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Abstract. We examine an effective version of the standard fact from analysis which says
that, for any ε > 0 and any Lebesgue-measurable subset of Cantor space, X ⊆ 2ω, there is
an open set Uε ⊆ 2ω, Uε ⊇ X, such that µ(Uε) ≤ µ(X)+ε, where µ(Z) denotes the Lebesgue
measure of Z ⊆ 2ω, that arises naturally in the context of algorithmic randomness.

More specifically, our main result shows that for any given rational numbers 0 ≤ ε <
ε′ ≤ 1, and uniformly computably enumerable sequence {Un}n∈ω of Σ0

1-classes such that
(∀n)[µ(Un) ≤ ε], there exists a Σ0,∅′

1 -class, Y , such that Y ⊇ lim infn Un, and µ(Y ) ≤ ε′.
Moreover, Y can be obtained uniformly from ε, ε′, and a u.c.e. index for {Un}n∈ω. This
answers a recent question of Bienvenu, Muchnik, Shen, and Vereshchagin. We also determine
the truth-values of several modifications of our main result, showing that several similar,
but stronger, statements are false.

1. Introduction

Recently, there has been much interest in the subfield of effective measure theory that
examines randomness properties from the algorithmic viewpoint. The main goal of this
line of research is to better understand the nature of algorithmic randomness by relating
randomness properties to computability-theoretic properties, such as Turing reducibility.
For an introduction to algorithmic randomness and Kolmogorov complexity, consult [DH10,
DHNT06, Nie09]; for an introduction to computability theory, consult [Rog87, Soa87].

Some of the most recent results in algorithmic randomness relate the algorithmic random-
ness properties of a set A ⊆ ω to its ability to effectively (i.e. computably) approximate
Borel sets with respect to (Lebesgue) measure. For example, in [KH07] it is shown that
A ⊆ ω is “randomly feeble” (i.e. K-trivial) if and only if every effectively closed set relative
to A of positive measure contains an effectively closed set of positive measure (relative to
∅), or, equivalently, every effectively open set relative to A of measure strictly less than 1
is contained within an effectively open set of measure strictly less than 1. The author also
characterizes this property in terms of a domination condition. Furthermore, [KH07] and
[Nie09, Theorem 5.6.9] also characterize various instances of a reducibility notion based on
randomness properties (called LR-reducibility) in terms of approximating Borel sets by open
sets.

In this article we examine the effective content of the related, standard, well-known fact
from classical mathematical analysis, which says that for every ε > 0 and (Lebesgue) mea-
surable X ⊆ 2ω, there exists an open set Uε such that

µ(Uε) ≤ µ(X) + ε and Uε ⊇ X,

where µ(Z) denotes the Lebesgue measure of Z ⊆ 2ω. In other words, every measurable set
can be covered by an open set of arbitrarily close measure. Our main result is an analogue of
several other well-known results in the same vein, including that result in effective measure
theory which plays a significant role in effective randomness, and says that every uniform

Date: July 12, 2009.
The author was partially supported by NSERC grant PGS D2-344244-2007. Moreover, he would like to

thank T.A. Slaman for suggesting this problem to him, and to acknowledge the helpful input he received
from his thesis advisors: R.I. Soare, D.R. Hirschfeldt, and A. Montalbán. He would also like to thank the
two anonymous referees for their invaluable suggestions that vastly improved this article.

1



2 CHRIS J. CONIDIS

sequence of Σ0
n-classes can be uniformly approximated (i.e. covered) by Σ0,∅(n−1)

1 -classes of
arbitrarily close measure [Kau91, Kur81]. One important and immediate consequence of
this result says that being (n + 1)-random is no different than being 1-random relative to
∅(n). This consequence allows one to apply arguments and techniques involving open sets
to higher randomness notions, such as n-randomness, n ∈ ω, n > 1. Questions regarding
approximating Borel sets (with respect to Lebesgue measure) via effectively open and closed
sets have been considered by various mathematicians in recent years, including [BMSV10,
KH07] and others.

Before we state our main theorem (Theorem 3.1), we wish to introduce some of the main
concepts used in its statement. Given a sequence of subsets of Cantor space, {Un}n∈ω, we
define lim infn Un as follows

lim inf
n

Un =
⋃
n∈ω

⋂
k≥n

Uk.

In other words, for every f ∈ 2ω we have that f ∈ lim infn Un if and only if f ∈ Uk, for
cofinitely many k ∈ ω. It follows that if (∀n)[µ(Un) ≤ ε], for some ε ∈ R, then we have that
µ(lim infn Un) ≤ ε; more generally, we have that µ(lim infn Un) ≤ lim infn µ(Un). Roughly
speaking, our main theorem says that if for every n ∈ ω we have that Un ⊆ 2ω is a sufficiently
simple subset of Cantor space such that µ(Un) ≤ ε, then, for any given ε′ > ε, there exists
a sufficiently simple set Y ⊆ 2ω such that

lim inf
n

Un ⊆ Y and µ(Y ) ≤ ε′.

Moreover, Y ⊆ 2ω can be obtained uniformly from ε, ε′, and a u.c.e. index the sequence
{Un}n∈ω.

Our main theorem (Theorem 3.1) answers an outstanding question of Bienvenu, Muchnik,
Shen, and Vereshchagin [BMSV10]. More specifically, [BMSV10] asks if (the first part of)
the following theorem holds.

Theorem 3.1. Let 0 ≤ ε < ε′ ≤ 1 be rational numbers, and let {Un}n∈ω be a sequence of
uniformly Σ0

1-classes (in Cantor space) such that µ(Un) ≤ ε for every n ∈ ω. Then there

exists a Σ0,∅′
1 -class Y ⊆ 2ω such that µ(Y ) ≤ ε′ and U = lim infn Un ⊆ Y , where

U = lim inf
n

Un =
⋃
n∈ω

⋂
k≥n

Uk.

Furthermore, a Σ0,∅′
1 index for Y ⊆ 2<ω can be obtained uniformly from ε, ε′, and a u.c.e.

index for the sequence of sets Un, n ∈ ω.

The main goal of [BMSV10] is to simplify the proofs of several theorems from algorithmic
randomness, by putting them in a common perspective. One of the general results that the
authors establish is a weaker version of Theorem 3.1 which is essentially identical to Theorem
3.1, except that U = lim infn Un is replaced by U0 =

⋃
n∈ω(

⋂
k≥n Uk)

o, where Zo denotes the
interior of Z ⊆ 2ω. This is [BMSV10, Theorem 6]. The authors then use this weaker theorem
to prove the following result of Miller, Nies, Stephan, Terwijn [Mil04, NST05].

Theorem 1.1. [NST05, Theorem 2.8][Mil04, Corollary 2] For all f ∈ 2ω, we have that f is
2-random if and only if

(∃c)(∃∞n)[C(f�n) ≥ n− c],
where C(σ) denotes the plain Kolmogorov complexity of σ ∈ 2<ω. In other words, f ∈ 2ω is
2-random if and only if f is infinitely often C-maximizing.

Recently, J. Miller has proved the following theorem [Mil10, Theorem 4.1], which is anal-
ogous to [NST05, Theorem 2.8] (above), but with prefix-free Kolmogorov complexity (i.e.
K(σ), σ ∈ 2<ω) replacing plain Kolmogorov complexity (i.e. C(σ), σ ∈ 2<ω). The converse
to [Mil10, Theorem 4.1] was shown by Yu, Ding, and Downey [YDD04].
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Theorem 1.2. [Mil10, Theorem 4.1] Suppose that f ∈ 2ω is 2-random. Then we have that

(∃c)(∃∞n)[K(f�n) ≥ n+K(n) + c].

In other words, if f ∈ 2ω is 2-random, then f is infinitely often K-maximizing.

This raises the following (somewhat vague) question, to which we do not know the answer.

Question 1.3 (J. Miller). Is there a “direct” proof of Theorem 1.2 from Theorem 3.1?

In Section 4, we prove a partial converse to Theorem 3.1. It essentially says that our
construction of Y ⊆ 2ω in Theorem 3.1 is optimal, since it is uniform in ε′ (> ε). More
precisely, we have the following theorem.

Theorem 4.1. Let D ⊆ ω be such that Theorem 3.1 holds with D in place of ∅′, uniformly
in ε′(> ε). Then ∅′ ≤T D.

In particular, there is a set U ⊆ 2ω of the form U = lim infn[Un], for some u.c.e. collection
of sets Un ⊆ 2<ω, n ∈ ω, such that if D ⊆ ω satisfies Theorem 3.1 in place of ∅′, uniformly
in ε′, for this particular U , then ∅′ ≤T D.

Basically, Theorem 4.1 says that Theorem 3.1 is optimal in the sense that any set D ⊆ ω
that satisfies Theorem 3.1 in place of ∅′, and uniformly in ε′, must compute ∅′. Therefore,
∅′ is the weakest set that satisfies Theorem 3.1. In other words, Theorem 4.1 says that the
class of sets that satisfy Theorem 3.1 in place of ∅′, and uniformly in ε′, is equal to the cone
above ∅′.

In Section 5 we show that we cannot relax the uniformity hypothesis in Theorem 4.1,
because if we did then Theorem 4.1 would fail due to a cone avoidance property. In particular,
we prove the following.

Theorem 5.2. Let C ⊆ ω be any incomputable set. Then the class of sets X ⊆ ω such
that for any given 0 < ε < ε′ < 1, ε, ε′ ∈ Q, and uniformly Σ0

1-classes {Un}n∈ω such that

µ(Un) ≤ ε, n ∈ ω, there is a Σ0,X
1 -class [WX ] such that

µ([WX ]) ≤ ε′ & [WX ] ⊇ lim inf
n

Un

contains a member X0 ⊆ ω such that C �T X0.
In other words, the class of sets X that satisfy Theorem 4.1 above without the uniformity

condition (with respect to ε′) has the (upper) cone avoidance property.

In Section 6, we show that if the hypothesis of Theorem 3.1 that says (∀n)[µ([Un]) ≤ ε] is
weakened to say that (∃∞n)[µ([Un]) ≤ ε], then the resulting statement is false. In particular,
we prove Theorem 6.2 below, which implies Theorem 6.1 below. Theorem 6.1 answers a
question of J. Miller, and A. Shen. It was originally thought that if one replaced Theorem
3.1 with the negation of Theorem 6.2 (if it were true) in Question 1.3 above, then one could
use the machinery of Solovay functions to give a positive answer to the resulting question.
However, Theorem 6.1 suggests that this approach will not work.

Theorem 6.1. Let ε = 1
2

and ε′ = 3
4

(note that 0 ≤ ε < ε′ ≤ 1 and ε, ε′ ∈ Q). There
exists a sequence of uniformly Σ0

1-classes (in Cantor space), {[Un]}n∈ω, Un ⊆ 2<ω, such that

µ([Un]) ≤ ε for infinitely many n ∈ ω and for all Σ0,∅′
1 -classes, [Y ] ⊆ 2ω, Y ⊆ 2<ω, such that

µ([Y ]) ≤ ε′ we have that U = lim infn[Un] * [Y ], where

U = lim inf
n

[Un] =
⋃
n∈ω

⋂
k≥n

[Uk].

Theorem 6.2. Let ε = 1
2

and ε′ = 3
4

(note that 0 ≤ ε < ε′ ≤ 1 and ε, ε′ ∈ Q). There
exists a sequence of uniformly Σ0

1-classes (in Cantor space), {[Un]}n∈ω, Un ⊆ 2<ω, such that
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µ([Un]) ≤ ε for infinitely many n ∈ ω and for all Σ0,∅′
1 -classes, [Y ] ⊆ 2ω, Y ⊆ 2<ω, such that

µ([Y ]) ≤ ε′ we have that

U0 =
⋃
n∈ω

(
⋂
k≥n

[Uk])
o * [Y ],

where Zo ⊆ 2ω denotes the interior of Z ⊆ 2ω.

2. Basic Definitions and Notation

Let 2<ω denote the full binary tree (i.e. the set of finite binary sequences), and let 2ω

denote Cantor space (i.e. the set of infinite binary sequences).
For every σ ∈ 2<ω, let [σ] ⊆ 2ω denote the basic clopen set

[σ] = {f ∈ 2ω : σ ⊂ f}.
The sets [σ], σ ∈ 2<ω, form a basis for the topology of 2ω. More generally, if A ⊆ 2<ω, let

[A] = {f ∈ 2ω : (∃σ ∈ A)[σ ⊂ f ]} =
⋃
σ∈A

[σ].

Finally, for every (Lebesgue measurable) X ⊆ 2ω, let µ(X) denote the Lebesgue measure
of X. Note that µ is computable in the sense that the function that assigns to every σ ∈ 2<ω

the value
µ([σ]) = 2−|σ| ∈ Q

is a computable function.
Throughout this article we will mostly employ the computability-theoretic notation and

conventions found in [Soa87]. In particular, the reader should note that for a given com-
putably enumerable set, U ⊆ ω, we will use Us, s ∈ ω, to denote the (finite) set of elements
enumerated into U by stage s. Also, we use 〈·, ·〉 : ω × ω → ω to denote a fixed computable
pairing function. For more information on basic computability theory consult [Soa87].

3. Our Main Theorem

In this section we will use [BMSV10, Theorem 6], along with the Lebesgue Density The-
orem, to prove the following theorem.

Theorem 3.1. Let 0 ≤ ε < ε′ ≤ 1 be rational numbers, and let {Un}n∈ω be a sequence of
uniformly Σ0

1-classes (in Cantor space) such that µ(Un) ≤ ε for every n ∈ ω. Then there

exists a Σ0,∅′
1 -class Y ⊆ 2ω such that µ(Y ) ≤ ε′ and U = lim infn Un ⊆ Y , where

lim inf
n

Un =
⋃
n∈ω

⋂
k≥n

Uk.

Furthermore, a Σ0,∅′
1 index for Y ⊆ 2<ω can be obtained uniformly from ε, ε′, and a u.c.e.

index for the sequence of sets Un, n ∈ ω.

Recall that [BMSV10, Theorem 6] is essenitally the same as Theorem 3.1 above, except
that U = lim infn Un is replaced by U0 =

⋃
n∈ω(

⋂
k≥n Uk)

o, where Zo denotes the interior of
Z ⊆ 2ω.

We now state the Lebesgue Density Theorem.

Theorem 3.2 (Lebesgue Density Theorem). Let X ⊆ 2ω be such that µ(X) > 0. Then, for
any given 0 ≤ ε < 1, there exists σ ∈ 2<ω such that

µ([σ] ∩X)

µ([σ])
≥ ε.

Proof of Theorem 3.1. First of all, for any given set X ⊆ 2ω and δ ∈ Q, 0 < δ < 1, we make
the following definition.
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Definition 3.3. Let Intδ(X) ⊆ 2ω denote the union of all [σ] ⊆ 2ω, σ ∈ 2<ω, such that

µ(X ∩ [σ])

µ([σ])
> 1− δ.

The following lemma collects several basic but important properties about Intδ(X).

Lemma 3.4. Fix X,Xn ⊆ 2ω, n ∈ ω, and δ ∈ Q, 0 < δ < 1.

(i) Intδ(X) is an open set. Moreover, Intδ(X) is effectively open whenever X is effec-
tively open and an effective index for Intδ(X) can be uniformly obtained from effective
indices for X and δ.

(ii) Intδ(X) covers X up to a set of measure zero.
(iii)

µ(Intδ(X)) ≤ 1

1− δ
µ(X).

(iv)

Intδ

(⋂
i∈ω

Xi

)
⊆
⋂
i∈ω

Intδ (Xi) .

Proof. The proof of (i) is easy and follows directly from the definitions; we therefore leave it
to the reader.

To prove (ii), assume the contrary, i.e. suppose that µ(X \ Intδ(X)) > 0. Then, by the
Lebesgue Density Theorem (above) it follows that there exists σ ∈ 2<ω for which

µ([σ] ∩ (X \ Intδ(X))

µ([σ])
> 1− δ,

from which it follows that
µ([σ] ∩X)

µ([σ])
> 1− δ,

and so σ ∈ Intδ(X), a contradiction. This proves (ii).
To prove (iii), first write Intδ(X) as a countable disjoint union of basic open sets (in 2ω)

as follows:

Intδ(X) =
⋃
i∈ω

[σi],

such that for each i ∈ ω we have that

µ(X ∩ [σi])

µ([σi])
> 1− δ, i.e.

µ(X ∩ [σi])

1− δ
> µ([σi]).

By (ii) above we must have that
∑

i∈ω µ(X ∩ [σi]) = µ(X). Therefore, summing the last
displayed inequality above over all i ∈ ω yields (iii).

The proof of (iv) follows directly from the definitions, and is left to the reader. �

We now continue with the proof of Theorem 3.1 above. Suppose that we are given

U =
⋃
n∈ω

⋂
k≥n

Uk

as in the statement of the theorem. It follows that

U =
⋃
n∈ω

⋂
k≥n

Uk ⊆∗
⋃
n∈ω

Intδ

(⋂
k≥n

Uk

)
=
⋃
n∈ω

[
Intδ

(⋂
k≥n

Uk

)]o
⊆
⋃
n∈ω

[⋂
k≥n

Intδ (Uk)

]o
,

where X0 ⊆∗ X1, X0, X1 ⊆ 2ω, denotes the fact that µ(X1 \ X0) = 0, and Zo denotes the
interior of Z ⊆ 2ω. The first step ⊆∗ displayed above follows from Lemma 3.4 (ii); the second
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step = follows from Lemma 3.4 (i); and the third step ⊆ follows from Lemma 3.4 (iv). For
each n ∈ ω, let

Vn = Intδ(Uk).

For now we want to cover ⋃
n∈ω

[∩k≥nVk]o

with a Σ0,∅′
1 -class [W ] ⊆ 2ω such that

µ([W ]) ≤ ε′ + ε

2
.

By our previous remarks displayed above it will then follow that [W ] covers U up to a set
of measure zero.

It follows from Lemma 3.4 (iii) above and our hypothesis on {Uk}k∈ω that for each δ ∈ Q,
0 < δ < 1, and n ∈ ω, we have that µ(Vn) ≤ ε

1−δ . Furthermore, by our construction of Vn,
n ∈ ω, and Lemma 3.4 (i) above it follows that {Vk}k∈ω is a uniformly computable sequence
of open sets in Cantor space. Therefore, the sequence {Vn}n∈ω satisfies the hypotheses of
[BMSV10, Theorem 6] and by choosing δ small enough it follows that the class [W ] ⊆ 2ω

mentioned in the previous paragraph exists.

We now turn our attention to finishing the proof of Theorem 3.1 by constructing a Σ0,∅′
1 -

class V ⊆ 2ω of measure at most ε′−ε
2

that covers U \ [W ] ⊆ 2ω.

3.0.1. Constructing V ⊆ 2<ω. The existence of V is a corollary of Lemma 3.6 (below), which
follows directly from the following result of Kautz and Kurtz [Kau91, Kur81]. We omit the
proof of Lemma 3.6, which follows directly from the following theorem.

Theorem 3.5. [Kau91, Kur81][DHNT06, Theorem 12.5(iv)] From the index of a Π0
n-class

T and q ∈ Q, one can ∅(n)-compute the index of an open Σ0
n−1-class (i.e. a Σ0,∅(n−2)

1 -class)

U ⊇ T such that µ(U) − µ(T ) < q. Moreover, if µ(T ) is computable from ∅(n−1), then the
index of U can be found computably from ∅(n−1).

Lemma 3.6. Let Vn ⊆ 2ω, n ∈ ω, be a uniformly computable collection of Π0
2-classes, all of

measure zero. Then, for any given ε > 0, there exists a Σ0,∅′
1 -class V ⊆ 2ω such that

µ(V ) ≤ ε and
∞⋃
i=0

Vn ⊆ V.

Moreover, a Σ0,∅′
1 index for V can be obtained uniformly and effectively from a u.c.e. index

for the sequence of sets Vn, n ∈ ω.

Corollary 3.7. There exists a Σ0,∅′
1 -class, [V ] ⊆ 2ω, V ⊆ 2<ω, such that

µ([V ]) ≤ ε′ − ε
2

and U \ [W ] ⊆ [V ].

Moreover, a Σ0,∅′
1 index for V ⊆ 2<ω can be obtained uniformly and effectively from a u.c.e.

index for the sequence of sets Vn, n ∈ ω.

Proof. Apply Lemma 3.6 to the uniformly computable sequence of Π0
2-classes given by

[Vn] = (
∞⋂
k=n

Uk) \ [W ] ⊆ 2ω.

�

We leave it to the reader to check that our Σ0,∅′
1 index for Y = [W ] ∪ [V ] ⊆ 2<ω in the

statement of Theorem 3.1 is uniform in ε, ε′, and the u.c.e. index for the sequence of sets
Un, n ∈ ω. This completes the proof of Theorem 3.1. �
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4. Characterizing the oracles that satisfy Theorem 3.1
in place of ∅′

In this section we prove a sort of converse to Theorem 3.1. It essentially says that, because
Theorem 3.1 is uniform in ε′ ∈ Q, our construction of Y ⊆ 2<ω in Theorem 3.1 is optimal.

Theorem 4.1. Suppose that D ⊆ ω is such that Theorem 3.1 holds with D in place of ∅′,
uniformly in ε′(> ε). Then we have that ∅′ ≤T D.

In particular, there is a set U ⊆ 2ω of the form U = lim infn Un, for some u.c.e. collection
of Σ0

1-classes, [Un] ⊆ 2ω, Un ⊆ 2<ω, n ∈ ω, such that if D ⊆ ω satisfies Theorem 3.1,
uniformly in ε′, for this particular U , then ∅′ ≤T D.

Proof. Let ε = 1
6
< 1, and let ε′n, n ∈ ω, be a computable sequence of rational numbers

such that ε′n > ε for all n ∈ ω, and limn ε
′
n = ε. We define a uniformly c.e. collection of sets

Un, n ∈ ω, such that (∀n)[µ([Un]) ≤ ε] as follows.
Let ∅′s, s ∈ ω, be a computable approximation to ∅′, and for all k ∈ ω, let σk = 0k1 ∈ 2<ω.

Now, for all n ∈ ω we enumerate every τ ⊇ σ2k+2, τ ∈ 2<ω, into Un if and only if k− 1 ∈ ∅′n.
Otherwise, if k − 1 /∈ ∅′n, we enumerate all τ ⊇ σ2k+11 into Un.

It is not difficult to check that for every n ∈ ω, we have that

µ([Un]) =
∞∑
i=0

2−3−2i =
1

6
= ε.

Also, since lims ∅′s(n) exists for every n ∈ ω, it follows that for every σ ∈ 2<ω, limn Un(σ)
exists. Therefore, if we set U = lim infn[Un], U ⊆ 2ω, then for every k ∈ ω, k ≥ 1, exactly
one of the following two conditions holds:

(1) [σ2k+2] ⊆ U , or
(2) [σ2k+11] ⊆ U .

Moreover, condition (1) holds if and only if k− 1 ∈ ∅′, and (2) holds otherwise. In this way,
we have coded ∅′ into lim infn Un. Next, we show how to extract this information via D ⊆ ω.

One can compute ∅′ from D ⊆ ω as follows. To decide whether or not x ∈ ω is in ∅′, first
choose N ∈ ω large enough so that ε′N−ε < 1

22x+5 , and take a set XN ⊆ 2<ω, XN ∈ Σ0,D
1 , such

that µ([XN ]) ≤ ε′N and U ⊆ [XN ]. Furthermore, suppose that XN,s is a D-computable c.e.
approximation to XN . Now, it follows from the construction of Un, n ∈ ω, and our definition
of N ∈ ω, that (relative to D) we will eventually witness exactly one of the following two
things:

(1) (∃s)[σ2x+4 ∈ XN,s], or
(2) (∃s)[σ2x+31 ∈ XN,s].

If we witness (1), then it follows (by the construction of Un, n ∈ ω) that x ∈ ∅′. Otherwise,
if we witness condition (2), then it follows (by the construction of Un, n ∈ ω) that x /∈ ∅′. �

5. Cone Avoidance

The main goal of Section 5 is the proof of Theorem 5.2 below. Generally speaking, Theorem
5.2 says that, if we do not require the uniformity condition (with respect to ε′) in Theorem 4.1,
then Theorem 4.1 fails because of a cone avoidance property. In particular we will show that
if we do not require the uniformity condition with respect to ε then every uniformly almost
everywhere dominating Turing degree satisfies the conclusion of Theorem 3.1 in place of ∅′.
For more information on uniformly almost everywhere dominating degrees see [Nie09, pages
234-7] or [CGM06]. In particular, it is known that the set of uniformly almost everywhere
dominating degrees coincides with the set of Turing degrees d such that 0′ ≤LR d (for more
information on ≤LR consult [Nie09]), and that for all C ⊆ ω there exists a uniformly almost
everywhere dominating degree d such that d does not compute C. In other words, the class
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of almost everywhere dominating Turing degrees has the upper cone avoidance property. See
[CGM06, Lemma 4.8] for more information.

We will also use the following lemma of Kjos-Hannssen, Miller, and Solomon [KHMS].

Lemma 5.1. [KHMS, Theorem 3.2] For any A,B ⊆ ω, the following are equivalent:

(1) A ≤LR B and A ≤T B′;
(2) Every Π0,A

1 -class has a Σ0,B
2 -subclass of the same measure;

(3) Every Σ0,A
2 -class has a Σ0,B

2 -subclass of the same measure.

Theorem 5.2. Let C ⊆ ω be any incomputable set. Then the class of sets X ⊆ ω such
that for any given 0 < ε < ε′ < 1, ε, ε′ ∈ Q, and uniformly Σ0

1-classes {Un}n∈ω such that

µ(Un) ≤ ε, n ∈ ω, there is a Σ0,X
1 -class [WX ] such that

µ([WX ]) ≤ ε′ & [WX ] ⊇ lim inf
n

Un = U

contains a member X0 ⊆ ω such that C �T X0.
In other words, the class of sets X that satisfy Theorem 4.1 above without the uniformity

condition (with respect to ε) has the (upper) cone avoidance property.

Proof. Let 0 < ε < ε′ < 1, ε, ε′ ∈ Q, and (for now) let DX be any uniformly almost
everywhere dominating set (i.e. a set of uniformly almost everywhere dominating Turing
degree). Let {Un}n∈ω and U be as in the statement of the current theorem. Now, by

Theorem 3.1 above there is a Σ0,∅′
1 -class, [W ] ⊆ 2ω, W ⊆ 2<ω, W ≤T ∅′, such that U ⊆ [W ]

and µ([W ]) < ε′. Furthermore, it is well-known that if D is uniformly almost everywhere
dominating then ∅′ ≤T D′ and ∅′ ≤LR D; see [Nie09] for more details. Now, by [KHMS,

Theorem 3.2] it follows that [W ] is contained in a Π0,DX
2 -class of measure strictly less than

ε′, and, since every Π0,DX
2 -class is the intersection of Σ0,DX

1 -classes, it follows that there is

a Σ0,DX
1 -class of measure strictly less than ε′ that covers [W ], and hence also covers U . We

have shown that for every uniformly almost everywhere dominating set DX ⊆ ω there is a
Σ0,DX

1 -class of measure strictly less than ε′ that covers U .
Now, since the class of uniformly almost everywhere dominating degrees has the cone

avoidance property(see [CGM06, Lemma 4.12] for more details), it follows that we can
choose X0 = DX ⊆ ω as in the conclusion of the theorem (i.e. C �T X0). �

6. A stronger version of Theorem 3.1 that fails

In this section we prove the following theorem.

Theorem 6.1. Let ε = 1
2

and ε′ = 3
4

(note that 0 ≤ ε < ε′ ≤ 1 and ε, ε′ ∈ Q). There
exists a sequence of uniformly Σ0

1-classes (in Cantor space), {[Un]}n∈ω, Un ⊆ 2<ω, such that

µ([Un]) ≤ ε for infinitely many n ∈ ω and for all Σ0,∅′
1 -classes, [Y ] ⊆ 2ω, Y ⊆ 2<ω, such that

µ([Y ]) ≤ ε′ we have that U = lim infn[Un] * [Y ], where

U = lim inf
n

[Un] =
⋃
n∈ω

⋂
k≥n

[Uk].

Theorem 6.1 says that if, in Theorem 3.1, we replace the condition (∀n)[µ(Un) ≤ ε]
by the condition (∃∞n)[µ(Un) ≤ ε], then the resulting statement is false. Note that if
(∃∞n)[µ(Un) ≤ ε], then it follows that µ(U) = µ(lim infn Un) ≤ ε. Hence, classically, there
exists an open set that covers U , but Theorem 6.2 says that in general this open set is not
a Σ0

1-class relative to ∅′.
To prove Theorem 6.1, we will actually prove the following (stronger) statement, which is

analogous to Theorem 6.1 in the case where we are considering the theorem of [BMSV10] in
place of Theorem 3.1. Recall that the theorem of [BMSV10] is the same as that of Theorem
3.1, except that it replaces U = lim infn Un by U0 =

⋃
n∈ω(

⋂
k≥n Uk)

o, where Xo ⊆ 2ω denotes
the interior of X ⊆ 2ω.
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Theorem 6.2. Let ε = 1
2

and ε′ = 3
4

(note that 0 ≤ ε < ε′ ≤ 1 and ε, ε′ ∈ Q). There
exists a sequence of uniformly Σ0

1-classes (in Cantor space), {[Un]}n∈ω, Un ⊆ 2<ω, such that

µ([Un]) ≤ ε for infinitely many n ∈ ω and for all Σ0,∅′
1 -classes, [Y ] ⊆ 2ω, Y ⊆ 2<ω, such that

µ([Y ]) ≤ ε′ we have that

U0 =
⋃
n∈ω

(
⋂
k≥n

[Uk])
o * [Y ].

Proof of Theorem 6.2. Before we give the complete proof of Theorem 6.2, which diagonalizes

against all possible Σ0,∅′
1 -classes, we will give the basic module for diagonalizing against a

single Σ0,∅′
1 -class [Y0] ⊆ 2ω, Y0 ⊆ 2<ω. Afterwards, we will show how to put two of these

modules together to diagonalize against a pair of Σ0,∅′
1 -classes [Y0], [Y1] ⊆ 2ω, Y0, Y1 ⊆ 2<ω.

Then, finally, we will show how to put infinitely many such modules together to diagonalize

against all Σ0,∅′
1 -classes [Y0], [Y1], [Y2], . . . , [Yn], . . . ⊆ 2ω, Y0, Y1, Y2, . . . , Yn, . . . ⊆ 2<ω. The

construction and verification of the latter procedure is an application of the (well-known)
infinite injury priority method.

Before we begin the proof of Theorem 6.2, we wish to point out to the reader that, to
prove Theorem 6.2, we will construct a u.c.e. sequence of sets Un ⊆ 2<ω, n ∈ ω, such that

for every Σ0,∅′
1 -class [Y ] ⊆ 2ω that satisfies µ([Y ]) ≤ ε′ = 3

4
, there exists some σ ∈ 2<ω such

that [σ] ⊆ lim infn[Un], but [σ] * [Y ]. Therefore, we can replace U0 in Theorem 6.2 by U in
Theorem 6.1 if we so choose.

6.1. Diagonalizing against a single Σ0,∅′
1 -class [Y0] ⊆ 2ω. Let Y0,s ⊆ 2<ω, s ∈ ω, be a

computable approximation to Y0 ⊆ 2<ω. In other words, Y0,s is such that for every σ ∈ 2<ω

we have that σ ∈ Y0 if and only if σ ∈ Y0,s for cofinitely many s ∈ ω.

Lemma 6.3. Without any loss of generality we can assume that µ([Y0,s]) ≤ 3
4

= ε′ for all
s ∈ ω.

Proof. Let Y ⊂ 2<ω be given such that [Y ] ⊂ 2ω is Σ∅
′,0

1 , µ([Y ]) ≤ 3
4

= ε′, and let Y0,s ⊆ 2<ω

be a computable approximation to Y . Note that, by the compactness of Cantor space 2ω,
we can assume without any loss of generality that σ ∈ Y if and only if σ ∈ Y0,s for cofinitely

many s ∈ ω. Now, let Ŷ0,s be the computable approximation obtained by restricting Y0,s

to a set of measure 3
4

– i.e. if σ0, σ1, σ2, . . . , σk, . . ., k ∈ ω, is a fixed effective listing of the

elements of 2<ω, then for all k ∈ ω we let {σ0, . . . , σk} ∩ Y0,s ⊆ Ŷ0,s if and only if

µ([{σ0, . . . , σk} ∩ Y0,s]) ≤
3

4
.

First of all note that Ŷ0,s is obtained uniformly and effectively from Y0,s and the fixed rational
parameter 3

4
.

We claim that Ŷ0,s is also a computable approximation to Y . For suppose not. Then, since

Y ∈ Σ∅
′,0

1 and [Y ] is an open subset of Cantor space, it follows that there exists ρ ∈ 2<ω such

that for cofinitely many s ∈ ω, ρ ∈ Y0,s \ Ŷ0,s. But then it follows (from our construction

of Ŷ0,s, s ∈ ω) that µ([Y0,s]) for cofinitely many s ∈ ω, and therefore µ([Y ]) > 3
4

(or else we

would have included ρ in Ŷ0,s for cofinitely many s ∈ ω), a contradiction. �

Our construction proceeds as follows. Recall that we are trying to construct a u.c.e.
sequence of sets {Un}n∈ω, Un ⊆ 2<ω, such that (∃∞n)[µ([Un]) ≤ 1

2
= ε], and, if U =

lim infn[Un], then either µ([Y0]) >
3
4

= ε′, or else U * [Y0].
We will construct {Un}n∈ω u.c.e. such that U = lim infn[Un] * [Y0]. Our construction

proceeds (in stages) as follows. Let σ0 = 0 ∈ 2<ω and σ1 = 1 ∈ 2<ω be the binary strings of
length 1. At stage s = 0 we define Un,0 = ∅ for all n ∈ ω. At stage s > 0, we check to see if
[σ0] * [Y0,s]. If so, then we enumerate σ0 into Un,s for all n ≤ s. Otherwise, we enumerate
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σ1 into Us,s. For each n ∈ ω set Un = ∪s∈ωUn,s. This ends the construction of the uniformly
computable sequence of effectively open sets {[Un]}n∈ω.

To verify that U = lim infn[Un] * [Y0] and (∃∞n)[µ([Un]) ≤ 1
2
], consider the following

two cases. Case 1 says that there are infinitely many stages s ∈ ω for which we have that
[σ0] * [Y0,s]. By compactness (of 2ω), it follows that [σ0] * [Y0]. We claim that [σ0] ⊂ U .
In fact, we have that [σ0] ⊂ [Un], for every n ∈ ω. To see why this is the case, let n ∈ ω be
given. Then, since we are in case 1, it follows that there is some stage s0 ∈ ω, s0 > n, such
that [σ0] * [Y0,s0 ], at which point the construction above enumerates σ0 into Un at stage s0.
Now, since [σ0] ⊆ U = lim infn Un, but [σ0] * [Y0], it follows that U * [Y0], as required.
Note that, by the construction of {Un}n∈ω above, it follows that if s ∈ ω is a stage at which
[σ0] * [Y0,s], then Us = {σ0} and µ([Us]) = 1

2
, since (by our construction of {Un}n∈ω above)

at no later stage do we enumerate σ1 ∈ Us. Hence, since we are in case 1, there are infinitely
many n ∈ ω such that µ([Un]) = 1

2
. We now move on to case 2.

Case 2 says that for cofinitely many stages s ∈ ω, we have that [σ0] ⊆ [Y0,s]. In this
case, since µ([Y0]) ≤ 3

4
< 1, it follows that [σ1] * [Y0] (or else by compactness it would

follow that σ1 ∈ Y0,s for cofinitely many s ∈ ω, from which it would follow that for some
s ∈ ω we have that 2ω ⊆ [Y0,s], and hence µ([Y0,s]) = 1, a contradiction). We claim that
[σ1] ⊆ U = lim infn[Un], so that U * [Y0], as required. Let s0 ∈ ω be such that for all t ≥ s0

we have that [σ0] ⊆ [Y0,t]. Now, by our construction of {Un}n∈ω above, it follows that for all
t ≥ s0, we have that Ut = {σ1}. Hence, [σ1] ⊆ U , and there exist infinitely many t ∈ ω such
that µ([Ut]) = 1

2
. This ends the verification of our construction of {Un}n∈ω, and completes

the proof of our claim that it is possible to diagonalize against a single Σ0,∅′
1 -class, [Y0].

6.2. Diagonalizing against a pair of Σ0,∅′
1 -classes [Y0], [Y1] ⊆ 2ω. Now that we have given

the basic module of our construction, we aim to give the reader an idea of how two of our
modules fit together to construct the u.c.e sequence of sets {Un}n∈ω, Un = ∪s∈ωUn,s. In the
next subsection, we will give the complete construction of {Un}n∈ω, which employs infinitely
many of our basic modules in an infinite injury priority argument. Let Y0,s, Y1,s ⊆ 2<ω be
computable approximations to Y0, Y1 ⊆ 2<ω, as defined in the previous subsection.

Assume, for now, that we wish to diagonalize against a pair of Σ0,∅′
1 -classes, [Y0] ⊆ 2ω

and [Y1] ⊆ 2ω. To do this, we employ two of our basic modules outlined in the previous
subsection. Before we give the construction, however, we require some basic definitions and
notation that will be used in the next subsection as well.

First, we construct a (finite) tree of strategies T ⊆ ωω, as follows. Every node ρ ∈ T
satisfies |ρ| ≤ 2. Furthermore, T has exactly 4 nodes of length 1, and every node of length
1 has exactly 16 successor nodes of length 2. The nodes of T of length 1 correspond to the
four nodes of 2<ω of length 2; we label these nodes τ1, τ2, τ3, τ4 ∈ 2<ω, listed in lexicographic
order. Similarly, if ρτi ∈ T , 1 ≤ i ≤ 4, is the node of length 1 corresponding to τi ∈ 2<ω,
then the successor nodes of ρτi ∈ T correspond to the 16 nodes σ1, σ2, . . . , σ16 ∈ 2<ω of
length 4 (listed in lexicographic order). For any node ρ ∈ T , of length 2, we associate to
ρ = 〈i, j〉 the pair of nodes 〈τi, σj〉 defined above. We will also associate to every ρ ∈ T of
length 2 a number, Nρ,s ∈ ω, that varies nondecreasingly with respect to the stages of our
construction, s ∈ ω.

Let ρ ∈ T be a node of length 2 on our tree of strategies, such that ρ = 〈i, j〉, 1 ≤
i ≤ 4, 1 ≤ j ≤ 16. We associate to ρ ∈ T the following strategy. Strategy ρ attempts to
enumerate the clopen sets [τi], [σj] ⊆ 2ω into [Un] for all n ≥ Nρ,s, and may be injured by
other strategies on T that redefine Nρ,s to be strictly larger at a later stage. If this happens
infinitely often then our strategy ρ ∈ T fails to achieve its goal. Exactly how the strategy
ρ ∈ T , |ρ| = 2, achieves its goal will be described in detail later on in this subsection.
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For any two incomparable nodes ρ1, ρ2 ∈ T , we say that ρ1 is to the left of ρ2 if we have
that ρ1(l) < ρ2(l), where l ∈ ω is least such that ρ1(l) 6= ρ2(l). In the case that ρ1(l) > ρ2(l),
we say that ρ1 is to the right of ρ2.

We are now ready to give our construction of the u.c.e. sequence of sets {Un}n∈ω, Un =

∪s∈ωUn,s, which diagonalizes against a pair of Σ0,∅′
1 -classes, [Y0], [Y1] ⊆ 2ω. Our construction

proceeds as follows.
At stage s = 0, set Un,s = ∅ for all n ∈ ω, and Nρ,s = 0 ∈ ω for all ρ ∈ T , |ρ| = 2. We say

that strategy ρ ∈ T , |ρ| = 2, requires attention at stage s > 0 if ρ = 〈i, j〉, 1 ≤ i ≤ 4, 1 ≤
j ≤ 16, and we have that

[τi] * [Y0,s] and [σj] * [Y1,s].

At stage s > 0, we act as follows.
Fix a stage s > 0. Let ρ = 〈i, j〉 ∈ T , |ρ| = 2, 1 ≤ i ≤ 4, 1 ≤ j ≤ 16, be the least

node on T that requires attention at stage s. In other words, ρ ∈ T is such that there is
no ρ′ ∈ T , |ρ′| = 2, to the left of ρ that requires attention at stage s (note that such a ρ
must exist, since we may assume without any loss of generality, as we did in the previous
subsection, that for all s ∈ ω, we have that µ([Y0,s]), µ([Y1,s]) ≤ 3

4
= ε′). In this case, we

enumerate τi, σj ∈ 2<ω into Un,s, for all Nρ,s−1 ≤ n ≤ s. We also set Nρ′,s = s + 1, for
all ρ′ ∈ T , |ρ′| = 2, to the right of ρ, and set Nρ′,s = Nρ′,s−1, ρ ∈ T , |ρ| = 2, otherwise.
This ends our construction of {Un}n∈ω, Un = ∪s∈ωUn,s. We now verify that our construction
succeeds in producing a u.c.e. sequence of sets, {Un}n∈ω, Un ⊆ 2<ω, such that for infinitely
many n ∈ ω we have that µ([Un]) ≤ 1

2
= ε and we also have that U = lim infn[Un] * [Y0],

U = lim infn[Un] * [Y1].
To verify that our construction has indeed succeeded, we must consider the lim inf of the

nodes of length 2 in T that require attention at some stage s ∈ ω. In other words, we would
like to consider the unique node ρ = 〈i, j〉 ∈ T , |ρ| = 2, 1 ≤ i ≤ 4, 1 ≤ j ≤ 16, such that
ρ requires attention at infinitely many stages s ∈ ω, but all nodes of length 2 to the left of
ρ require attention at only finitely many stages. It is not difficult to verify that such a ρ
exists. By definition of ρ, fix a stage s0 ∈ ω large enough such that at all subsequent stages
t ≥ s0 no node to the left of ρ requires attention.

Note that in this case we have that (∀t ≥ s0)[Nρ,t = Nρ,s0 ], in other words our construction
of {Un}n∈ω above never resets the value of Nρ,s0 after stage s0. We claim that (∀n ≥
Nρ,s0)[τi, σj ∈ Un], and hence [τi], [σj] ⊆ U = lim infn[Un]. Note that, since during our
construction of {Un}n∈ω, ρ = 〈i, j〉 ∈ T required attention infinitely often (by definition of
ρ), then by compactness of 2ω it follows that [τi] * [Y0] and [σj] * [Y1]. Therefore, we have
that U = lim infn[Un] satisfies U * [Y0] and U * [Y1]. Let s0 < s1 < s2 < s3 < · · · < sn < · · ·
be an infinite sequence of stages such that for all l > 0 we have that ρ ∈ T requires attention
at stage sl. Fix n ∈ ω, n > s0, and let sl > n. Then, by our construction of {Un}n∈ω
above, and the fact that Nρ,sl

= Nρ,s0 , by our construction of {Un}n∈ω above we have that
τi, σj ∈ Un,sl

, and thus our claim is valid. Next, we show that for all l > 0 we have that
µ([Usl

]) ≤ 1
2
.

We shall show that for every l > 0, the measure of [Usl
] ⊆ 2ω is exactly 1

4
+ 1

16
= 5

16
< 1

2
= ε.

To do this, it suffices to show that for every l > 0 we have that Ul = {τi, σj}. To prove the
latter claim, let l > 0 be given. Note that, by our construction of {Un}n∈ω above, we do not
enumerate anything into Un before stage s = n. Therefore, we have that Usl,sl−1 = ∅. By our
construction above, and the definition of sl, we know that at stage s = sl we will enumerate
τi, σj into Usl,sl

⊆ 2<ω. However, during stage s = sl, we also set Nρ′,sl
= sl + 1 for all ρ′ ∈ T

to the right of ρ ∈ T . This means that no strategy to the right of ρ can enumerate anything
into Usl,t, for any stage t ≥ sl. Furthermore, by definition of s0, we know that no strategy
to the left of ρ will require attention at any stage t ≥ sl > s0. Therefore, it follows that
Usl

= 〈τi, σj〉, as claimed.
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This completes our demonstration of diagonalizing against two Σ0,∅′
1 -classes [Y0], [Y1] ⊆ 2ω.

In the next subsection, we move on to the general case, and give a complete proof of Theorem
6.2 above.

6.3. The general case: Diagonalizing against all Σ0,∅′
1 -classes of measure less than

or equal to 3
4
. Let Y0,s, Y1,s, . . . , Yn,s, . . . ⊆ 2<ω be a uniformly computable sequence of

computable approximations to the (complete list of) Σ0,∅′
1 -classes Y0, Y1, . . . , Yn, . . . ⊆ 2<ω,

as defined in the previous two subsections.
The proof of Theorem 6.2 is similar to the construction and verification given in the

previous subsection. As before, we shall construct a tree of strategies T ⊆ ω<ω, however,
now our tree of strategies shall be finitely branching, as opposed to finite. We construct T
as follows. T has exactly 4 strings of length 1, and for every n ∈ ω, if σ ∈ T is a string of
length k ∈ ω, then σ has exactly 22(k+1) successor nodes on T . From our construction of
T , it follows that our tree of strategies in the previous subsection lives inside our current
definition of T . The main difference now is that our current tree of strategies is infinite.

We interpret nodes on T as in the previous subsection. For every k ∈ ω, and σ ∈ T of
length k, the 22(k+1) successor nodes of σ on T correspond to the 22(k+1) nodes of length
2(k + 1) in 2<ω; label these nodes σk+1

1 , σk+1
2 , . . . , σk+1

2(k+1) in lexicographic order. Now, if

ρ ∈ T is of length l ∈ ω, ρ = 〈r1, r2, . . . , rl〉, then the strategy associated with ρ attempts
to ensure that [σ1

r1
], [σ2

r2
], . . . , [σlrl ] ⊆ U = lim infn[Un], by enumerating these clopen sets into

the sequence {[Un]}n∈ω. The precise way in which this is done will be described later; it
is similar to that given in the previous subsection, when we diagonalized against a pair of

Σ0,∅′
1 -classes [Y0], [Y1] ⊆ 2ω.
For all ρ = 〈r1, r2, . . . , rl〉 ∈ T , we say that ρ requires attention at stage s∈ ω if for every

1 ≤ k ≤ l we have that [σkrk ] * [Yk,s]. Note that if ρ ∈ T requires attention at infinitely many
stages s ∈ ω and the strategy ρ succeeds (as described in the previous paragraph), then we

have successfully diagonalized against the first l-many Σ0,∅′
1 -classes [Y1], [Y2], . . . , [Yl] ⊆ 2ω.

Also,note that (by our definition above) if ρ ∈ T requires attention at stage s ∈ ω, then all
τ ⊆ ρ also require attention at stage s.

As in the previous subsection, we also introduce the numbers Nρ,s, ρ ∈ T , s ∈ ω. Thus, for
every ρ ∈ T , we think of Nρ,s as assigning a nondecreasing sequence of numbers (in stages
s ∈ ω) to ρ. Moreover, if the strategy ρ = 〈r1, r2, . . . , rl〉 ∈ T is to succeed, then we will have
that limsNρ,s = N exists, and for all s ≥ N we have that [σ1

r1
], [σ2

r2
], . . . , [σlrl ] ⊆ ∩k≥N [Uk].

Therefore, [σ1
r1

], [σ2
r2

], . . . , [σlrl ] ⊆ U = lim infn[Un]. Again, this is similar to our construction
in the previous subsection.

We are now ready to proceed with the construction and verification of {Un}n∈ω, Un =
∪s∈ωUn,s, in Theorem 6.2. The main difference between this proof and those of the pre-

vious two subsections is that now we are required to diagonalize against all Σ0,∅′
1 -classes

[Y0], [Y1], . . . , [Yn], . . . ⊆ 2ω of measure less than or equal to ε′ = 3
4
. Recall that Y0,s, Y1,s, . . . , Yn,s, . . . ⊆

2<ω is a uniformly computable sequence of computable approximations to the generating sets
Y0, Y1, . . . , Yn, . . . ⊆ 2<ω, respectively, and that for every n, s ∈ ω we have that µ([Yn,s]) ≤ 3

4
.

Our construction proceeds as follows.
At stage s = 0, we set Un,0 = ∅ for all n ∈ ω, and Nρ,0 = 0, for all ρ ∈ T . At stage s > 0,

we let ρs = 〈r1, r2, . . . , rs〉 ∈ T be the leftmost (as defined in the previous subsection) node
of length s that requires attention (ρs exists by our assumptions on the uniform sequence of
computable approximations {Yn,s}n,s∈ω). Now, we say that strategy ρs receives attention as
follows. First, enumerate σkrk ∈ 2<ω into Un,s, for all 1 ≤ k ≤ s and Nρ �(k−1),s−1 ≤ n ≤ s.
Finally, we set Nρ′,s = s + 1, for all ρ′ ∈ T to the right of ρs or extending ρs (where “to
the right” is as defined in the previous subsection), and Nρ′,s = Nρ′,s−1 otherwise. This
ends our construction of {Un}n∈ω, Un = ∪s∈ωUn,s. We now verify that, indeed, we have that
(∀m)[lim infn[Un] * [Ym]], and (∃∞m)[µ([Um]) ≤ 1

2
= ε].
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First, we verify that (∀m)[lim infn[Un] * [Ym]]. To do this, we must consider lim infs ρs =
f ∈ ωω. That is, f ∈ ωω is the unique infinite path through T such that for every k ∈ ω, we
have that ρ′ = f�k ∈ T receives attention at infinitely many stages, and every τ ′ ∈ T to the
left of f receives attention finitely often. It is not difficult to show that f ∈ ωω exists. We
claim that every strategy along f succeeds, and because of this we succeed in diagonalizing

against all Σ0,∅′
1 -classes {[Yn]}n∈ω.

To prove this, let m ∈ ω be given. We will show that we succeed in diagonalizing against
[Ym] ⊆ 2ω via strategy f�m = ρ = 〈r1, r2, . . . , rm〉 ∈ T . Let s0 ∈ ω, s0 > m, be large enough
such that for all t ≥ s0, no requirement to the left of f�m receives attention at stage t (s0

exists by our definition of f above). Note that, by our construction of {Un}n∈ω above, and
our definition of s0 ∈ ω, we have that Nρ,t = Nρ,s0 , for all t ≥ s0.

We now claim that (∀k ≥ Nρ,s0)[σ
m
rm ∈ Uk] (and hence [σmrm ] ⊆ lim infn[Un]), but [σmrm ] *

[Ym]. The latter part of our claim follows from the fact that 2ω is compact, and for infinitely
many stages s ∈ ω, we have that ρ ∈ T receives attention at stage s. On the other hand, by
our definition of f we have that for every stage s1 ≥ s0, there is a stage t ≥ s1 at which some
strategy ρ′ ⊇ ρ receives attention. Moreover, it follows from our construction of {Un}n∈ω
that at stage t we enumerate [σmrm ] ⊆ 2ω into Un for all Nρ,s0 = Nρ,t ≤ n ≤ t. It now follows
that (∀k ≥ Nρ,s0)[[σ

m
rm ] ⊆ [Uk]], and therefore we may conclude that [σmrm ] ⊆ lim infn[Un], as

required. Next, we verify that there are infinitely many n ∈ ω such that µ([Un]) ≤ 1
2

= ε.
Let n0 ∈ ω be given. We must show that there exists some n ≥ n0, n ∈ ω, such that

µ([Un]) ≤ 1
2
. We proceed as follows. First, let s0 ∈ ω, s0 ≥ n0, be any stage such that for

all stages t ≥ s0, we have that ρt either extends ρ = ρs0 , or is to the right of ρs0 (it is not
difficult to show that such an s0 ∈ ω exists). Now, we claim that µ([Us0 ]) ≤ 1

2
. To see why

this is the case, note that (by our construction of {Un}n∈ω) we have that Us0,s0−1 = ∅. Also
note that (by our construction of {Un}n∈ω) at stage s0 the measure of [Us0 ] increases by at
most

1

4
+

1

16
+ · · ·+ 1

22(s0+1)
<

1

3
<

1

2
.

Now, by our definition of s0 ∈ ω, and by the way we defined Nτ,s0 ∈ ω, for all τ ∈ T , we
have that (∀t ≥ s0)[Nρ,t = Nρ,s0 ≤ s0], and for all ρ′ ∈ T that either extend ρ, or lie to the
right of ρ, we have that Nρ′,s0 > s0. Therefore, by our construction of {Un}n∈ω above, we
will not enumerate any new elements into Us0,t ⊆ 2<ω at any stage t > s0 (because, by our
construction of {Un}n∈ω and the way we defined Nτ,s0 , τ ∈ T at stage s0, the only way we
could enumerate a new element into Us0 at some stage t > s0 is if some strategy to the left of
ρs0 received attention at stage t, which cannot happen by definition of s0 ∈ ω). Therefore,
we have that µ([Us0,t]) ≤ 1

2
for all t ≥ s0, from which it follows that µ([Us0 ]) ≤ 1

2
= ε, as

required. �
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