relates effective randomness to the Turing incomparability problem, thus
making the randomness considerations of [KS07, Theorem 2.1] somewhat less mys-
terious. We also note that our proof is nonuniform, in exactly the same way as
[KS07, Theorem 2.1].

1.4. The Plan of the Paper. The next section (i.e. Section 2) introduces the
main ideas from computability theory, randomness, and reverse mathematics that
we shall need to prove our main result. Section 3 reviews the relevant theorems
that will help us to prove the main theorem of this article. In the final section (i.e.
Section 4), we state and prove the main theorem of this article (Theorem 4.1). The
author is thankful to the anonymous referee for helpful comments and for helping
to streamline the exposition of this article.

2. Preliminaries and Notation

Our computability-theoretic terminology and notation follows that of Soare [Soa],
and our randomness-theoretic terminology and notation follows that of Nies [Nie].

We refer to elements of 2ω (i.e. the set of all infinite binary strings) as reals or sets
and identify each real A ∈ 2ω with the set of natural numbers given by A−1(1) ⊆ ω.
Also, 2<ω denotes the set of all finite binary strings. For any given A ∈ 2ω, n ∈ ω,
let A↾n ∈ 2<ω denote the first n bits of A. By tree we refer to a downwards closed
subset of 2<ω. Recall that a Σ0

1-class is a collection of reals that can be computably
enumerated, and that any such class can be represented as the union of a prefix-free
computably enumerable (c.e.) set of finite binary strings σ ∈ 2<ω. The complement
of a Σ0

1-class (in 2ω) is called a Π0
1-class. A Π0

1-class can be represented as the set
of infinite paths through a computable binary tree. We will also use relativized
versions, i.e. Σ0,A

1 -classes and Π0,A
1 -classes, for some given set A ∈ 2ω. Π0

1-classes
play a prominent role in logic, reverse mathematics, and algorithmic randomness.

The following definition is due to Martin-Löf.

Definition 2.1. Let A ∈ 2ω be given. A Martin-Löf test relative to A is a uniformly
c.e. in A sequence of Σ0,A

1 -classes {UX
n }n∈ω such that µ(UX

n ) ≤ 2−n, where µ denotes
the standard (i.e. Lebesgue) measure on 2ω. Any subset of ∩n∈ωU

X
n is called a

Martin-Löf null set relative to A. When X = ∅ we say Martin-Löf test and Martin-
Löf null set, respectively. A real X ∈ 2ω is Martin-Löf random (1-random) relative
to A whenever X is not contained in any Martin-Löf null set relative to X. If
X = ∅ we say that X is Martin-Löf random (1-random). Let MLRA denote the set

of Martin-Löf random reals relative to A, and set MLR∅ = MLR.

Martin-Löf constructed a universal Martin-Löf test, {Un}n∈ω, with the special
property that for all X ∈ 2ω, X is 1-random if and only if X /∈ ∩n∈ωUn. This
construction relativizes to all oracles A ∈ 2ω.
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We will use K(σ) to denote the prefix-free Kolmogorov complexity of σ ∈ 2<ω,
and similarly KA(σ) to denote the prefix-free Kolmogorov complexity relative to the
given oracle A ∈ 2ω. Schnorr [Sch71] proved that X ∈ 2ω is 1-random if and only if
there is a constant c ∈ ω such that for every n ∈ ω we have that K(X↾n) ≥ n+ c.

Definition 2.2. Fix A ∈ 2ω. The following properties describe various kinds of
computational weakness associated with 1-randomness.

(1) MLRA=MLR.
(2) (∃c)(∀n)[K(A↾n) ≤ K(n) + c].
(3) (∃c)(∀σ)[K(σ) ≤ KA(σ) + c].
(4) A ≤T Z for some Z ∈ 2ω that is 1-random relative to A.

We say that A is low for 1-randomness if A satisfies (1); we say that A is K-
trivial if A satisfies (2); we say that A is low for K if A satisfies (3); we say that A
is a basis for 1-randomness if A satisfies (4). Property (1) was first introduced by
Zambella [Zam90]; property (2) was first introduced by Chaitin [Cha76]; property
(3) was first introduced by Muchnik (unpublished, see [Nie, page 165]); property
(4) was first introduced by Kučera [Kuc93]. It is well-known that properties (1)-(4)
above are equivalent [HNS07, Nie05], and that every K-trivial set is low [Nie05], i.e.
if A ∈ 2ω is K-trivial then A′ ≡T ∅′.

2.1. Reverse Mathematics and Subsystems of Second Order Arithmetic.
In this section we introduce three subsystems of second order arithmetic: RCA,
WWKL, and WKL1. RCA and WKL were introduced by H. Friedman [Fri75], while
WWKL was first introduced by Simpson and Xu [SY90]. It is known that RCA
is strictly weaker than WWKL, which in turn is strictly weaker than WKL (i.e. in
terms of strength we have that RCA <WWKL <WKL) [SY90]. For more information
on reverse mathematics and subsystems of second order arithmetic, consult [Sim].
Recall that if T is a theory, and P is a sentence in the language of T , then to show
that T proves P it suffices to show (via Gödel’s completeness theorem) that every
model of T is also a model of P . Throughout this article we work exclusively with
ω-models. That is, we work with models whose first-order parts are the standard
natural numbers ω = {0, 1, 2, . . .}, thus restricting the second order parts of our
models to subsets of the power set of ω (that satisfy various computability-theoretic
closure properties as described below). As usual, we identify ω-models with their
second order parts.

2.1.1. RCA. RCA stands for recursive comprehension axiom. It asserts that when-
ever A ⊆ ω exists, and B ≤T A, then B also exists. It is known that the ω-models
of RCA are simply the Turing ideals. In other words, the models of RCA are the
subsets of the power set of ω that are closed under ⊕ and ≤T .

2.1.2. WWKL. WWKL stands for weak weak König’s lemma. It asserts that RCA
holds, plus the axiom that says for every A ⊆ ω and every Π0,A

1 -class X ⊆ 2ω such
that µ(X) > 0, we have that X ̸= ∅ (i.e. there is some f ∈ X). It is well-known
(via a theorem of Kučera [Nie, Proposition 3.2.24] and the existence of a universal
Martin-Löf test) that WWKL is equivalent to the assertion of RCA plus the axiom
that says for every set A ⊆ ω we have that MLRA ̸= ∅. To prove our main theorem,
we shall use the latter equivalent characterization of WWKL in place of the original
definition.

1Normally, these subsystems of second order arithmetic appear with a subscript 0 that indicates
a restricted induction scheme (restricted to Σ0

1 formulas only). Since we are working exclusively
within ω-models, we are implicitly assuming unrestricted induction for all formulas, and therefore
omit subscripts since for our purposes they hold no meaning.
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2.1.3. WKL. WKL stands for weak König’s lemma. WKL consists of RCA, plus the
axiom that asserts that for every set A ⊆ ω, and every infinite computable tree
T ⊆ 2<ω relative to the oracle A, there exists an infinite path through T . WKL is
at least as strong as WWKL since it is well-known that every Π0,A

1 -class of positive
measure can be represented as the set of paths through an infinite A-computable
tree. An ω-model of WKL is sometimes called a Scott set or Scott class.

3. Some Known Results

In this section we collect the definitions and known results that will help us to
prove the main theorem in the next section. Most of this material can be found in
[Nie, Chapter 5].

The first theorem that we require is an old result of Sacks and others.

Theorem 3.1. [dLMSS, Sac] If A ⊆ ω is incomputable and Φ is an oracle Turing

machine. Then the Π0,A
2 -class {X ∈ 2ω : ΦX = A} has (Lebesgue) measure zero.

The next fact that we will need is a recent result of Kjos-Hanssen, Miller, and
Solomon [KHMS].

Definition 3.2. Let A,B ⊆ ω. We say that A is LR-reducible to B, and write
A ≤LR B, if MLRB ⊆ MLRA.

Theorem 3.3. [KHMS, Theorem 3.2] The following are equivalent for given sets
A,B ⊆ ω.

(1) A ≤LR B and A ≤T B′.

(2) Every Π0,A
1 -class contains a Σ0,B

2 -class of equal measure.

(3) Every Σ0,A
2 -class contains a Σ0,B

2 -class of equal measure.

Recall (via Definition 2.2) that A ∈ 2ω is K-trivial if and only if A ≤LR ∅ and
A ≤T ∅′. Also note that item (3) of Theorem 3.3 above can be (equivalently)

restated as saying that every Π0,A
2 -class is contained inside a Π0,B

2 -class of equal
measure. Thus, if A ∈ 2ω is K trivial, then by Theorem 3.3 it follows that every
Π0,A

2 -class is contained inside a Π0
2-class of equal measure. We will use this fact in

the proof of Theorem 4.1 below.
Next, we present work of Hirschfeldt and Miller (unpublished, see [Nie, Theorem

5.3.15]) on the set of randoms contained within a Π0
2-class of measure zero. More

specifically, the proof of [Nie, Theorem 5.3.15] yields the following theorem.

Theorem 3.4. [Nie, Theorem 5.3.15] Let R be a Π0
2-class of measure zero. Then

there is a cost function cR(x, s) that satisfies the limit condition and such that every
A ⊆ ω, A ∈ ∆0

2, that possesses a computable approximation obeying c is computable
relative to every random set X ∈ R. In other words, A is a uniform Turing lower
bound for the set of randoms in R.

The current paragraph gives a brief introduction to cost functions. Roughly speak-
ing a cost function is a computable function c : ω2 → ω that assigns a cost to every
pair of natural numbers ⟨x, s⟩ ∈ ω2. Cost functions are used when constructing ∆0

2

sets via computable approximations (i.e. the limit lemma). More specifically, the
cost associated with the construction of A = lims f(x, s), A ∈ ∆0

2, at stage s ∈ ω is
equal to c(x, s), where x ∈ ω is least such that f(x, s) ̸= f(x, s−1). We say that the
approximation f(x, s) obeys the cost function c if the sum of the costs over all stages
is finite. It follows that approximations that obey a given cost function must change
infrequently, and therefore obeying a cost function is a notion of computational
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weakness for ∆0
2 sets. A cost function satisfies the limit condition if (roughly speak-

ing) the limit of the costs tends to zero as s tends to infinity. For more information
on cost functions, including precise definitions, consult [Nie, Section 5.3].

We will also need to know that the c.e. K-trivials are the most powerful amongst
the K-trivials. This is the content of [Nie, Corollary 5.5.3] and was first proven in
[Nie05].

Theorem 3.5. [Nie05] For any given K-trivial set A ⊆ ω, there is a c.e. K-trivial
set B ⊆ ω such that A ≤T B.

Next, we shall need to know that obeying cost functions is compatible with (lower)
cone avoidance for low c.e. sets. A special case of the following result was first proven
by Nies in [Nie02]. The general case is proven in [Nie05, Theorem 5.3.22].

Theorem 3.6. [Nie, Theorem 5.3.22] Let c be a cost function that satisfies the limit
condition. Then for every low c.e. set B there is a c.e. set A that obeys c and such
that A ≰T B.

The final result that we need is the well-known Sacks splitting theorem with
(upper) cone avoidance for incomputable ∆0

2 sets. It was first proven by Sacks.

Theorem 3.7. [Soa, Proposition VII.3.3, Exercise VII.3.9] Let B,C ⊆ ω be such
that B is c.e. and C ∈ ∆0

2 is incomputable. Then there exist c.e. sets A0, A1 ⊆ ω
such that

(1) A0 ∪ A1 = B and A0 ∩ A1 = ∅.
(2) C ≰T Ai, for i ∈ {0, 1}.

Furthermore, we have that A0 ⊕ A1 ≡T B.

4. A Measure-Theoretic Proof of Turing Incomparability

The goal of this section is to prove the main theorem of this article, which we
now state.

Theorem 4.1. Let S be an ω-model of WWKL. Then for every incomputable A ⊆ ω
such that A ∈ S, there exists B ⊆ ω such that B ∈ S and B|TA (i.e. B ≰T A and
A ≰T B).

Before we give the proof Theorem 4.1, we wish to briefly review the proof of
[KS07, Theorem 2.1], which says that for any Scott set S and any incomputable set
A ∈ S, there is a B ∈ S such that A|TB.

To prove [KS07, Theorem 2.1], the authors break the proof up into two parts. The
first part of the proof deals with the case where A ⊆ ω is not K-trivial, and is valid
in WWKL (as well as WKL), and is therefore applicable in the context of this article.
The proof of the first part is quite simple, and uses item (4) of the characterization
of K-trivials that we gave in Section 2.2. If A is not K-trivial, then use WWKL to
produce a set B ⊆ ω, B ∈ S, such that B is random relative to A. Then, by item
(4) in Section 2.2, we have that A ≰T B. Furthermore, since B is random relative
to A, it follows that B is not K-trivial and thus B ≰T A. Therefore, we have that
A|TB.

The second part of the proof deals with the case where A is K-trivial. In this
case the authors construct a Π0

1-class X ⊆ 2ω such that every element of X is
Turing incomparable with A. We will not give all the details here, but we do point
out that to achieve (∀f ∈ X)[A ≰T f ] the authors employ the Sacks preservation
strategy for avoiding upper cones of ∆0

2 sets (recall that if A is K-trivial, then A is
∆0

2). The reason why the authors’ proof does not go through in WWKL is that the
Sacks preservation strategy enumerates many basic clopen sets out of the Π0

1-class



A MEASURE-THEORETIC PROOF OF TURING INCOMPARABILITY 7

X ⊆ 2ω, thus thinning X down to a set of measure zero. Therefore, WWKL is unable
to conclude that X ̸= ∅. In other words, the main obstruction in getting the proof
of [KS07, Theorem 2.1] to go through in WWKL is its use of the Sacks preservation
strategy.

We point out that our proof of Theorem 4.1 below also employs the Sacks preser-
vation strategy, because the proof of Theorem 3.7 above uses the Sacks preservation
strategy to avoid the cone above the incomputable ∆0

2 set C ⊆ ω. In other words,
our proof finds a way to use the Sacks preservation strategy without thinning out our
Π0

1-class, thus avoiding the obstruction associated with the proof of [KS07, Theorem
2.1]. We also note that the second part of our proof uses the full hypothesis that
A ⊆ ω is K-trivial (via Theorem 3.3 above), whereas the second part of [KS07, The-
orem 2.1] can be easily modified so that is valid for any ∆0

2 set of effective packing
dimension zero.

Proof of Theorem 4.1. Suppose that we are given an ω-model S of WWKL, and A ∈
S, A ⊆ ω, such that ∅ <T A. Using WWKL, we must construct a set B ∈ S, B ⊆ ω,
such that B ≰T A and A ≰T B. To achieve this goal, we use the theorems listed in
the previous section. By previous remarks in this section, we may assume that A is
K-trivial.

First, using the axiom WWKL, construct a set B0 ⊆ ω, B0 ∈ S, such that B0 is
random relative to A (for our purposes we could also take B0 random relative to ∅).
Now, since B0 is random relative to A, it follows that B0 is also random (relative to
∅), from which it follows that B0 is not K-trivial, and therefore B0 ≰T A. Hence,
if A ≰T B0 then we have proven the theorem, so assume that A ≤T B0. Thus, we
have that A ≤T B0 for some random B0 ∈ S.

Fix an oracle Turing machine Φ such that ΦB0 = A. Recall that, by Theorem 3.1,
the Π0,A

2 -class given by

R0 = {f ∈ 2ω : Φf = A} ⊆ 2ω

satisfies µ(R0) = 0 and B0 ∈ R0. By our remarks following the statement of
Theorem 3.3 in the previous section, we have that R0 ⊆ R for some Π0

2-class R such
that µ(R) = 0. Therefore, there exists a Π0

2-class R ⊆ 2ω such that B0 ∈ R, for
some random set B0 ∈ S, B0 ⊆ ω, and µ(R) = 0.
Now, Theorem 3.4 produces a cost function cR(n, s), n, s ∈ ω, that satisfies the

limit condition and such that if X ⊆ ω is any ∆0
2 set that possesses a computable

approximation that obeys c, then every random set C ∈ R computes X. Therefore,
in particular, we may set C = B0 since we know that B0 ∈ S, B ⊆ ω, is random
and B0 ∈ R.

Using Theorem 3.5, let A0 ⊆ ω, A ≤T A0, be a c.e. K-trivial set (A0 need not be
in the ω-model S). Recall that A0 is low. Therefore, we may apply Theorem 3.6 to
construct a c.e. set B1 ⊆ ω that obeys the cost function cR(n, s) from the previous
paragraph, and such that B1 ≰T A0 (and thus B1 ≰T A). Note that B1 ∈ S, since
B1 obeys cR, and therefore B1 ≤T B0. If we have that A ≰T B1, then we have proven
Theorem 4.1, so assume that A ≤T B1. Since B1 ≰T A, we have that A <T B1.
Recall that A ⊆ ω is ∆0

2 and incomputable. This enables us to apply Theorem
3.7 to produce c.e. sets B2, B3 ⊆ ω, B2, B3 ∈ S, such that B2 ⊕ B3 ≡T B1 and
A ≰T B2, B3. Now, since A <T B1, it follows that at least one of B2, B3 ⊆ ω satisfies
Bi ≰T A (otherwise we would have that B1 ≡T B2 ⊕ B3 ≤T A, a contradiction),
i ∈ {2, 3}. Furthermore, by our construction of Bi, we also have that A ≰T Bi.
Therefore, setting B = Bi yields a set B ∈ S, B ⊆ ω, that is Turing incomparable
with A. □
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