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Abstract. This article examines and distinguishes different techniques for coding incom-
putable information into infinite dimensional proper subspaces of a computable vector space,
and is divided into two main parts. In the first part we describe different methods for cod-
ing into infinite dimensional subspaces. More specifically, we construct several computable
infinite dimensional vector spaces each of which satisfies one of the following:
(1) Every infinite/coinfinite dimensional subspace computes Turing’s Halting Set ∅′;
(2) Every infinite/cofinite dimensional proper subspace computes Turing’s Halting Set ∅′;
(3) There exists x ∈ V such that every infinite dimensional proper subspace not containing

x computes Turing’s Halting Set ∅′;
(4) Every infinite dimensional proper subspace computes Turing’s Halting Set ∅′.

Vector space (4) generalizes vector spaces (1) and (2), and its construction is more compli-
cated. The same simple and natural technique is used to construct vector spaces (1)-(3).
Finally, we examine the reverse mathematical implications of our constructions (1)-(4).

In the second part we examine the limitations of our simple and natural method for cod-
ing into infinite dimensional subspaces described in the previous paragraph. In particular,
we prove that our simple and natural coding technique cannot produce a vector space of
type (4) above, and that any vector space of type (4) must have “densely many” (from a
certain point of view) finite dimensional computable subspaces. In other words, the con-
struction of a vector space of type (4) is necessarily more complicated than the construction
of vector spaces of types (1)-(3). We also introduce a new statement (in second order arith-
metic) about the existence of infinite dimensional proper subspaces in a restricted class of
vector spaces related to (1)-(3) above and show that it is implied by weak König’s lemma
in the context of reverse mathematics. In the context of reverse mathematics this gives
rise to two statements from effective algebra about the existence of infinite dimensional
proper subspaces (for a certain class of vector spaces) of the form (∀V )[X(V ) → A(V )] and
(∀V )[X(V ) → B(V )], that each imply ACA0 over RCA0, but such that the seemingly weaker
statement (∀V )[X(V ) → A(V ) ∨ B(V )] is provable via WKL0 over RCA0. Furthermore,
we highlight some general similarities between constructing of infinite dimensional proper
subspaces of computable vector spaces and constructing solutions to computable instances
of various combinatorial principles such as Ramsey’s Theorem for pairs.

1. Introduction

Computable algebra is the branch of mathematical logic that deals with the algorithmic
properties of algebraic structures, and dates back to the works of early mathematicians
including Euclid, Gauss, and others. More recently the subject was formalized by Turing
and others, leading to the well-known solutions of the word problem for groups by Novikov
and Boone, and Hilbert’s tenth problem by Matiyasevich and others.

This main theorem of this article answers a problem of Downey and others who asked
about the proof-theoretic strength of the statement “every infinite dimensional vector space
contains a proper infinite dimensional subspace” in second order arithmetic. Moreover this
problem grew out of an attempt to classify the proof-theoretic strength of the well-known
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theorem from Commutative Algebra that says every Artinian ring is Noetherian. The latter
problem was recently solved by the author.

More specifically, this article is a sequel to [6, 10, 13, 14] in which the author and others
attempted to determine the reverse mathematical strengths of the statements “every Ar-
tinian ring is Noetherian,” “every ring that is not a field contains a nontrivial ideal,” and
“every vector space of dimension at least 2 has a nontrivial subspace,” over RCA0. More
information on commutative algebra including Artinian and Noetherian rings can be found
in [1, 15, 25, 26]. We assume that the reader is familiar with reverse mathematics [39] as well
as [6, 13, 14], although we will briefly review most of what we require from these sources.
Recall that RCA0 (recursive comprehension axiom) is the subsystem of second order arith-
metic corresponding to the axiom that says ∆1-definable sets (with parameters) exist (i.e.
computable sets and Turing reductions exist); WKL0 is the subsystem of second order arith-
metic corresponding to the axiom of weak König’s lemma which is RCA0 conjuncted with the
statement “every infinite binary branching tree has an infinite path;” ACA0 (arithmetic com-
prehension axiom) is the subsystem of second order arithmetic corresponding to the axiom
that says all arithmetically definable sets exist. It is known that ACA0 is equivalent to saying
that for every set A, the Halting Set relative to A, A′, exists (for more information on the
Halting Set and its relativization consult [40, 41, 46, 47]). More information on subsystems
of second order arithmetic and the program of reverse mathematics, including RCA0, WKL0,
and ACA0, can be found in [39]. In [6] the author showed that the statement “every Artinian
ring is of finite length” is equivalent to ACA0 over RCA0 +BΣ2 (BΣ2 is a bounding principle
for Σ2 formulas; for more information see [19, 31]), and that the statement “every Artinian
integral domain is Noetherian” is equivalent to WKL0 over RCA0. In [29], Montalbán calls a
theorem of mathematics nonrobust whenever there exists another “similar” theorem that is
not equivalent to the first theorem over RCA0. Montalbán also points out that usually non-
robustness leads to theorems of mathematics that are not equivalent to any of the “big five”
subsystems of second-order arithmetic: RCA0 (recursive comprehension axiom), WKL0 (weak
König’s lemma), ACA0 (arithmetic comprehension), ATR0 (arithmetic transfinite induction),
and Π1

1−CA0 (Π1
1-comprehension) in the context of ω-models. Recall that an ω-model is a

model of second order arithmetic whose first order part is the standard natural numbers
ω = {0, 1, 2, . . .}. More information on the “big five” subsystems of second-order arithmetic
as well as ω-models can be found in [39]. Recently, finding theorems of mathematics that
are not equivalent to the “big five” in the context of ω-models has become a topic of great
interest among computability theorists (examples of recent articles include [21, 22, 28, 9])
because the proofs of these theorems correspond to nonstandard (i.e. interesting) mathemat-
ical arguments. However, computability theorists have yet to discover an algebraic1 theorem
that is not equivalent to one of the “big five” in the context of ω-models. Since it is nonro-
bust it could very well be the case that the statement “every Artinian ring is Noetherian” is
not equivalent to any of the “big five” subsystems of second order arithmetic in the context
of ω-models.

To classify the reverse mathematical strength of a theorem of second-order arithmetic (see
[39] for more details) a mathematician essentially has to determine how much information
can be coded into that theorem. In the context of ω-models2 this intuition is made precise
by Shore’s notion of computable entailment [37]. More specifically, in order to show that
one theorem of mathematics implies another in the context of reverse mathematics (and ω-
models), one must essentially3 code solutions of instances of the latter theorem into solutions

1Throughout this article our use of the term algebra is restricted to groups, rings, fields, and their actions.
2An ω-model is a model of RCA0 whose first-order part is the standard natural numbers ω = {0, 1, 2, . . .}.

These models are usually identified with their second-order parts, and it is known that M ⊆ P(ω) is an
ω-model iff M is closed under join ⊕ and Turing reducibility ≤T .

3More precisely, one must code solutions of the latter theorem into finite iterations of solutions of the
former theorem. For more information see [37].
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of instances of the former theorem. On the other hand, to show that one given theorem does
not imply another given theorem in the context of reverse mathematics (and ω-models), one
must essentially show that solutions to instances of the latter theorem cannot be coded into
solutions to instances of the former theorem. In other words, generally speaking, to prove
a nonimplication one must establish some sort of limitation on the coding that can be done
by the former theorem. For more information see [37].

To prove that the statement “every Artinian ring is of finite length” implies ACA0 [6,
Section 6] the author essentially constructed a computable ring R such that every infinite
strictly descending chain of ideals in R codes Turing’s Halting Set ∅′. More specifically, how-
ever, the ring R was a quotient of the ring Q generated by elements ⟨1, Xn : n ∈ ω⟩ such that
XmXn = 0 for all m,n ∈ ω. It is not difficult to see that Q resembles an infinite dimensional
vector space, with all the ideals and quotients of Q (as a ring) corresponding to subspaces and
quotient spaces of Q (as a vector space). The ring R was essentially an infinite dimensional
quotient space of Q, modulo an infinite dimensional subspace. Thus, coding information
into infinite dimensional proper subspaces of computable infinite dimensional vector spaces
arises naturally in the context of determining the reverse mathematical strength of the the-
orem “every Artinian ring is Noetherian.” This lead some mathematicians, including R. G.
Downey and S. Lempp, (and others) to ask about the reverse mathematical strength of the
statement “every infinite dimensional vector space has an infinite dimensional proper sub-
space.” Another reason for examining vector spaces in the context of Artinian rings is that
the proof of the theorem “every Artinian ring is Noetherian” [26], very roughly speaking,
divides an Artinian ring into finitely many finite dimensional vector spaces, and uses the fact
that the theorem holds for the vector spaces (i.e. any chain of strictly increasing subspaces
in a finite dimensional vector space eventually stabilizes) to show that the theorem holds for
the ring. Thus, the theory of vector spaces plays an important role in the proof that every
Artinian ring is Noetherian. Yet another reason for asking these types of questions about
infinite dimensional vector spaces is that it relates to [14].

This article is divided into two main parts. Both parts examine coding into infinite
dimensional proper subspaces of infinite dimensional vector spaces. The first part consists
of Sections 4 through 7 and examines the positive side of things. More specifically, we prove
the following theorems in the system RCA0.

Theorem 1.1 (RCA0). There exists a computable infinite dimensional vector space V such
that every infinite/coinfinite dimensional subspace of V computes the Halting Set ∅′.

Theorem 1.2 (RCA0). There exists a computable infinite dimensional vector space V such
that every infinite/cofinite dimensional proper subspace of V computes the Halting Set ∅′.

Theorem 1.3 (RCA0). There exists a computable infinite dimensional vector space V , and
0 ̸= x ∈ V , such that every infinite dimensional subspace of V not containing x computes
the Halting Set ∅′.

Theorem 1.4 (RCA0). There exists a computable infinite dimensional vector space V such
that every infinite dimensional proper subspace of V computes Halting Set ∅′.

The proof of Theorem 1.3 above is based on techniques developed in the proof of Theo-
rem 1.1 above. The proof of Theorem 1.4 is different and more complex than the others.
Theorems 1.1 and 1.2 were proven independently by Downey and Turetsky, and Downey,
Greenberg, Kach, Lempp, Miller, Ng, and Turetsky, [DGKLMNT] respectively. Our proof
of Theorem 1.1 is similar to that of Downey and Turetsky. We will present both our proof of
Theorem 1.2, as well as the (different) proof of [DGKLMNT] which is based heavily on the
results and constructions of [14]. Our proof of Theorem 1.2 is more direct and complicated,
but constructs a “simpler” vector space (as we shall see later on), while [DGKLMNT] found
a much simpler and cleaner proof using a “more complicated” vector space.
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To examine our theorems above in the context of reverse mathematics, we now introduce
five subsystems of second-order arithmetic, all of which we take to imply RCA0 and the
following axioms:

COINF0: Every infinite dimensional vector space contains an infinite/coinfinite dimensional
subspace.

COFIN0: Every infinite dimensional vector space contains an infinite/cofinite dimensional proper
subspace.

x− INF0: For every infinite dimensional vector space V , and nonzero vector x ∈ V , there exists
an infinite dimensional subspace of V that does not contain x.

INF0: Every infinite dimensional vector space contains an infinite dimensional proper sub-
space.

Here we interpret the phrase “infinite dimensional” to mean “of arbitrarily large finite di-
mension.” We will do this throughout the rest of this article. Later on in Section 4 below we
will introduce another subsystem of second order arithmetic, INF2B

0 , which generally speaking
says that one can always find proper infinite dimensional subspaces of vector spaces belong-
ing to a certain class of vector spaces, called 2−based vector spaces, that arise naturally in
the contexts of computable and reverse algebra4 and this article, and that we will define in
Section 4 below. More precisely, let

COINF2B
0 : Every infinite dimensional 2-based vector space contains an infinite/coinfinite dimen-

sional subspace.
COFIN2B

0 : Every infinite dimensional 2-based vector space contains an infinite/cofinite dimen-
sional proper subspace.

INF2B
0 : Every infinite dimensional 2-based vector space contains an infinite dimensional

proper subspace.

Now, if X(V ) is the predicate that says “V is a 2-based vector space,” A(V ) is the predicate
that says that “V contains a proper infinite/coinfinite dimensional subspace,” and B(V ) is
the predicate that says that “V contains a proper infinite cofinite dimensional subspace,”
then we have that

COINF2B
0 is of the form (∀V )[X(V ) → A(V )];

COFIN2B
0 is of the form (∀V )[X(V ) → B(V )];

and finally
INF2B

0 is of the form (∀V )[X(V ) → A(V ) ∨B(V )].

We will show that COINF2B
0 and COFIN2B

0 are each equivalent to ACA0 over RCA0, but,
interestingly, we have that INF2B

0 is provable in the strictly weaker system of WKL0. The
precise reverse mathematical strength of INF2B

0 is still open.
Upon interpreting the above theorems about general (i.e. not necessarily 2-based) vector

spaces in the context of reverse mathematics we get the following corresponding results in
terms of the “big five.”

Theorem 1.5. COINF0 is equivalent to ACA0 over RCA0.

Theorem 1.6. COFIN0 is equivalent to ACA0 over RCA0.

Theorem 1.7. x− INF0 is equivalent to ACA0 over RCA0.

Theorem 1.8. INF0 is equivalent to ACA0 over RCA0.

To prove that ACA0 implies each of the statements listed above, use the fact that ACA0

implies the existence of a basis B [39, III.4.3] and the fact that for any given subset of
basis vectors B0 ⊆ B, WKL0 proves that the existence of a subspace containing B0 and
not containing B \ B0 (the basic idea behind this argument can be found in [14, Section

4Many of the computable vector spaces used to establish nontrivial lower bounds in the context of reverse
mathematics have been 2−based vector spaces.
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3]). Recall also that ACA0 implies WKL0. Throughout the rest of this article we will only
consider the reversals in Theorems 1.5-1.8 above.

The proofs of Theorems 1.1, 1.3, 1.5, and 1.7 are contained in Section 5 below. The proofs
of Theorems 1.2 and 1.6 are contained in Section 6 below. The proofs of Theorems 1.4 and
1.8 can be found in Section 7 below. Theorem 1.4 is the main theorem of this article.

Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [14] already proved that the
statement “every vector space contains a nontrivial subspace” is equivalent to WKL0 over
RCA0, making INF0 nonrobust. Furthermore, the author has (very recently) proven that the
statement “every Artinian ring is Noetherian” (ART0) is equivalent toWKL0 over RCA0 + IΣ2

[8] (IΣ2 is the induction scheme for Σ2 formulas; for more information see [19, 31]). It is
interesting that the reverse mathematical strengths of ART0 and INF0 differ, since the study
of INF0 began, in part, as a way of better understanding ART0. It is even more interesting
that both ART0 and INF0 are nonrobust, and yet each equivalent to one of the “big five”
systems in the context of ω-models. The question of whether or not there exists a natural
theorem from algebra that is not equivalent to one of the “big five” in the context of ω-models
is still open.

In the second part of this article, which consists solely of Section 8 below, we establish
limitations on the coding methods used to prove Theorems 1.1, 1.2, and 1.3 above. In
particular, we use weak König’s lemma and the Jockusch-Soare Low Basis Theorem [23] to
show that any “simple” vector space constructed via the general and natural procedure used
to prove Theorems 1.1, 1.2, and 1.3 above, i.e. any infinite dimensional computable 2−based
vector space, contains a low infinite dimensional proper subspace (we will define “lowness”
in Section 3.1 below), and has “densely many” finite dimensional computable subspaces
(we will explain ourselves more precisely in Section 8 below). We will use these facts to
derive some interesting consequences about the algebraic/computability-theoretic structure
of infinite dimensional computable vector spaces in which no finite dimensional subspace is
computable. Finally, we also highlight some general similarities between constructing an
infinite dimensional proper subspace of a given “simple” (i.e. 2−based) vector space and
constructing an infinite homogeneous set in the context of Ramsey’s theorem for pairs (see
[5] for more details on the computability theory of Ramsey’s theorem for pairs). More details
are given in Section 8 below.

Our main goal in the first part of this article is to examine different methods for coding
information into infinite dimensional proper subspaces of computable infinite dimensional
vector spaces. Our main theorems in part one are Theorems 1.4 and 1.8, which say that the
statement “every infinite dimensional vector space contains an infinite dimensional proper
subspace” is equivalent to ACA0 over RCA0. We will always reason in RCA0.

2. Computable algebra and algebraic reverse mathematics:
A general overview

Computable algebra was first studied by algebraists in the 1800s and early 1900s [24,
20, 48], although the subject was formally introduced by Fröhlich and Shepherdson [18]
after the invention of computability theory by Turing [46, 47] and others. Much work has
been done in computable algebra after [18], and in particular the computability of rings,
fields, and vector spaces, by: Rabin [32], Baur [2], Metakides and Nerode [27], Shore [38],
Remmel [33], and others. Later on Friedman, Simpson, and Smith [16, 17] investigated
the computability theory and reverse mathematics of groups, rings, and fields. Afterwards
Solomon investigated the reverse mathematics of ordered groups [42, 43, 44]. Much more
recently, however, the program of effective algebra and algebraic reverse mathematics was
taken up by Downey, Lempp, and Mileti in [13], as well as Downey, Hirschfeldt, Kach,
Lempp, Mileti, and Montalbán in [14] and the author in [6, 7].
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Recent developments in effective and reverse mathematics [36, 5, 21, 22] have lead to the
discovery of many mathematical statements whose reverse mathematical strength is not one
of the “big five” subsystems of second order arithmetic: RCA0, WKL0, ACA0, ATR0, Π1

1 − CA0

(see [39] for more details). However, almost all of these statements are combinatorial in na-
ture, and, more specifically, none of them is algebraic. In fact the existence of an algebraic
theorem whose reverse mathematical strength is not equivalent to one of the “big five” in the
context of ω-models is still unresolved. Until very recently the statements “every Artinian
ring is Noetherian” and “every infinite dimensional vector space contains an infinite dimen-
sional proper subspace” seemed like good candidates for algebraic statements not equivalent
to any of the “big five” in the context of ω-models since they are nonrobust. However, the
main theorem of this article (Theorem 1.4) says that the latter statement is equivalent to
ACA0 in the context of ω-models, which is one of the “big five.” Very recently [8] the author
has also shown that the former statement is equivalent to WKL0 in the context of ω-models,
a different member of the “big five.”

2.1. The plan of the paper. In Section 3 we introduce the basic definitions and notation
that we will use in part one. Then, in Section 4 we prove a key lemma that we will use
for coding in the proofs of Theorems 1.1, 1.2, and 1.3 below. In Section 5 we use the key
lemma (i.e. Lemma 4.1) to code the Halting Set ∅′ into proper subspaces of infinite/coinfinite
dimension and prove Theorem 1.1. We also prove Theorem 1.3. In Section 6 we use the
key lemma to code into proper subspaces of infinite/cofinite dimension and prove Theorem
1.2. Finally, we abandon the key lemma of Section 4 and use a more complicated coding
technique to prove Theorem 1.4 (the main theorem of this article), generalizing all of our
results in Sections 5 and 6. In Section 8 (i.e. in part two of this article) we show that a
certain statement in second order arithmetic, which we denote by INF2B

0 and introduce in
Section 4 below, is implied by WKL0 over RCA0. We then discuss the interesting implications
that this has in the context of our earlier constructions in Sections 5, 6, and 7.

3. Preliminaries and notation

3.1. Computability Theory in RCA0. We assume that the reader is familiar with the
basics of computability theory and reverse mathematics. For an introduction to these sub-
jects, consult [40, 41, 39]. We use ω = {0, 1, 2, . . .} to denote the set of (standard) natural
numbers. We will use N to denote the set of (possibly nonstandard) natural numbers in a
given model of RCA0. All of our definitions are in RCA0, and we use the term “computable”
to mean ∆1-definable, and “computable in an oracle A ⊆ N” means ∆1-definable in the
parameter A. See [39] for more details on reverse mathematics, RCA0, and ∆1-definability.
Our standard computability-theoretic notation will follow that of [40, 41]. In particular, we
will write X ≤T Y , X, Y ⊆ N, to mean that X is computable in Y and we will write A′

to denote the Halting Set relative to (i.e. the Turing jump of) A ⊆ N. It is known that A
never computes A′. We write ϕe, e ∈ N, to denote the standard effective listing of the partial
computable functions and ϕA

e denotes the standard effective listing of partial computable
functions relative to the oracle/parameter A ⊆ N. The Halting Set ∅′ is then equal to the
set of x ∈ N such that the ϕx halts on input x, and for any parameter A ⊆ N, A′ is defined
similarly. We call a set A ⊆ N low whenever A′ ≤T ∅′ (we always have that ∅′ ≤T A′). It
follows that if A is low then A cannot compute the Halting Set ∅′ (in fact the computability
strength of A is much less than those sets that compute ∅′). Recall that an infinite set A ⊆ N
is computably enumerable (c.e.) iff A is Σ1-definable iff A is the range of a 1-1 computable
function. A set A ⊆ N is computable if and only if both A and Ac (the complement of A)
are computably enumerable.

Let A0 ⊆ N be a computably enumerable set constructed via a “movable marker construc-
tion” (see [40, 41] for more details) whose complement Ac

0 = {0 = ac0 < ac1 < ac2 < · · · }
dominates the modulus (i.e. settling time) of the Halting Set ∅′ -i.e. for all n ∈ N, acn is larger
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than the settling time of the first n bits of ∅′.5 It is well-known that RCA0 suffices to prove
that every finite initial segment of the Halting Set exists, from which it follows that every
marker settles (i.e. every marker comes to a limit) and Ac

0 is infinite (i.e. unbounded). RCA0

also suffices to prove that for every n ∈ N the finite set {ac0, ac1, . . . , acn} ⊂ N exists (more
generally RCA0 suffices to show that every finite initial segment of every c.e. set exists; one
can prove this directly via the pigeonhole principle or via the strong Σ1-bounding principle
[39, Exercise II.3.14]). Let As

0, s ∈ N, be an effective enumeration of A0 with the property
that at each stage s ∈ N there is exactly one x ∈ N such that x ∈ As+1

0 \ As
0 and define

A−1
0 = ∅. Let ac,sn ∈ N, n, s,∈ N, be a nondecreasing computable approximation to acn ∈ N –

i.e. for all n ∈ N we have that ac,sn ≤ ac,s+1
n , s ∈ N, and lims a

c,s
n = acn. It is well-known and

easy to see that if f : N → N is a function such that for every x ∈ N we have that f(x) ≥ acx
then f computes the Halting Set ∅′ since for almost all x ∈ N we have that f(x) is larger
than the stage at which x is enumerated into ∅′, if this ever happens. We will use this fact
repeatedly in what follows. Let ac−1 = −1 and define the nth component of A0 to be the
interval A0,n = {acn−1 + 1, acn−1 + 2, . . . , acn} ⊂ N. Note that the components of A0 partition
N.

3.2. Linear Algebra. We assume that the reader is familiar with the basics of linear algebra
and vector spaces at the level of most introductory undergraduate courses for mathemati-
cians. Let Q denote a fixed computable representation of the rational numbers, and let
q0, q1, q2, . . . be an effective (i.e. computable) listing of the elements of Q. All of the vec-
tor spaces that we will consider will be Q-vector spaces. By computable vector space we
mean a countable vector space over Q (coded as a computable subset of natural numbers
representing vectors) such that the addition and scalar multiplication operations are given
by computable functions (on the natural numbers that represent vectors). For more infor-
mation on the basics of computable vector spaces consult [14]. Let Q∞ = Q[v0, v1, v2, . . .]
be a fixed computable representation of the unique vector space over Q with standard basis
vectors v0, v1, v2, . . . and let u0, u1, u2, . . . ∈ Q∞ be a fixed computable listing of the elements
of Q∞. We will use the term “standard representation” of x ∈ Q∞ to mean the unique linear
combination of standard basis vectors v0, v1, v2, . . . that equals x.
All of the vector spaces that we construct in this article will be quotients of the formQ∞/S,

for some computable proper subspace S ⊂ Q∞. If S ⊂ Q∞ is a subspace and x ∈ Q∞, then
we use the notation x to denote the image of x in the quotient space Q∞/S. Whenever
we consider more than one quotient we will always specify the particular quotient that a
vector x belongs to by writing x ∈ Q∞/S for the appropriate subspace S ⊂ Q∞. Similarly,
we will write S0 ⊆ Q∞/S to denote the image of the subspace S0 ⊆ Q∞ in the quotient
Q∞/S. So long as S is computable, one can always pass uniformly and effectively between
S0 ⊆ Q∞/S and S0 ⊆ Q∞, as well as x ∈ Q∞/S and x ∈ Q∞. If V is a Q-vector space
and V0 ⊆ V is a collection of vectors in V , then we write ⟨V0⟩ to denote the subspace of V
generated (i.e. spanned) by V0. Similarly, for all v0, v1, . . . , vn ∈ V we write ⟨v0, v1, . . . , vn⟩
to denote the subspace of V generated by {v0, v1, . . . , vn} and ⟨V0, v0, . . . , vn⟩ to denote the
subspace of V generated by V0 ∪ {v0, v1, . . . , vn}. For convenience we say that the trivial
subspace {0} is spanned by ∅. Note that the span and quotient operations commute, and
most problems in finite-dimensional linear algebra (such as finding the subspace spanned
by a finite set of vectors) have a computable solution and so these solutions exist in RCA0.
We will always use the term “linear combination” to mean “finite linear combination with
nonzeroQ-coefficients.” We say that a set of vectors is linearly independent if every nontrivial
linear combination of those vectors is nonzero. Recall that we say a vector space is infinite

5The author is especially grateful to S. Lempp and K.M. Ng for suggesting a simplified version of A0

based solely on the Halting Set. Originally, the construction of A0 was more complicated, and the author
required BΣ2 to show that Ac

0 is infinite.
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dimensional whenever it is of arbitrarily large finite dimension – i.e. whenever it contains
linearly independent subsets of arbitrarily large (finite) size.

4. The key lemma

The main result of this section is a key lemma that we will use in subsequent sections to
code incomputable information (i.e. the Halting Set ∅′) into infinite dimensional subspaces
of computable vector spaces. The main content of this lemma is not new, and can essentially
be found in [6, Section 6] among other places. Since we will use this lemma repeatedly in
the next few sections we have isolated it in this section. It is provable in RCA0, as follows.

Lemma 4.1 (RCA0). Let W0 = {w0, w1, . . . , wn} ⊂ Q∞ = Q[v0, v1, v2, . . .], n ∈ N, be a
finite set of vectors and suppose that none of the vectors x0, x1, . . . , xm, m ∈ N, are linear
combinations of {w0, w1, . . . , wn}. Then, for any given i, j ∈ N, i ̸= j, such that no nontrivial
linear combination of {vi, vj} is in the span of W0 there is a number n0 ∈ N ⊂ Q such that
xi is not a linear combination of {w0, w1, . . . , wn, vi − n0vj}, for all 0 ≤ i ≤ m.

Proof. First of all, note that since W0 is finite it follows that W = ⟨W0⟩ exists via RCA0. Let
W k

0 = W0∪{vi−kvj}, for k = 1, . . . ,m+2. Again, since W k
0 is finite then via RCA0 we have

that the subspaces W k = ⟨W k
0 ⟩, 1 ≤ k ≤ m + 2, exist. Note that for all 1 ≤ k < l ≤ m + 2

we have that W k ∩ W l = W . For suppose (for a contradiction) that W k ∩ W l ⊃ W , and
choose a vector x ∈ (W k ∩W l) \W , and write x as a linear combination of W0 ∪ {vi − kvj}
and a linear combination of W0 ∪ {vi − lvj} as follows:

w + p(vi − kvj) = x = w′ + p′(vi − lvj), w, w′ ∈ W, p, p′ ∈ Q \ {0}.
Upon setting these combinations equal and rearranging the terms we get that

w − w′ = p′(vi − lvj)− p(vi − kvj),

and thus some nontrivial linear combination of {vi, vj} is in W , a contradiction. Hence,
W k ∩W l = W . Therefore, for each i = 0, 1, 2, . . . ,m there is at most one 1 ≤ ki ≤ m + 2
such that xi ∈ W ki , and by the (finite) pigeonhole principle (which holds in RCA0) it follows
that there exists some 1 ≤ k ≤ m+ 2 such that xi /∈ W k, for all 0 ≤ i ≤ n. Let n0 = k. □

In Section 7 below we will essentially generalize Lemma 4.1 by proving a more complicated
version involving linear combinations of the form vi−

∑
j<i cjvj, cj ∈ Q, in place of vi−n0vj.

Until then, however, Lemma 4.1 will suffice to do most of our coding.
Before we move on to proving the theorems of part one we make the following important

definition that we will revisit in later sections.

Definition 4.2. Let V = Q∞/S, for a subspace S ⊂ Q∞. We say that V is a 2−based
vector space whenever S is generated by elements of the form vi − ki,jvj, ki,j ∈ Q, i, j ∈ N.

We shall see in Section 8 below that infinite dimensional computable 2−based vector spaces
are different from other infinite dimensional computable vector spaces since they always
contain a low infinite dimensional proper subspace. We will also highlight some similarities
between constructing infinite dimensional proper subspaces of computable 2−based vector
spaces and some combinatorial constructions such as constructing infinite homogeneous sets
in the context of Ramsey’s Theorem for pairs (consult [5] for more information on Ramsey’s
Theorem for pairs). More specifically, we will examine the reverse mathematical strength of
the following principle, which we take to imply RCA0 and the following axiom:

INF2B
0 : Every infinite dimensional 2−based vector space contains a proper infinite dimen-

sional subspace.

Meanwhile, in Section 5 we will examine the reverse mathematical strength of

COINF2B
0 : Every infinite dimensional 2−based vector space contains an infinite/coinfinite di-

mensional subspace.
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and in Section 6 we will examine the reverse mathematical strength of

COFIN2B
0 : Every infinite dimensional 2−based vector space contains a cofinite dimensional

proper subspace.

Note that we have
INF2B

0 = COINF2B
0 ∨ COFIN2B

0 .

Three of the four vector spaces that we construct in the next two sections below will be
infinite dimensional computable 2−based vector spaces - i.e. we will demonstrate that we
can require the vector spaces V in the statements of Theorems 1.1, 1.2, and 1.3 above to be
2−based. More precisely, we will show that COINF2B

0 and COFIN2B
0 each imply ACA0 over

RCA0. Since it is obvious that COINF0 and COFIN0 imply COINF2B
0 and COFIN2B

0 , respec-
tively, it will follow that COINF0 and COFIN0 each imply ACA0 over RCA0 as well. Moreover,
in Section 8 below we will show that INF2B

0 is a consequence of WKL0 over RCA0. Taken to-
gether these results say, generally speaking, that constructing an infinite dimensional proper
subspace of a 2−based vector space is easier/simpler than constructing an infinite/coinfinite
dimensional subspace or an infinite/cofinite dimensional proper subspace. Furthermore, the
fact that INF2B

0 is provable in WKL0 is interesting in the context of the main theorem of
this article (i.e. Theorem 1.4 above) which says that INF0 is equivalent to ACA0 over RCA0,
because it implies that the vector space V that we will construct in the main theorem cannot
be a 2−based vector space, and also gives further evidence that INF0 is a nonrobust algebraic
theorem.

5. Coding into infinite dimensional subspaces of coinfinite dimension

The main purpose of this section is to prove Theorem 1.1, which was also proven inde-
pendently by Downey and Turetsky. As a consequence of our proof of Theorem 1.1 we will
deduce Theorems 1.3, 1.5, and 1.7. We reason in RCA0.

Theorem 1.1 (RCA0). There exists a computable infinite dimensional (2 − based) vector
space V such that every infinite/coinfinite dimensional subspace of V computes the Halting
Set ∅′.
Proof. We will construct V as a quotient of Q∞, i.e. V = Q∞/S for some subspace S ⊂ Q∞,
and we will use Lemma 4.1 above to ensure that V, S are computable (recall that V is
computable iff S is computable). We construct S by first enumerating a generating set S0

such that S = ⟨S0⟩, in stages, S0 = ∪s∈NS
s
0.

The main idea behind the construction of S0 is as follows. We enumerate vi − kvi+1 into
Ss+1
0 for some k ∈ Q, i, j ∈ N, via Lemma 4.1 above whenever i enters A0 at stage s ∈ N.

This has the effect of collapsing vi and vi+1 in the quotient space V = Q∞/S. The end
result is that, for all i, j ∈ N, vi and vj are scalar multiples in V iff i, j belong to the same
component of A0. Now, suppose that we are given an infinite/coinfinite dimensional subspace
W of V such that infinitely many vi are in W and infinitely many vi are not in W . Then
if we let {ki}i∈N be a strictly increasing sequence of indices such that for all i, vki /∈ W and
there is a ki < j < ki+1 such that vj ∈ W , then it follows that {ki}i∈N computes the Halting
Set ∅′ since ki ≥ aci for all i ∈ N. Hence W computes ∅′. The case in which W contains only
finitely many vi is a bit more complicated and described precisely below6. We now explicitly
construct S0 ⊂ Q∞, ⟨S0⟩ = S, as follows.

At stage 0 set S0
0 = ∅. At stage s + 1 > 0 we are given a finite set of generators

Ss
0 ⊂ Q∞, and via RCA0 we can determine which of the vectors u0, u1, . . . , us ∈ Q∞ (recall

that {ui}i∈N is an effective listing of the elements of Q∞) are in ⟨Ss
0⟩ – i.e. via RCA0 the set

Zs+1 = {0 ≤ i ≤ s : ui /∈ ⟨Ss
0⟩} exists. Now, find the unique x ∈ N for which x ∈ As

0 \ As−1
0

and enumerate vx − ks+1vx+1 into Ss+1
0 ⊃ Ss

0 for some ks+1 ∈ Q such that uz /∈ ⟨Ss+1
0 ⟩

6In this case the proof is also not that complicated, and we encourage the motivated reader to work it
our for themselves.
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for all z ∈ Zs+1. This ends the construction of S0 = ∪s∈NS
s
0. We claim that the number

ks+1 ∈ Q above exists and can be obtained uniformly and effectively via Lemma 4.1. The
only difficulty in applying Lemma 4.1 in this situation is showing that the span of {vx, vx+1}
has trivial intersection with the span of Ss

0. To see why this is the case first of all note that
for all i ∈ N we enumerate at most one element of the form vi − kvi+1, k ∈ Q, into S0 (and
we do this precisely when i is enumerated into A0). Now, upon examining the minimal and
maximal index of a (nontrivial) linear combination of elements in Ss

0, l, it follows that neither
index is canceled (in l), from which it follows that l cannot be in the span of {vx, vx+1} and
so Lemma 4.1 applies as we previously claimed. Furthermore, we have that S = ⟨S0⟩ is
computable since by our construction of S for all s ∈ N we have that us ∈ S iff us ∈ ⟨Ss+1

0 ⟩.
By our construction of S0 it is also clear that V = Q∞/⟨S0⟩ is a 2−based vector space.
Now, we claim that

(1) For all n ∈ N the set {vac0 , vac1 , . . . , vacn} ⊂ V is linearly independent in V .
(2) For any given vector x ∈ V there exists n ∈ N such that x =

∑
j<n cjvacj , for some

cj ∈ Q, 0 ≤ j < n.

(In other words, v0 = vac0 , vac1 , vac2 , . . . form a basis for V .)

To see why (1) holds, first define the nth component of Q∞, denoted Q∞,n ⊂ Q∞, to be the
subspace of Q∞ generated by all vi such that i ∈ N in the nth component of A0. Now, given
any linear combination L of elements in S0∩Q∞,n, note that (by our construction of S0) the
minimal and maximal indices of vi, i ∈ N, appearing in this linear combination cannot be
canceled and therefore must appear in any representation of L with respect to the standard
basis {v0, v1, v2 . . .} ⊂ Q∞. Therefore, no nontrivial linear combination of {vac0 , vac1 , . . . , vacn}
is in S, and thus no nontrivial linear combination of {vac0 , vac1 , . . . , vacn} is zero (in V ).
To see why (2) holds, let x ∈ Q∞, x ∈ V , be given and let s0 ∈ N be large enough so

that A0 has settled on {0, . . . , acn} ⊂ N, where n ∈ N is large enough so that acn is larger
than the index of any vi appearing in the standard representation of x ∈ Q∞. Now, by our
construction of S0 every vi, i ∈ A0, appearing in the standard representation of x ∈ V is
a scalar multiple of vi+1. It follows that every vi, i ∈ A0, is a scalar multiple of some vacj ,

j, acj ∈ N, where i and acj belong to the same component of A0. (2) now follows.
As a consequence of (1) we have that V is infinite dimensional (i.e. V is of arbitrarily large

finite dimension). Let W ⊂ V be an infinite/coinfinite dimensional subspace of V . We will
define a function f : N → N recursively in W such that for all x ∈ N we have that f(x) ≥ acx.
Since W is coinfinite dimensional it follows that vj /∈ W for infinitely many j ∈ N. First,
suppose that vi ∈ W for infinitely many i ∈ N. By our construction of S and V = Q∞/S
above, we know that vj ∈ W iff vk ∈ W , j, k ∈ N, for all k in the same component of A0 as
j. Define a function f : N → N recursively as follows. First, let i0 ∈ N be the least number
such that vi0 ∈ W , and let j0 > i0 be the least number greater than i0 such that vj0 /∈ W .
Set f(0) = j0. For x > 0, x ∈ N, assume that f(x − 1) is defined and let ix > f(x − 1) be
the least number such that vix ∈ W and let jx > ix be the least number greater than ix such
that vjx /∈ W and set f(x) = jx. This ends the construction of f . By Σ1-induction and our
previous remarks it follows that for all x ∈ N we have that f(x) ≥ acx, and hence f ≤T W
computes the Halting Set ∅′.

Now suppose that for cofinitely many i ∈ N we have that vi /∈ W . Moreover assume
that n0 ∈ N is such that for all n ≥ n0 we have that vn /∈ W and (via RCA0) take a
sequence of nonzero elements in W ⊂ V , w0, w1, w2, . . ., such that when represented as linear
combinations of {v0, v1, v2, . . .} (via some representative of the corresponding equivalence
class in V = Q∞/S) we have that the maximal index of all vj occurring in some (i.e. our)
representation of wi is strictly less than the minimal index of all vj occurring in some (i.e.
our) representation of wi+1, and that the minimal index of any vj occurring in some (i.e.
our) representation of w0 is strictly greater than n0. This is possible via finite-dimensional
linear algebra (i.e. Gaussian elimination) and the fact that W is infinite dimensional. Let
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f : N → N be such that f(x) is the maximal index of any vi occurring in our representation
of wx. We claim that f(x) ≥ acx for all x ∈ N. For suppose not. Then by the finite pigeonhole
principle it follows that there must be x, x + 1 ∈ N such that f(x), f(x + 1) belong to the
same component of A0. But by our construction of S = ⟨S0⟩ above this means that wx

is a nonzero scalar multiple of some standard basis vector vk (in V ), a contradiction. So
f(x) ≥ acx for all x ∈ N and hence f ≤T W computes the Halting Set ∅′. □

Interpreting the relativized version of Theorem 1.1 in the context of reverse mathematics
yields the following result (recall that ACA0 is equivalent to saying that “for any set A, the
Halting Set relative to A, A′, exists”). We briefly sketch this argument now.

Theorem 1.5. COINF0 and COINF2B
0 are equivalent to ACA0 over RCA0.

Proof. Without loss of generality we prove the theorem for COINF0 (the proof for COINF2B
0

is identical). Let X ⊆ N be given. We will use the principle COINF0 to show that X ′

exists. Using RCA0 construct the infinite dimensional vector space VX of Theorem 1.1 above
relative to X by using AX in place of A0 where AX ⊂ N is defined analogously to A0, except
that we replace the Halting Set ∅′ with the Halting Set relative to A, A′. The rest of the
argument remains the same and in the end we conclude that X ⊕WX computes X ′, for any
infinite/coinfinite dimensional subspace WX ⊂ VX , and hence X ′ exists since COINF0 says
that some WX exists. □

We now sketch the proof of Theorem 1.3 as a modification of the proof of Theorem 1.1
above.

Theorem 1.3 (RCA0). There exists a computable infinite dimensional (2 − based) vector
space V , and 0 ̸= x ∈ V , such that every infinite dimensional subspace of V not containing
x computes the Halting Set ∅′.

Proof. We reason in RCA0, following the proof of Theorem 1.1 above. In the construction
of S0 in proof of Theorem 1.1 above at stage s + 1 we enumerated a vector of the form
vi − ks+1vi+1 into Ss+1

0 (via Lemma 4.1). Now, instead of doing this we enumerate a vector
of the form v0 − ks+1vi into Ss+1

0 (via Lemma 4.1) whenever i is enumerated into A0. Then,
arguing along the same lines as in the proof of Theorem 1.1, we have that V is a 2−based
computable vector space and that vi is a scalar multiple of v0 for every i ∈ A0. We also
have that 0 ̸= x0 since every linear combination L of vectors in S0 ⊂ Q∞ must have some
vi occurring for some i > 0 (here i is the maximal index of any vj appearing in L). So, if
we let W be an infinite dimensional subspace of V not containing x = v0 ̸= 0, then every
representative (in terms of the standard spanning set {vj}j∈N) of every nonzero element of
W must have some vi appearing such that i ∈ Ac

0. Now, if w0, w1, w2, . . . ∈ W is a sequence
of nonzero vectors in V such that the minimal index of some (i.e. our) representation of wn+1

(expressed as a linear combination of {vj}j∈N) is strictly greater than the maximal index of
some (i.e. our) representation of wn, for all n ∈ N (as before this sequence may be obtained
via Gaussian elimination), then it follows that the function f : N → N defined by setting
f(x) equal to the maximal index of our representation of wx satisfies f(x) ≥ acx for all x ∈ N.
Therefore f ≤T W computes ∅′. □

As above, upon interpreting the relativized version of Theorem 1.3 in the context of
reverse mathematics we obtain the following result. The proof is similar to that of Theorem
1.5 above.

Theorem 1.7. x− INF0 is equivalent to ACA0 over RCA0.

6. Coding into infinite dimensional subspaces of cofinite dimension

The main goal of this section is to prove Theorem 1.2. As a consequence we will derive
Theorem 1.6. We reason in RCA0. As we stated earlier, we will present two proofs of
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Theorem 1.2. First, we will present our more complicated proof that constructs a 2−based
vector space V as in the statement of Theorem 1.2 above. Afterwards we will give a simpler
proof of Theorem 1.2 due to Downey, Greenberg, Kach, Lempp, Miller, Ng, and Turetsky
that is based on [14] and in which the vector space V is not necessarily 2−based. Our
theorem that V can be 2−based is interesting in the context of Section 8 below.

Theorem 1.2 (RCA0). There exists a computable infinite dimensional (2 − based) vector
space V such that every infinite/cofinite dimensional proper subspace of V computes the
Halting Set ∅′.
First proof of Theorem 1.2. We will construct V as a quotient of Q∞, i.e. V = Q∞/S, for
some computable subspace S ⊂ Q∞. Hence V will be a computable vector space. We
will construct the subspace S by enumerating a set of generators S0 ⊂ S for S. From our
construction of S0 it will be clear that V is in fact a 2−based vector space. Let ⟨·, ·⟩ :
N× N → N denote a computable pairing function that is a bijection from N× N to N such
that x, y ≤ ⟨x, y⟩ for all x, y ∈ N (see [39, Theorem II.2.2][40, 41] for more details). Recall
that the ordered triple ⟨a, b, c⟩ ∈ N, a, b, c ∈ N is actually a shorthand for the nested ordered
pairs ⟨⟨a, b⟩, c⟩ ∈ N and also exists in RCA0.
The main idea behind our construction of S, S0 ⊂ Q∞ is as follows. For every standard

basis vector of Q∞, vn, n ∈ N, we will enumerate generators of the form vn − kn,x,iv⟨n+1,x,i⟩,
kn,x,i ∈ Q, for all x, i ∈ N such that 0 ≤ i ≤ acx into S0. This has the effect of collapsing
vn and v⟨n+1,x,i⟩, 0 ≤ i ≤ acx in the quotient space V = Q∞/S. The end result is that vn
is a scalar multiple of v⟨n+1,x,i⟩ whenever x, i ∈ N are such that 1 ≤ i ≤ acx. Now, suppose
that we are given an infinite/cofinite proper subspace of V , called W ⊂ V . Then, since W
is a proper subspace there is some n0 ∈ N such that vn0 /∈ W , and so for every x ∈ N the
vectors v⟨n0+1,x,i⟩ /∈ W , for all 0 ≤ i ≤ acx. Recall that for every x ∈ N the vectors v⟨n0+1,x,i⟩,
0 ≤ i ≤ acx, are all scalar multiples of vn0 and therefore they are also scalar multiples of each
other. Therefore, any linear combination of these vectors is not in W . Later on in this proof
we will use the fact that W has cofinite dimension in V to show that for every x ∈ N there
is a linear combination lx ∈ V of elements of the form v⟨n0+1,x,j⟩, j ∈ N, in W . It follows
from our previous remarks and our definition of vn0 above that the maximum j ∈ N for
which v⟨n0+1,x,j⟩ occurs in the linear combination lx must satisfy j > acx (otherwise vn0 ∈ W ,
a contradiction). Hence, by effectively searching for and finding the linear combinations lx,
x ∈ N, we can compute a function f : N → N such that f(x) ≥ acx for all x ∈ N, and so W
computes ∅′. We are now ready to give a detailed proof of Theorem 1.2.

We construct the generating set S0 ⊂ Q∞ in stages, S0 = ∪s∈NS
s
0, S

s+1
0 ⊇ Ss

0. At stage
s = 0 set S0

0 = ∅. At stage s + 1 > 0 we define Ss+1
0 ⊃ Ss

0 as follows. Without any loss
of generality we assume that for all x ∈ N, ϕx(x) does not halt before stage x. At stage
s + 1 > 0 we enumerate vectors of the form vs − ks+1,x,iv⟨s+1,x,i⟩, ks,x,i ∈ Q, into Ss+1

0 for
all 0 ≤ x ≤ s and 0 ≤ i ≤ ac,sx . As in the previous section we choose the (finitely many)
numbers ks,x,i ∈ Q in the previous sentence one-at-a-time via Lemma 4.1 above7 so as to
guarantee that for all 0 ≤ k ≤ s we have that uk ∈ ⟨Ss+1

0 ⟩ iff uk ∈ ⟨Ss
0⟩. This ends our

construction of S0 and S = ⟨S0⟩. Note that S is computable since for all k ∈ N we have that
uk ∈ S iff uk ∈ Sk

0 . Hence V = Q∞/S is computable. It is also clear by our construction of
S0 that V is a 2−based vector space.
To see that V is infinite dimensional we will show that for all n, x ∈ N the vectors

{v⟨n,x,i⟩}i>acx are linearly independent in V . We prove this via proof by contradiction. Fix
n, x ∈ N and suppose (for a contradiction) that some linear combination of {v⟨n,x,i⟩}i>acx ,

7As in the previous section, to argue that no linear combination l of vs and v⟨s+1,x,i⟩ is currently in the

span of Ss+1
0 assume the opposite and derive a contradiction by examining the minimal and maximal indices

of the elements currently in Ss+1
0 whose span includes l. We leave the details to the reader but remark

that the argument is similar to one that we give in the next paragraph when we show that V is infinite
dimensional.
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which we will call L, is in S. Then L is also a linear combination of elements of S0, which
we will call L0. By our construction of S0 we know that every generator of S0 is of the form
vp − kv⟨p+1,x,i⟩, for some p, x, i ∈ N, k ∈ Q, and n < n + 1 ≤ ⟨n + 1, x, i⟩. It follows that
every m ∈ N can appear as the maximal index of an element of S0 at most once. Let m0

be the maximal index of any generator appearing in L0. Then it follows that m0 cannot
be canceled by any other generator in S0 appearing in L0. Hence, m0 = ⟨n, x, i⟩, for some
i > acx. But this is a contradiction since by our construction of S0 no element of S0 has m0 as
its maximal index (because i > acx is too large to be in S0). This proves that for all n, x ∈ N
the vectors {v⟨n,x,i⟩}i>acx are linearly independent in V . Hence V is infinite dimensional.

Now, let W ⊂ V be an infinite/cofinite dimensional proper subspace. We claim that W
computes the Halting Set ∅′. To see why, first of all let W ⊂ Q∞, W ≤T W , be the pullback
of W and using the fact that W is a proper subspace of Q∞ (since W is a proper subspace
of V ) let n ∈ N be such that vn /∈ W . We claim that for every x ∈ N there exists a linear
combination of the vectors {v⟨n+1,x,i⟩}i∈N in W . Using the fact that W has cofinite dimension

in Q∞ (since W has cofinite dimension in V ) let m ∈ N be such that ⟨v0, . . . , vm,W ⟩ = Q∞.
Then for all i > m either v⟨n,x,i⟩ ∈ W , in which case we are done, or else we can write
v⟨n,x,i⟩ = wi + zi, for some nonzero vectors wi ∈ W and zi ∈ ⟨v0, . . . , vm⟩. Now, since there
are infinitely many vectors of the form v⟨n+1,x,i⟩, i > m, and only finitely many v0, . . . , vm, we
can use Gaussian elimination on the equations v⟨n,x,i⟩ = wi+zi, m < i ≤ 2m+1, to eliminate
any occurrence of the vectors v0, . . . , vm in the “zi part” of the equations, thus constructing
a linear combination of v⟨n,x,i⟩, m < i ≤ 2m + 1, that lies in W . This proves that for every
x ∈ N there is a linear combination of the vectors {v⟨n,x,i⟩}i∈N inW . The rest of the argument

that W ≤T W computes the Halting Set ∅′ was given in the last few sentences of the second
paragraph of this proof. This completes our proof of Theorem 1.2. □

We now present the second (simpler) proof of Theorem 1.2 above due to Downey, Green-
berg, Kach, Lempp, Miller, Ng, and Turetsky that is based on a construction in [14]. Recall
that the vector space constructed in the second proof below is not necessarily a 2−based
vector space.

Second proof of Theorem 1.2. Let V = Q∞/S be the infinite dimensional computable vector
space constructed in [14, Theorem 1.5], S ⊂ Q∞ a subspace, and let W ⊂ V be an infi-
nite/cofinite dimensional proper subspace of V . Let W denote the pullback of W in Q∞
(recall that W is computable in W ), let {x0, . . . , xn}, n ∈ N, be finitely many vectors such
that X = ⟨x0, . . . , xn⟩ ⊂ Q∞ is a complement for W in Q∞. It follows that every vector
z ∈ Q∞ can be written uniquely as a sum z = x + w with x ∈ X and w ∈ W . In [14] the
authors explain that every finite dimensional subspace of V computes the Halting Set ∅′ (be-
cause it is computably enumerable and of PA degree; for more information see [14]), and so
X computes ∅′. We will show how to compute X from W . For every z ∈ Q∞ (computably)
find vectors xz ∈ X and wz ∈ W such that z = xz +wz. We can find xz, wz computably and
uniformly in z since we know that they exist ahead of time (by our hypothesis on W and
X) and they satisfy a computably enumerable (i.e. Σ1) relation. It follows that z ∈ X iff
wz = 0 (since X is a complement for W in Q∞). Hence, we have a computable procedure,
uniform in z ∈ Q∞, for deciding whether or not z ∈ X. So W computes X, and hence W
computes the Halting Set ∅′. □

As in the previous section, interpreting the relativized version of Theorem 1.2 above in
the context of reverse mathematics yields the following reverse mathematical theorem (we
omit its proof).

Theorem 1.6. COFIN0 and COFIN2B
0 are equivalent to ACA0 over RCA0.

7. Our Main Theorem:
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Coding the Halting Set into arbitrary infinite dimensional subspaces

Theorem 1.4 (RCA0). There exists a computable infinite dimensional vector space V such
that every infinite dimensional proper subspace of V computes the Halting Set ∅′.
Proof. We will construct V = Q∞/S for some computable (infinite dimensional) subspace
S ⊂ Q∞ generated by vectors of the form

(∗) vn −
∑
i<n

civi, n ∈ N, ci ∈ Q,

with at most one such generator for each n > 0.
Generally speaking, the main idea behind our construction of S0 is as follows. At stage

s + 1 > 0, s ∈ N, of the construction we enumerate some v = vx −
∑

i<x civi, ci ∈ Q, into

Ss+1
0 = Ss

0 ∪ {v} for the unique x ∈ N that enters A0 at stage s. Furthermore, generally
speaking we do this in a way that guarantees that no vector of the form∑

i≤x

civi, ci ∈ {q0, . . . , qs},

i.e. no vector with “small coefficients,” is contained in a proper subspace of ⟨v0, v1, . . . , vx−1⟩ ⊂
Q∞/Ss+1

0 spanned by vectors of the form∑
i<x

civi, ci ∈ {q0, . . . , qs},

i.e. vectors with “small coefficients.” In other words, whenever we create a new linear
dependence relation vx =

∑
i<x civi, ci ∈ Q, in V/⟨Ss+1

0 ⟩, we have that some ci = qj, where
j > s. Hence the linear dependence relation is computable in every proper subspace of V
since the coefficients of the vectors bound the stage at which the linear dependence was
created in V . Using this fact, and the fact that the subspace W ⊂ V of Theorem 1.4 above
is infinite dimensional, we will be able to construct an infinite set of linearly independent
vectors w0, w1, w2, . . . ∈ W ⊂ V , and since vi ∈ ⟨vj : j < i⟩ ⊂ V = Q∞/⟨S0⟩ for every i ∈ A0

(by our construction of S0 outlined above), it will follow that the maximal index of any vi
appearing in w0, . . . , wi is at least a

c
i , from which it will follow that W computes the Halting

Set ∅′. More details are given below.
We now explain precisely how to enumerate the computable set of generators S0 ⊂ Q∞

for S. Recall that the generators of S0 will all take the form of (∗) above, and we say that
vn, n ∈ N, has been substituted whenever there exists s such that Ss

0 contains a generator of
the form (∗). We construct S0 = ∪sS

s
0, |Ss

0| = s, Ss+1
0 ⊃ Ss

0, in stages s as follows. At stage
s = 0 set S0

0 = ∅.
At stage s+ 1 > 0 assume that we are given Ss

0 and search for the unique xs > 0, xs ∈ N,
such that xs ∈ As

0 \ As−1
0 . Let zs ∈ N be the largest number enumerated into A0 by stage

s+1 and let Ac,s
0 denote the complement of Ac

0 at stage s (of the construction of A0, that we
assume is running simultaneously with our construction of S0). Let ns ∈ N be the largest
number such that ac,sns

< xs (note that ns always exists since we are assuming that ac0 = 0).
By Σ1-induction and our construction of S0 (still in progress) we will have that at all stages
0 < t ≤ s every generator enumerated into St

0 is of the form (∗) with n ∈ At
0, and moreover

for every n ∈ At
0 there is such a generator in Ss

0. We proceed by substituting vxs at stage
s+ 1, but first we require the following definition/notation.

Definition 7.1. For all n ∈ N and v =
∑

j<n cjvj ∈ Q∞ let v̂ ∈ Q∞ denote the vector
obtained by repeatedly substituting, in order from highest index to lowest index, for every
index j ∈ N in the expression for v (in terms of the standard basis {vk}k∈N) such that vj has
been substituted by the end of stage s. Each substitution made is given by the rule

vj =
∑
i<j

civi,
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where vj −
∑

i<j civi ∈ Ss
0. For every X ⊂ Q∞ we define X̂ = {v̂ : v ∈ X} ⊂ Q∞.

Note that v̂ is equal to v modulo ⟨Ss
0⟩, and therefore v̂ is equal to v modulo ⟨S0⟩ = S.

Moreover, it follows that all indices appearing in v̂ belong to the complement of As
0 ⊂ N.

Finally, note that one may pass uniformly (in v ∈ Q∞, s ∈ N, ) and computably from v to v̂
at stage s+ 1.

Let Ys ⊂ Q∞ be the (finite) set of vectors v ∈ Q∞ such that the unique representation
of v with respect to the standard basis vectors v0, v1, . . . , vzs has all of its coefficients in
{q0, . . . , qs} ⊂ Q and such that v̂ ∈ ⟨vac,s0

, vac,s1
, . . . , vac,sns

⟩. Let Zs be defined similarly to

Y0, except that the resulting vector v̂ must lie in ⟨vac,s0
, vac,s1

, . . . , vac,sns
, vxs⟩. Let 0 ∈ P̂s ⊂

⟨vac,s0
, vac,s1

, . . . , vac,sns
⟩ be the union of all proper (or, equivalently, ns-dimensional) subspaces

spanned by vectors in Ŷ s
0 . Note that Ys, Ŷ

s
0 , Zs, Ẑ

s
0 , P̂s are all uniformly computable in s. Ŷ s

0

and Ẑs
0 are finite sets of vectors in ⟨vac,s0

, vac,s1
, . . . , vac,sns

⟩ and ⟨vac,s0
, vac,s1

, . . . , vac,sns
, vxs⟩, respec-

tively, while P̂s is the union of finitely-many subspaces of codimension one in ⟨vac,s0
, vac,s1

, . . . , vac,sns
⟩.

For all z ∈ Zs, let z̃ be the projection of ẑ ∈ ⟨vac,s0
, vac,s1

, . . . , vac,sns
, vxs⟩ onto ⟨vac,s0

, vac,s1
, . . . , vac,sns

⟩.
Now, for all z ∈ Zs let dẑ ∈ Q be the vxs-coefficient of ẑ. Let D ∈ Q, D > 0, be strictly
larger than the maximum of the absolute values of the (finitely-many) dẑ, z ∈ Zs. For every

z ∈ Zs, either z̃ ∈ P̂s, or else there is closed ball8 around z̃ in ⟨vac,s0
, vac,s1

, . . . , vac,sns
⟩ that does

not intersect P̂s. Since Zs is a finite set of vectors and since the intersection of finitely many
open sets is open it follows that there is a small but strictly positive uniform radius rs ∈ Q
such that for all z̃ not in P̂s, z ∈ Zs, the closed ball B̂s,z̃ ⊂ ⟨vac,s0

, vac,s1
, . . . , vac,sns

⟩ with center

z̃ and radius Drs ∈ Q, Drs > 0, does not meet P̂s. Let Bs,0 ⊂ ⟨vac,s0
, vac,s1

, . . . , vac,sns
⟩ denote

the closed ball with center 0 and radius Drs. Now, for every z ∈ Zs ∪ {0} the complement

of P̂s in B̂s,z̃ is an open and dense (in B̂s,z̃) by the Baire Category Theorem. It follows
that there exist nonzero vectors y0s , y

1
s , . . . , y

s+1
s ∈ Bs,0 ∈ ⟨vac,s0

, vac,s1
, . . . , vac,sns

⟩ (of the form∑
i<xs

civi) such that for all z ∈ Zs and 0 ≤ i ≤ s + 1 we have that z̃ + yis ∈ Bs,z̃ \ Ps and

⟨Ss
0, y

i
s⟩ ∩ ⟨Ss

0, y
j
s⟩ = ⟨Ss

0⟩ ⊂ Q∞ for 0 ≤ i < j ≤ s + 1.9 By an argument similar to the one
we gave in the proof of the key lemma (see Section 4 above for more information) involving
the finitary pigeonhole principle, there exists 0 ≤ j0 ≤ s + 1 such that for all u0, u1, . . . , us

we have that ui ∈ ⟨Ss
0, y

j0
s ⟩ iff ui ∈ ⟨Ss

0⟩. Finally, we enumerate

vxs −
1

D
yj0s = vxs −

∑
i<xs

civi

into Ss+1
0 and proceed to the next stage of the construction of S0. This completes our

construction of S0 = ∪s∈NS
s
0 and S = ⟨S0⟩.

Remark 7.2. Note that, by our construction of yj0s in the previous paragraph, upon substitut-

ing yj0s for vxs in every z ∈ Ẑs\Ŷs = Ẑs \ Ys it follows that none of the resulting vectors lie in P̂s.
In other words, none of the resulting vectors live in a codimension one subspace of ⟨vac,s0

, vac,s1
, . . . , vac,sns

⟩
spanned by linear combinations of v̂0, v̂1, . . . , v̂zs with coefficients in {q0, . . . , qs} ⊂ Q. This
is the key property of S0 = ∪sS

s
0 that we will use in the final paragraph of the current proof

below to prove that every infinite dimensional proper subspace of V = Q∞/S computes the
Halting Set ∅′.

8Here we are viewing Q∞ as a metric space where the metric is induced via the standard basis vectors
v0, v1, v2, . . ..

9Here we are proving a stronger version of the key lemma (i.e. Lemma 4.1) above. The proofs of the key
lemma above and the crucial lemmas of [14] can also be phrased in terms of the Baire Category Theorem.
In our opinion the Baire Category Theorem is essentially the key to proving most of the results in part one.
More generally, in our opinion the Baire Category Theorem is the key to coding incomputable information
into nontrivial subspaces of computable vector spaces.
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We now verify that V = Q∞/S has the properties listed in the statement Theorem 1.4
above. By our construction of S = ⟨S0⟩ ⊂ Q∞, we have that un ∈ S iff un ∈ ⟨Sn+1

0 ⟩, for
all n ∈ N, and so S and V = Q∞/S are computable. Furthermore, since we substituted vn
exactly once for every n ∈ A0 (as in previous sections) it follows that:

(1) For all n ∈ N, v0 = vac0 , vac1 , . . . , vacn are linearly independent.
(2) For every nonzero v ∈ V there exists n ∈ N such that v can be expressed as a linear

combination of v0 = vac0 , vac1 , . . . , vacn .

(In other words, v0 = vac0 , vac1 , vac2 , . . . form a basis for V .) It follows that V is infinite
dimensional.

Now, suppose that w0, w1, w2, . . . ∈ V is an infinite sequence of linearly independent
vectors in V . It follows from (1) and (2) above, along with some elementary finite-dimensional
linear algebra, that if f : N → N is defined by setting f(n), n ∈ N, to be the maximal
index appearing in any expression of w0, . . . , wn with respect to the standard spanning set
v0, . . . , vn, then we must have that f(n) ≥ acn, for all n ∈ N (otherwise there exists n0 ∈ N
and (n0 + 2)−many vectors w0, . . . , wn0+1 such that w0, . . . , wn0+1 ∈ ⟨v0 = vac0 , . . . , vacn0

⟩ are
linearly independent, a contradiction since RCA0 proves that dimension is well-defined for
finite dimensional vector spaces). In the following paragraph we prove that we can always
compute an infinite linearly independent set of vectors in V when given oracle access to
an infinite dimensional proper subspace W ⊂ V . It will then follow that W computes the
Halting Set ∅′.

Suppose that we are given an infinite dimensional proper subspace W of V = Q∞/S, and
let n0 ∈ N be such that vn0 /∈ W . Then for all n ≥ n0, W ∩⟨v0, . . . , vn⟩ ⊂ V is contained in a
codimension one subspace of ⟨v0, . . . , vn⟩ ⊂ V . Let w0, w1, w2, . . . be an effective enumeration
of the nonzero elements ofW ⊂ V , written asQ-linear combinations of the standard spanning
set v0, v1, v2, . . . such that some vn, n > n0, occurs in the expression of wi for all i ∈ N.
Let w0, w1, w2, . . . ⊆ Q∞ be the corresponding sequence of linear combinations in Q∞. The
sequence w0, w1, w2, . . . exists because W is infinite dimensional. Let g : ω → ω be computed
from W such that for every x ∈ N, wg(x) is not contained in the span of w0, w1, . . . , wg(x)−1

in the vector space Q∞/⟨Stx
0 ⟩, where tx ∈ N is least such that the coefficients of w0, . . . , wg(x)

(with respect to v0, v1, v2, . . .) all lie in {q0, . . . , qtx−1}. Note that g is a total computable
function relative to W since W is infinite dimensional and Stx

0 is finite. We claim that
wg(0), wg(1), wg(2), . . . is an infinite linearly independent subset of V , and hence computes ∅′.
Suppose for a contradiction and via Σ1-induction that n ∈ N is least such that wg(n) is a
linear combination of wg(0), . . . , wg(n−1). Then we can computably find the least s0 ∈ N
such that this is the case in the quotient Q∞/⟨Ss0

0 ⟩. We claim that s0 < tn, contradicting
our definition of g. Suppose for a contradiction that the coefficients of wg(0), . . . , wg(n) all
live in {q0, . . . , qs0−1} (i.e. suppose that s0 ≥ tn), then in our construction of Ss0

0 at stage

s0 it follows that wg(0), . . . , wg(n)−1 ∈ Ys0 ⊂ Q∞, ⟨ŵg(0), . . . , ŵg(n)−1⟩ ⊆ P̂s0 ⊂ Q∞, and
wg(n) ∈ Zs0\Ys0 ⊂ Q∞. Now, by our construction of Ss0

0 at stage s0 and Remark 7.2 above, we
cannot have that wg(n) ∈ Q∞/⟨Ss0

0 ⟩ is a linear combination of wg(0), . . . , wg(n−1) ∈ Q∞/⟨Ss0
0 ⟩,

a contradiction. □

As above, interpreting the relativized version of Theorem 1.4 above in the context of
reverse mathematics yields the following theorem.

Theorem 1.8. INF0 is equivalent to ACA0 over RCA0.

This concludes the first part of this article. In the next part (i.e. part two) we will
come at the problem of coding into infinite dimensional proper subspaces from the opposite
perspective of showing that there always exists a (computability theoretically) “simple” such
subspace. More precisely, we will prove that every infinite dimensional computable 2−based
vector space V contains a low infinite dimensional proper subspace W ⊂ V . Therefore,
it is impossible to code the Halting Set ∅′ into every infinite dimensional proper subspace
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of a 2−based vector space. This is interesting given what we have seen in part one (i.e.
Theorems 1.1, 1.2, 1.3, and 1.4 above). We will also draw some general parallels between
INF2B

0 and combinatorial principles such as Ramsey’s Theorem for pairs. More information
and discussion follows.

8. Constructing infinite dimensional proper subspaces of
2−based vector spaces

The main purpose of this section is to classify the reverse mathematical strength of INF2B
0 ,

which we introduced in Section 4. We restate INF2B
0 for the reader’s convenience.

INF2B
0 : Every infinite dimensional 2−based vector space contains a proper infinite dimen-

sional subspace.

Recall that a vector space V is a 2−based vector space if V = Q∞/S for a subspace S ⊆ Q∞
generated by vectors of the form vi − ki,jvj, ki,j ∈ Q, i, j ∈ N.
More specifically, we will show that INF2B

0 is implied by WKL0 over RCA0. This is the main
theorem of part two. It follows that the vector space V in Theorem 1.4 cannot be a 2−based
vector space. This is interesting in the context of Theorems 1.1, 1.2, and 1.3 above, because
these theorems show that 2−based vector spaces are quite useful for coding into various
subclasses of infinite dimensional proper subspaces of infinite dimensional computable vector
spaces. More precisely, we have that the statements COINF2B

0 and COFIN2B
0 each imply ACA0

over RCA0, but the seemingly weaker statement INF2B
0 is actually provable in the strictly

weaker system WKL0 (see Section 1 for more details). Along the way to proving this fact we
will highlight some general similarities between INF2B

0 and various combinatorial theorems
such as Ramsey’s Theorem for pairs.

We will also show that, in the context of ω−models, any infinite dimensional computable
vector space V that does not contain a low infinite dimensional proper subspace W ⊂ V
must contain many different (i.e. “densely many”) computable finite dimensional subspaces.
This is a stronger version of the theorem that follows from [14] that says, in the context of
ω−models, every infinite dimensional vector space V that does not contain a low infinite
dimensional proper subspace W ⊂ V must contain many different (i.e. “densely many”) low
finite dimensional subspaces. Our theorem is interesting because it says that any vector
space in which all nontrivial subspaces are incomputable, like the one constructed in [14]
in which all nontrivial subspaces are of (incomputable) PA degree, must contain a low
infinite dimensional proper subspace. It also implies that in the context of ω−models our
construction of an infinite dimensional computable vector space V in Theorem 1.4 above
must contain many different finite dimensional computable subspaces. More details and
discussions follow.

8.1. INF2B
0 and weak König’s lemma.

Theorem 8.1 (RCA0). WKL0 implies INF2B
0 .

Proof. We reason in WKL0. Let V = Q∞/S be an infinite dimensional 2−based vector space
and let {vk}k∈N ⊂ V = Q∞/S be the images of {vk}k∈N ⊂ Q∞, respectively, under the
canonical quotient map Q∞ → V .

First we claim that if W ⊆ V is a subspace, then the span of V0 = {vk : vk /∈ W, k ∈ N}
does not contain any nonzero vk ∈ V such that vk ∈ W . To see why this is the case, suppose
otherwise (for a contradiction). Let W 0 = ⟨V0⟩ ⊆ V , and W,W0 be the preimages of W,W 0

in Q∞, respectively. Note thatW 0,W0 may not exist since we are reasoning inWKL0; we only
introduced these subspaces so that we can write statements like “x ∈ W 0” as a shorthand
for saying that “x is a linear combination of elements of V0.” The entire proof of the claim
in the rest of this paragraph can be done without mentioning W 0,W0 via the substitution
described in the previous sentence. By hypothesis we have that some 0 ̸= vk0 ∈ W , k0 ∈ N,
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is a linear combination of {vj}j∈N in V0. Lifting this relation to Q∞ implies that there exists
z ∈ S and w0 ∈ W0 such that

vk0 = w0 + z,

where vk0 ∈ Q∞ \ S.
Now, since V is a 2−based vector space we have that z ∈ S is a linear combination

of vectors of the form vi − ki,jvj, ki,j ∈ Q, i, j ∈ N. Furthermore, note that for all v =
vi− ki,jvj ∈ Q∞, ki,j ∈ Q, i, j ∈ N, (since S ⊆ W ⊆ Q∞ are subspaces) we have that vi ∈ W
iff vj ∈ W . Hence vi ∈ W0 iff vj ∈ W0. It now follows that it is impossible to write vk0 ∈ W
as a linear combination of elements of standard basis vectors vk /∈ W and generators of S, a
contradiction. Intuitively speaking this is the case because our previous remarks imply that
one cannot use Gaussian elimination via the generators of S of the form vi − ki,jvj as above
to go from linear combinations of standard basis vectors of the form vk /∈ W to the standard
basis vector vk0 ∈ W , which is a contradiction. A more formal proof would proceed as
follows. Note that every standard basis vector appearing in w0 must be canceled by another
occurrence in z (since vk0 = w0 + z and vk0 ∈ W ). Hence, by our previous remarks in this
paragraph it follows that −w0 is a sum of generators of S, hence w0 ∈ S, and so vk0 ∈ S, a
contradiction.

Now, use WKL0 to construct a nontrivial subspace Z ⊂ V containing v0 ∈ V = Q∞/S
and not containing v1 ∈ V (see [14] for more details on how to do this). If Z is infinite
dimensional then we are done. Assume that Z is finite dimensional. Then, using WKL0
(again) along with our remarks in the previous paragraph, construct a subspace Z0 ⊂ V
containing all vk /∈ W , k ∈ N, and not containing v0 (see [14] for more details on how to do
this). This is possible since (by the previous paragraph) we know that the intersection of Z
and the span of all vk /∈ Z is trivial (i.e. zero). Note that vk /∈ Z for cofinitely many k ∈ N
since Z is finite dimensional. It follows that Z0 is an infinite/cofinite dimensional proper
subspace of V . □

Remark 8.2. Intuitively speaking, the reason why INF2B
0 is provable in WKL0 but INF0 is

not is because constructing “complements” is easier in 2−based vector spaces than in general
vector spaces (here we are thinking of W 0 in the proof above as a “complement” for W ).
In other words, our construction of Z0 in the proof of Theorem 8.1 above is valid in WKL0
because of our remarks in the second paragraph of the proof, which only apply to 2−based
vector spaces. In this sense 2−based vector spaces are “simpler” than other vector spaces
such as the vector space that we built in Theorem 1.4 above.

Remark 8.3. Note that the proof of Theorem 8.1 above is divided into two cases, one in
which we produce an infinite/coinfinite dimensional subspace, and the other in which we
produce an infinite/cofinite dimensional proper subspace (see the last two paragraphs of the
proof of Theorem 8.1 for more details). Our constructions in Theorems 1.1 and 1.2 above
imply that any proof of Theorem 8.1 must be divided into these two cases because if V is the
vector space of Theorem 1.1 then the proof of Theorem 8.1 applied to V and the Jockusch-
Soare Low Basis Theorem [23] produces an infinite/cofinite dimensional low proper subspace.
Meanwhile, if V is the vector space of Theorem 1.2 then the proof of Theorem 8.1 applied to
V and the Jockusch-Soare Low Basis Theorem constructs an infinite/coinfinite dimensional
low subspace. In other words, Theorems 1.1 and 1.2 above and the Low Basis Theorem imply
that any proof of Theorem 8.1 must be nonuniform (i.e. divided into cases).

8.1.1. Some similarities between our proof of INF2B
0 via WKL0 and proofs of various combi-

natorial principles such as Ramsey’s Theorem for pairs. We now comment that our proof
of INF2B

0 via WKL0 bears some resemblance to well-known proofs of various combinatorial
principles such as Ramsey’s Theorem for pairs and the Chain/Antichain Principle for infinite
partial orders. For more information on these theorems, consult [5, 21]. We will assume that
the reader is generally familiar with these theorems and their proofs, as well as the standard
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proof of the Jockusch-Soare Low Basis Theorem. For more information on the Low Basis
Theorem, consult [23, 40, 41].

In the proof of Ramsey’s Theorem for pairs one is given a 2-coloring c of pairs of natural
numbers via the colors RED and BLUE and one must construct an infinite homogeneous
set of natural numbers for the coloring c. Generally speaking, the proof is as follows. Begin
by trying to construct an infinite RED homogeneous set in stages by carefully adding one
new number to the homogeneous set at every stage (for more information on the proof and
what we mean by carefully, see [5]). Then one argues that if at any stage one cannot extend
the current RED homogeneous set by one element, the obstruction is caused by an infinite
BLUE homogeneous set that one can find via a different construction. One key property
of this proof is that it is nonuniform. In other words, we cannot tell at the beginning of
the proof whether we will construct an infinite RED homogeneous set or an infinite BLUE
homogeneous set, and at no finite stage of the proof is this ever decided (unless we have
already constructed an infinite BLUE homogeneous set at some previous finite stage in
which case the proof is finished). One can make similar observations about the proof of
the Chain/Antichain Principle (CAC), as well as other combinatorial principles related to
Ramsey’s Theorem for pairs.

The proof of Theorem 8.1 above via WKL0 is similar to that of Ramsey’s Theorem for
pairs. To see how, first of all note that our proof of INF2B

0 (via WKL0) is nonuniform, since
it is divided into two cases: one in which W is infinite dimensional and one in which W
is finite dimensional. Furthermore, the similarities between the proofs becomes much more
apparent when we think about proving INF2B

0 via WKL0 in the context of ω−models and
via the (proof of the) Low Basis Theorem. To compute a low infinite dimensional proper
subspace of V in this context one applies the proof of the Jockusch-Soare Low Basis Theorem
[23]. The proof of the Low Basis Theorem proceeds in stages, and at every stage we may
keep on increasing the dimension of our current subspace by one, unless at some stage we
force divergence and land ourselves in a finite dimensional subspace. This is analogous to
getting stuck building an infinite RED homogeneous set in the paragraph above. In this
case, however, via a different construction we can actually construct a finite dimensional
subspace (see the proof of Theorem 8.1 above for more details) and use this subspace, along
with the fact that V is a 2−based vector space (see the proof of Theorem 8.1 above for more
details), to help us construct an infinite/cofinite dimensional proper subspace of V . This
is analogous to building an infinite BLUE homogeneous set in the previous paragraph. A
more precise description of the proof of INF2B

0 outlined in paragraph is given in the proof of
Theorem 8.6 in the next subsection below.

This general similarity between INF2B
0 and Ramsey’s Theorem for pairs is interesting in

light of the fact that the reverse mathematical strength of INF2B
0 is still open. Like many

combinatorial theorems related to Ramsey’s Theorem for pairs it may be the case that INF2B
0

is not equivalent to any of the “big five” subsystems of second order arithmetic in the context
of ω-models, which would be interesting. In other words, the reverse mathematical strength
of INF2B

0 could lie strictly between RCA0 and WKL0.

Question 8.4. Determine the reverse mathematical strength of INF2B
0

(i) over RCA0, and
(ii) in the context of ω-models that satisfy RCA0.

8.2. Computable finite dimensional subspaces of infinite dimensional computable
vector spaces. Throughout this subsection we will work exclusively in the context of
ω−models and classical effective algebra (i.e. we abandon the lens of reverse mathematics).
We begin with a definition.

Definition 8.5. Let V be an infinite dimensional computable vector space, and let P(F ) be
a property of the finite dimensional subspaces F of V . For example, P(F ) could say that F is
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computable. We say that P is dense in V if for any given finite set of vectors x0, . . . , xn ∈ V ,
n ∈ N, there exists m ≥ n, m ∈ N, and a finite set of vectors x0, . . . , xm extending x0, . . . , xn

such that P(⟨x0, . . . , xm⟩) holds. Our terminology comes from the topology on Cantor space.

We are now ready to state the main theorem of this subsection. The main theorem is
interesting because it says that in order for a computable infinite dimensional vector space
(over a computable field) to have all of its infinite dimensional proper subspaces be compli-
cated (i.e. nonlow) it must have lots of simple (i.e. computable) finite dimensional subspaces.
Conversely, it also says that in order for a computable infinite dimensional vector space to
have all of its finite dimensional subspaces be complicated (i.e. incomputable) it must have
at least one simple (i.e. low) infinite dimensional proper subspace. This is a stronger version
of a consequence of [14] which says that in any computable infinite dimensional vector space
V there is either a low infinite dimensional proper subspace, or else the class of low finite
dimensional nonzero subspaces is dense in V .

Theorem 8.6. Let V be an infinite dimensional computable vector space (over a computable
field). Then either:

(1) V contains a low infinite dimensional proper subspace W ⊆ V , or else
(2) The class of computable finite dimensional subspaces is dense in V .

We assume that the reader is familiar with the basics of Π0
1-classes (i.e. effectively closed

sets), 2<ω (the set of all finite binary sequences), Cantor space 2ω, and the standard proof of
the Low Basis Theorem relative to the oracle ∅′. These topics live at the core of computability
theory, and extensive information and background on these topics can be found in [3, 4, 11,
12, 23, 30, 34, 35, 40, 41]. Recall that a tree is simply a subset of 2<ω that is closed
downward under initial segments ⊆ and that a Π0

1-class is a subset of Cantor space that can
be represented as the set of infinite binary paths through an infinite binary computable tree
in 2<ω. Also recall that the class of subspaces of a computable vector space V that do not
contain a given set of finitely many vectors is a Π0

1-class. Now, let V = {u0, u1, u2, . . .} be
a computable presentation of an infinite dimensional computable vector space (over some
computable field), and for all n ∈ ω let Pn ⊆ 2<ω be a computable tree in 2<ω such that
the set of infinite paths through Pn code the subspaces of V that do not contain un ∈ V .
In other words, for all n ∈ ω, f ∈ 2ω is the characteristic function of a subspace of V not
containing un if and only if f is an infinite path through Pn. Here we are identifying each
finite binary string σ ∈ 2<ω with the finite set of vectors Fσ = {ui : σ(i) = 1} ⊂ V , where
σ(i) denotes the ith bit of σ, and we think of σ as the characteristic function of Fσ. Note that
this identification is computable. Also, we say that a string σ ∈ 2<ω is extendible on a tree
T ⊆ 2<ω whenever σ ∈ T and there is an infinite path fσ ⊃ σ, fσ ∈ 2ω, on T extending σ.
Since V is infinite dimensional it follows that for any finite set of vectors F ⊂ V whose span
does not contain un ∈ V , n ∈ ω, there exists σ ∈ Pn such that F ⊆ σ and σ is extendible on
Pn. We are now ready to prove the current theorem.

Proof of Theorem 8.6. Let a finite set of vectors F0 = {w0, w1, . . . , wk} ⊂ V , k ∈ ω, be
given, and let n0 ∈ ω be such that un0 ∈ V is not in the span of F0. It follows that there
exists σ0 ∈ Pn0 such that F0 ⊆ σ0 and σ0 is extendible on Pn0 . We will show that either
V contains a computable finite dimensional subspace containing F0 or else V contains an
infinite dimensional proper subspace not containing un0 . First, however, recall that the
standard proof of the Low Basis Theorem for the computable tree Pn0 is carried out relative
to the oracle ∅′ and produces, uniformly in ∅′, a sequence of finite binary strings {σs}s∈ω,
σ0 ⊂ σ1 ⊂ σ2 ⊂ · · · ⊂ σs ⊂ · · · , such that σ0 is as defined above, σn ∈ Pn0 , and σn is a proper
initial segment of σn+1 for all n ∈ ω. The proof also simultaneously produces a sequence of
computable trees {Ts}s∈ω, uniformly in ∅′, T0 = Pn0 ⊇ T1 ⊇ T2 ⊇ · · ·Ts ⊇ · · · , such that
σn ∈ Tn and σn is extendible (via an infinite path fn ⊃ σn) in Tn, for all n ∈ ω.
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Now, assume that for every n ∈ ω and extendible τ 0n ∈ Tn extending σn ∈ Tn, there
exists an extendible string τ 1n ∈ Tn extending τ 0n and such that the span of τ 1n is strictly
larger than the span of τ 0n (i.e. in the proof of the Low Basis Theorem we never land in a
finite dimensional subspace). In other words, τ 1n contains a vector that is not in the span
of τ 0n. In this case one can give a slightly modified version of the proof of the Low Basis
Theorem that constructs a low infinite path fn0 ∈ 2ω through Pn0 such that fn0 is/codes an
infinite dimensional subspace of V not containing un0 . Generally speaking, one does this by
modifying the proof of the Low Basis Theorem so that one always extends the strings σn

(in the paragraph above) to longer strings σn+1 with a strictly larger span. This is possible
using a ∅′ oracle (which we have in the proof of the Low Basis Theorem) and our assumption
in the first sentence of this paragraph.

Suppose now, on the other hand, that there exists n ∈ ω and extendible τ ∈ Tn extending
σn ∈ Tn such that every extendible node ρ ∈ Tn extending τ has the same span as τ ⊇ σ0

(i.e. somewhere during the proof of the Low Basis Theorem we forced divergence and landed
ourselves in the finite dimensional subspace spanned by τ). Recall that τ is an extension of
σn which is an extension of σ0 and so the span of τ contains F0. We claim that the span
of τ is computable. This follows from the fact that Tn has a unique infinite path extending
τ , and the well-known fact that an isolated point in a Π0

1-class is computable. To see why
Tn has a unique path extending τ , note that τ is extendible in Tn by hypothesis, and by
hypothesis we also have that every vector on Tn extending τ is in the span of τ . Now, since
every infinite path of Tn codes a subspace of un0 , it must be the case that the unique path
on Tn extending τ is given by (i.e. codes) the span of τ . □
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[18] A. Fröhlich and J. C. Shepherdson, Effective procedures in field theory, Phil. Trans. Roy. Soc. Lon. A

248 (1956) 407–432.
[19] P. Hájek and P. Pudlák, Metamathematics of first-order arithmetic, Perspectives in Mathematical Logic

(Springer, Berlin, 1999)



22 CHRIS J. CONIDIS

[20] G. Hermann, Die frage der endlichen vielen schritte in der theorie der polynomideale, Math. Ann. 95
(1926), 73638.

[21] D. R. Hirschfeldt and R. A. Shore, Combinatorial principles weaker than Ramsey’s theorem for pairs,
J. Symb. Log. 72 (2007) 171–206.

[22] D. R. Hirschfeldt, R. A. Shore, and T. A. Slaman, The atomic model theorem and type omitting, Trans.
Amer. Math. Soc. 361 (2009) 5805–5837.

[23] C. G. Jocksuch and R. I. Soare, Π0
1-classes and degrees of theories, Trans. Amer. Math. Soc. 173 (1972)

33–56.
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