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Abstract. This article expands upon the recent work by Downey, Lempp, and Mileti [3], who
classified the complexity of the nilradical and Jacobson radical of commutative rings in terms of

the arithmetical hierarchy.

Let R be a computable (not necessarily commutative) ring with identity. Then it follows from
the definitions that the prime radical of R is Π1

1, and the Levitzki radical of R is Π0
2. We show

that these upper bounds for the complexity of the prime and Levitzki radicals are optimal by

constructing two noncommutative computable rings with identity, such that the prime radical
of one is Π1

1-complete, while the Levitzki radical of the other is Π0
2-complete.

1. Introduction

One of the first and most important questions to be studied in computable ring theory is the
ideal membership problem. The analysis of this problem dates back to the work of Kronecker
[8], who showed that every ideal in a computable presentation of Z[X1, X2, . . . , XN ] is decidable.
These results were later expanded by Van der Waerden [14], who showed that there does not exist a
single universal splitting algorithm for factoring polynomials over all computable fields, and others.
Frölich and Shepherdson [7] were first to give formal definitions in terms of recursive functions and
Turing machines. They also showed, among other things, that there exists a single computable
field with no splitting algorithm. By computable ring, we mean the following.

Definition 1.1. A computable ring (with identity) is a computable subset R of natural numbers,
together with computable binary operations + and · on R, and elements 0, 1 ∈ R, such that
(R, 0, 1,+, ·) is a ring (with identity 1 ∈ R). Throughout this article we use R to denote both the
domain of the ring, as well as the ordered 5-tuple (R, 0, 1,+, ·).

More recently, there has been an interest in the complexity of radicals in rings in terms of the
arithmetical hierarchy. In particular, Downey, Lempp, and Mileti [3] have completely classified
the complexity of the nilradical and Jacobson radical in commutative computable rings, showing
that the former is Σ0

1-complete, while the latter is Π0
2-complete (the arithmetical and analytical

hierarchies are formally introduced in the next section).
We now define two radicals, which differ from the nilradical and Jacobson radical in noncom-

mutative rings. The first is called the prime radical, while the second is known as the Levitzki
radical. These radicals can be thought of as generalizations of the Jacobson radical, and some of
the theorems related to the Jacobson radical can be generalized to these radicals as well. The main
purpose of this article is to determine the complexity of the prime radical and Jacobson radical in
a general noncommutative ring R.

Let R be a (possibly noncommutative) ring with identity. By ideal we mean two-sided ideal.

Definition 1.2. An ideal P ⊂ R is prime if whenever AB ⊆ P , for ideals A,B ⊆ R then either
A ⊆ P , or else B ⊆ P . This is equivalent to saying that for any two elements a, b ∈ R, we have
that either a ∈ P or b ∈ P whenever aRb ⊆ P .

Definition 1.3. An ideal P ⊆ R is semiprime if A ⊆ P whenever A is an ideal such that A2 ⊆ P .

It can be shown that an ideal P ⊆ R is semiprime if and only if it is an intersection of prime
ideals.

Definition 1.4. The intersection of all prime ideals in R is called the prime radical of R (it is
also known as the lower nilradical of R, or the Baer-McCoy radical of R). This is the smallest
semiprime ideal of R.

We now define the Levitzki radical of R.
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Definition 1.5. A subset S of R is locally nilpotent if every subring of R (without identity)
generated by a finite number of elements of S is nilpotent.

It can be proved that if A and B are locally nilpotent subsets of R, then so are RAR, RBR,
and A+B. From these facts it can be shown that there exists a largest locally nilpotent subset of
R, and that this subset is an ideal (see Section 4).

Definition 1.6. The Levitzki radical of R is the largest locally nilpotent subset of R.

Most of the typical problems that one encounters in algebra have arithmetical solutions. This
means that their solutions can be expressed in relatively simple terms. For example, if R is a
computable commutative ring, then by definition it follows that the nilradical of R is Σ0

1, and a
well-known result from classical commutative ring theory says that for every r ∈ R, r is in the
Jacobson radical of R if and only if

(1) (∀x ∈ R)(∃a ∈ R)[(1− rx)a = 1].

From this result it follows that the Jacobson radical of R is Π0
2 (the Π comes from the ∀ to the

far left, and the number 2 comes from the number of alternations of quantifiers in the expression).
On the other hand, Downey, Lempp, and Mileti [3] have constructed computable commutative
rings R0 and R1 such that the nilradical of R0 is Σ0

1-complete, and the Jacobson radical of R1

is Π0
2-complete, thus showing that the simplest characterization of the nilradical is the standard

definition, while the simplest characterization of the Jacobson radical is (1) above. Many more
examples of arithmetical ring-theoretic constructions exist, see for example [2, 3, 5, 6].

Above the arithmetical hierarchy lies the analytic hierarchy. Analytical sets are more complex
than arithmetical sets, because to define an analytic set one is allowed to quantify over both
number variables (as in the arithmetical case), as well as function (or set) variables. The reader
should note that every arithmetical set is analytical, but not vice versa. For example, the standard
definition of the Jacobson radical of a commutative ring R is the intersection of all maximal ideals
in R. Since this definition quantifies over all the maximal ideals of R, it follows from the definition
that the Jacobson radical of a computable ring is analytic. However, (1) above gives a different
(arithmetical) characterization of the Jacobson radical, from which it follows that the Jacobson
radical of a computable ring is always in fact arithmetical. In the next section we define a well-
known set called WF (the set of computable indices for well-founded trees) that is analytic but
not arithmetic.

When a set X ⊆ ω is shown to be analytical but not arithmetical, it implies that function or
set quantifiers are necessary to define X via a computable predicate. For example, in Section 3,
we construct a computable ring R whose prime radical is Π1

1-complete. It follows that the prime
radical of R is analytical but not arithmetical. One consequence of this construction is that any
effective definition of the prime radical must involve quantifying over sets of natural numbers. In
other words, one must say something like “the prime radical of a ring R is the intersection of all
the prime ideals in R” (here we are quantifying over all prime ideals of R). The superscript 1 in
Π1

1 says that we are allowed to quantify over sets, while the subscript 1 says that only one set
quantifier is necessary in the definition of the prime radical.

By definition, it follows that if R is a computable ring, then the prime radical of R is a Π1
1

set, and the Levitzki radical of R is a Π0
2 set. The main purpose of this article is to show that

these upper bounds on the complexity of the prime radical and Levitzki radical are sharp, by
constructing computable rings R0 and R1 such that the prime radical of R0 is Π1

1-complete, and
the Levitzki radical of R1 is Π0

2-complete. More formally, the main goal of this article is to prove
Theorems 1.7 and 1.8 below. The proof of Theorem 1.7 is given in Section 3, while the proof
of Theorem 1.8 is given in Section 4. The formal definition of completeness is given in the next
section, but, intuitively, to say that a set X is Γ-complete means that

(1) X belongs to the complexity class Γ.
(2) The complexity of X is maximal among Γ-sets, in the sense that every Γ-set can be

(computably) reduced to X.

Our main goal in this article is to prove the following theorems.

Theorem 1.7. There exists a noncommutative computable ring R such that the prime radical of
R is Π1

1-complete.

Theorem 1.8. There exists a noncommutative computable ring R such that the Levitzki radical
of R is Π0

2-complete.
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2. Preliminaries

2.1. Background. Let ω denote the set of natural numbers, i.e. ω = {0, 1, 2, 3, . . .}. By ring we
mean a (possibly noncommutative) ring with identity. We assume that the reader is familiar with
the basic definitions of ring theory, as well as those of (oracle) Turing machines and (relative)
computation. Standard texts in commutative ring theory include [1, 4, 10, 11]. A standard text
on noncommutative rings is [9]. Two standard references in computability theory are [12, 13].

Fix a computable bijection p2 : ω × ω → ω, and numbers x, y ∈ ω. We will denote p2(x, y) by
〈x, y〉. Furthermore, for every n ∈ ω, n ≥ 3, define a function pn : ωn → ω by

pn(x0, x1, x2, . . . , xn−1) = 〈x0, pn−1(x1, x2, . . . , xn−1)〉.
It follows (by induction) that pn is a computable bijection, and that

pn(x0, x1, x2, . . . , xn−1) = 〈x0, 〈x1, 〈x2, 〈· · · 〈xn−2, xn−1〉〉 · · · 〉.
For every n, x0, x1, . . . , xn−1 ∈ ω, we let

〈x0, x1, x2, . . . , xn−1〉 = pn(x0, x1, x2, . . . , xn−1).

We now review the construction of the arithmetical hierarchy. Fix natural numbers m,n ≥ 1.
(1) We say that a set X ⊆ ωm is Σ0

n, and write X ∈ Σ0
n, if there exists a computable set

A ⊆ ωn+m such that for every x1, x2, . . . , xm ∈ ω we have that

(x1, x2, . . . , xm) ∈ X ⇔ ∃a1∀a2∃ · · ·Qan[(x1, x2, . . . , xm, a1, a2, . . . , an) ∈ A],

where Q is ∃ if n is odd, and ∀ if n is even.
(2) A set X ⊆ ωm is Π0

n, and write X ∈ Π0
n, if there exists a computable set A ⊆ ωn+m such

that for every x1, x2, . . . , xm ∈ ω we have that

(x1, x2, . . . , xm) ∈ X ⇔ ∀a1∃a2∀ · · ·Qan[(x1, x2, . . . , xm, a1, a2, . . . , an) ∈ A],

where Q is ∃ if n is even, and ∀ if n is odd.

Definition 2.1. A Σ0
n (resp. Π0

n) set X ⊆ ω is called Σ0
n (Π0

n)-complete if for every set Y ∈ Σ0
n

(Π0
n) there is a computable function hY : ω → ω such that for every n ∈ ω, n ∈ Y if and only if

hY (n) ∈ X.

For our purposes, we are most interested in Π0
2 sets, since the proof of Theorem 1.8 involves

reducing every Π0
2 set to the Levitzki radical of a noncommutative computable ring. With this

in mind, we state the following standard computability-theoretic result. Recall that if {ϕe}e∈ω is
an effective listing of the partial computable functions, then, for every e ∈ ω, the eth computably
enumerable (c.e.) set is defined to be

We = {x ∈ ω : ϕe(x)↓}.

Proposition 2.2. The set
Inf = {e ∈ ω : |We| =∞}

is Π0
2-complete.

Therefore, to show that a given set X is Π0
2-complete, it suffices to find a computable function

h such that for all n ∈ ω, n ∈ Inf if and only if h(n) ∈ X.
We now define what it means for a set X ⊂ ω to be Π1

1. Recall that ωω denotes the set of
functions f : ω → ω.

Definition 2.3. We say that a set X ⊂ ωm is Π1
1, and write X ∈ Π1

1, if there exists a number
n ∈ ω, and a computable set A ⊆ ωω × ωm+n, such that for all x1, x2, . . . , xm ∈ ω we have that

(x1, x2, . . . , xm) ∈ X ⇔ ∀f∃a1∀a2 · · ·Qan[(f, a1, a2, . . . , an, x1, x2, . . . , xm) ∈ A],

where Q is ∀ if n is even, and ∃ if n is odd.

A well-known result says that, without loss of generality, we can always assume that n = 1 in
Definition 2.3.

Definition 2.4. A Π1
1 set X ⊆ ω is called Π1

1-complete if for every set Y ∈ Π1
1, there is a

computable function hY : ω → ω such that for every n ∈ ω, n ∈ Y if and only if hY (n) ∈ X.

We now construct an example of a Π1
1-complete set called WF (the set of computable indices

for well founded trees).
Let ω<ω denote the set of finite strings of natural numbers. For any σ, τ ∈ ω<ω write σ ⊆ τ to

mean that σ is an initial segment of τ . A nonempty subset T of ω<ω is closed downwards if for
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every σ ∈ T and every τ ∈ ω<ω such that τ ⊆ σ, we have that τ ∈ T . We call subsets of ω<ω that
are closed downwards trees.

Let T ⊆ ω<ω be a tree, and σ ∈ T . We say that σ is an extendible node if there exists an infinite
path through T extending σ – i.e. if there exists f ∈ ωω such that for every n ∈ ω, f � n ∈ T .
Here f�n = 〈f(0), f(1), . . . , f(n − 1)〉 ∈ ω<ω denotes the first n bits of f . We also say that T is
well-founded if no σ ∈ T is an extendible node. By definition it follows that if T is a computable
tree, then the property of T being well-founded is Π1

1. It turns out that this property is also
Π1

1-complete.

Proposition 2.5. Let {Te}e∈ω be an effective listing of all computable trees. Then the set

WF = {e ∈ ω : Te is a well−founded tree}
is Π1

1-complete.

Hence, to show that a given set X is Π1
1-complete, it suffices to find a computable function h

such that for all n ∈ ω, n ∈WF if and only if h(n) ∈ X.
Now that we have given the reader the necessary preliminaries, we are ready to prove Theorems

1.7 and 1.8. Throughout this article, R will always denote a (possibly) noncommutative ring with
identity. In Section 3 we prove Theorem 1.7, and in Section 4 we prove Theorem 1.8. As an aside,
it may interest the reader to know that in a general noncommutative ring R, if B denotes the prime
radical of R, L denotes the Levitzki radical of R, N denotes the nilradical of R, and J denotes the
Jacobson radical of R, then we have that

B ⊆ L ⊆ N ⊆ J,
and the inclusions are strict in general.

3. Prime Radical

Recall that the prime radical of a (possibly) noncommutative ring R is defined to be the inter-
section of all the prime ideals of R. From this it follows that the prime radical of a computable
(possibly) noncommutative ring R is a Π1

1 set. Hence, the most that one could hope for is to
construct a computable (noncommutative) ring R whose prime radical is Π1

1-complete. With this
observation in mind, we prove the following theorem.

Theorem 1.7. There exists a noncommutative computable ring R such that the prime radical of
R is Π1

1-complete.

First, however, we require some definitions. Let R be a ring.

Definition 3.1. For any elements a, b ∈ R, we say that a divides b if b is contained in the
(two-sided) ideal generated by a, i.e. b ∈ 〈a〉.

Definition 3.2. A nonempty set S ⊆ R is called an m-system if, for any a, b ∈ S, there exists
r ∈ R such that arb ∈ S.

Definition 3.3. Let R be a ring with identity. For any two-sided ideal I ⊆ R, define
√
I = {s ∈ R : every m−system containing s meets I}.

Theorem 3.4. The prime radical of R is equal to
√
〈0〉.

Let Q[
−→
X ] = Q[X0, X1, X2, . . .] be the noncommutative polynomial ring in countably many

indeterminates over the field of rational numbers Q. Throughout the remainder of this section
we will only consider rings R of the form R = Q[

−→
X ]/I, for some two-sided ideal I ⊆ Q[

−→
X ]. In

this case we use the notation X ∈ R to denote the image of X ∈ Q[
−→
X ] under the canonical map

ϕ : Q[
−→
X ]→ R. By monomial, we mean nonconstant monomial. An element r ∈ R is said to be a

monomial if it is equivalent to the image of a monomial under ϕ.

Definition 3.5. A nonempty set S ⊆ R is a monomial m-system if, for any a, b ∈ S, there is a
monomial r ∈ R such that arb ∈ S.

We now prove a simple proposition that allows us to construct monomial m-systems in R.

Proposition 3.6. Let x0 = Xn ∈ R, for some n ∈ ω, and for every i > 0, let xi = xi−1mi−1xi−1

for some monomial mi−1 ∈ R. Then, if i, j ∈ ω are given, with i ≤ j, there exist mono-
mials m0,m1 ∈ R such that xj+1 = xim0xj and xj+1 = xjm1xi. It follows that the set
X = {x0, x1, x2, . . .} ⊂ R is a monomial m-system.
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Proof. We prove the existence of m0. The proof of the existence of m1 is similar.
The proof is by induction on j = max{i, j}. If j = 0, then since i ≤ j, we have that i = j = 0

and by definition of x1 = x0m0x0, the proposition holds. A similar argument shows that the
proposition holds if i = j, so assume that i < j. Before we prove the induction step, we make the
obvious observation that, by construction, for every n ∈ ω, xn ∈ Q[

−→
X ] is a monomial.

If j > 0, assume that the proposition holds for j − 1; we shall show that the proposition also
holds for j. By the induction hypothesis and the fact that i < j, there is a monomial m′ such that
xj = xim

′xj−1. Now, we have that xj+1 = xjmjxj , and so xj+1 = xi(m′xj−1mj)xj . Hence, the
desired monomial m0 is equal to m′xj−1mj . This proves the induction step, and thus completes
the proof of the proposition. �

Having given the necessary background, we are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Let Q[
−−−→
Xω<ω ] be the polynomial ring over the field of rational numbers Q,

with indeterminates Xσ, for every σ ∈ ω<ω. Let T ⊂ ω<ω be a computable tree containing every
node of length 1, and such that the set of extendible nodes in T of length 1 is Π1

1-complete. Such
a tree T ⊂ ω<ω may be constructed as follows. First, put all nodes of length 1 in T . Then, if
{Te}e∈ω is an effective listing of the computable trees in ω<ω, for every e ∈ ω put the tree Te above
the node 〈e〉 (of length 1) into T . By the construction of T , it follows that T is a computable tree
in ω<ω.

We shall construct a computable ring R of the form R = Q[
−−−→
Xω<ω ]/I, for some (computable)

ideal I ⊂ Q[
−−−→
Xω<ω ] such that I is generated by a computable set of monomials. Furthermore, the

prime radical of R shall be Π1
1-complete.

Let a computable function F : ω<ω → Q[
−−−→
Xω<ω ] be defined as follows. F (∅) = 1, and if σ ∈ ω<ω

is such that |σ| > 0, then define F (σ) = F (σ−)XσF (σ−), where σ− is the unique initial segment
of σ such that |σ−| = |σ|− 1. Note that (by induction we have that) for every node ρ ∈ ω<ω, F (ρ)
is a monomial of degree 2|ρ| − 1, unless ρ = ∅ in which case F (ρ) = 1. Using the function F , we
now construct the computable ideal I such that R = Q[

−−−→
Xω<ω ]/I.

Let I ⊆ Q[
−−−→
Xω<ω ] be the ideal generated by the monomials m ∈ Q[

−−−→
Xω<ω ] such that m does not

divide any monomial of the form F (σ), σ ∈ T . Note that if a monomial m ∈ Q[
−−−→
Xω<ω ] contains

an occurrence of some indeterminate Xσ, where σ /∈ T , then it follows that m cannot divide any
element of the form F (τ), τ ∈ T , and thus by definition of I we have that m ∈ I. We also have
the following proposition.

Proposition 3.7. Let m ∈ Q[
−−−→
Xω<ω ] be a monomial, and let σ ∈ ω<ω be maximal such that Xσ

appears in m. Then m /∈ I if and only if m divides F (σ).

Proof. If m divides F (σ), then by definition of I it follows that m /∈ I.
Now, suppose that m /∈ I. Then there is some τ ∈ ω<ω such that m divides F (τ). Note that we

must have σ ⊆ τ since otherwise, by the construction of F , we know that Xσ does not appear in
F (τ), and so m cannot divide F (τ). It suffices to show that if τ ) σ, then m divides F (τ−), where
τ− is the unique initial segment of τ of length |τ | − 1. Suppose that τ ) σ. By definition of F , we
have that F (τ) = F (τ−)XτF (τ−). Now, by definition of σ and the fact that τ ) σ, we know that
the indeterminate Xτ does not appear in m. Therefore, since m divides F (τ) = F (τ−)XτF (τ−),
it follows that m must also divide F (τ−). �

Corollary 3.8. The ideal I ⊂ R is computable.

Proof. Since the ideal I is generated by monomials, it follows that a polynomial p ∈ Q[
−−−→
Xω<ω ] is in

the ideal I if and only if every monomial summand m of p is in I. Proposition 3.7 gives a method
for deciding whether or not a given monomial is in I, and so it also gives a method for deciding
whether or not p ∈ I. �

The following corollary is a consequence of the proof of Proposition 3.7.

Corollary 3.9. If m ∈ Q[
−−−→
Xω<ω ] is a monomial such that m /∈ I, and if σ ∈ ω<ω is maximal such

that Xσ appears in m, then Xσ is unique. In other words, if σ, τ ∈ ω<ω and Xσ and Xτ appear
in m, then σ and τ are comparable.

Now that we have constructed the computable ring R = Q[
−−−→
Xω<ω ]/I, it remains to show that√

〈0〉 ⊆ R is Π1
1-complete. With this in mind, we prove the following proposition.

Proposition 3.10. For every σ ∈ ω<ω, Xσ /∈
√
〈0〉 ⊆ R if and only if there is an infinite path

through T extending σ ∈ T .
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Proof. First, we claim that if σ ∈ ω<ω is an extendible node of T , then there is a monomial m-
system containing Xσ but not containing 0. The proof is as follows. Let f ∈ ωω be an infinite path
through T extending σ. Then, by Proposition 3.6, and the constructions of F and I, it follows
that the image of F restricted to f (in the quotient R) is a monomial m-system containing Xσ but
not containing 0.

Now, let σ ∈ T ⊂ ω<ω, and suppose that there is an m-system S in R containing Xσ, but not
containing 0. In this case we claim that there is an infinite path in T extending σ. To construct
such a path, first set y0 = Xσ ∈ Q[

−−−→
Xω<ω ], and for every number n > 0, let yn ∈ Q[

−−−→
Xω<ω ], yn /∈ I,

be of the form yn = yn−1rn−1yn−1, for some rn−1 ∈ Q[
−−−→
Xω<ω ].

To prove that there is an infinite path in T extending σ ∈ T , we first prove the following lemma
which says that there is an infinite, finitely branching tree T0 ⊆ T above σ. Then we apply König’s
Lemma to the tree T0 ⊆ ω<ω to get an infinite path in T0 ⊆ T extending σ.

Lemma 3.11. There is an infinite, finitely branching tree T0 ⊆ T such that for every τ ⊆ σ,
τ ∈ T0, and for all τ ∈ T0, if τ * σ, then τ ⊃ σ.

Proof. We begin by giving several definitions and constructions which shall aid us in the proof of
Lemma 3.11. Let m ∈ Q[

−−−→
Xω<ω ] be a monomial and p ∈ Q[

−−−→
Xω<ω ] be a polynomial.

Definition 3.12. We say that m is an essential monomial summand of p if m is a summand of p
such that m /∈ I (i.e. m 6= 0 ∈ R).

For every n ∈ ω, define

Yn = {τ ∈ ω<ω : Xτ appears in an essential monomial summand of yn}.

Now, define T0 ⊆ ω<ω to be the downward closure of the set

{ρ ∈ ω<ω : (∃n ∈ ω)[ρ ∈ Yn]},

and for every s ∈ ω, let T s0 be the downward closure of the set

{ρ ∈ ω<ω : (∃n ≤ s)[ρ ∈ Yn]}.

By definition, it follows that T0 = ∪s∈ωT s0 and T0 is a tree. Also, since for every n ∈ ω, the set
of σ ∈ ω<ω such that Xσ appears in yn ∈ Q[

−−−→
Xω<ω ] is finite, it follows that for every s ∈ ω, T s0 is a

finite (and hence finitely branching) tree. Moreover, recall that if τ /∈ T then (by definition of I) it
follows that Xτ ∈ I. Therefore, if τ ∈ ω<ω is such that τ /∈ T and Xτ appears in some monomial
summand m of yn for some n ∈ ω, then m is not an essential monomial summand of yn. Hence,
by definition of Yn, n ∈ ω, and T0, it follows that T0 is a subtree of T . It remains to be shown
that every initial segment of σ is in T0, every node τ ∈ T0 is comparable to σ, and that T0 is an
infinite, finitely branching tree.

By assumption, we know that σ ∈ T . It follows that y0 = Xσ /∈ I, and thus Xσ is an essential
summand of y0. Therefore, by the construction of T0, it follows that every initial segment of σ
belongs to T0. Furthermore, by induction on n ∈ ω, it follows that for every n ∈ ω and every
monomial summand m of yn, Xσ appears in m. Now, by Corollary 3.9 and the definition of T0, it
follows that if τ ∈ T0 then τ is comparable to σ.

We now show that T0 is infinite by showing that T0 contains nodes of arbitrarily large length.
First note that (by induction on n ∈ ω it follows that) for all n ∈ ω, every monomial summand
of yn has degree at least 2n. Furthermore, by definition of I, it follows that if m ∈ Q[

−−−→
Xω<ω ] is a

monomial of degree 2n, then m cannot divide F (ρ) for any ρ ∈ T of length less than n (since in this
case F (ρ) has degree 2|ρ|− 1 < 2|ρ|). Hence, by definition of I, if m is an essential summand of yn,
then m must divide some F (ρ), where |ρ| ≥ n. Now, by Proposition 3.7, it follows that if m is an
essential summand of yn, then m contains an occurrence of some indeterminate Xρ, ρ ∈ T, |ρ| ≥ n.
We have now shown that every essential monomial summand m of yn contains an occurrence of
some indeterminate Xρ, where ρ ∈ T and |ρ| ≥ n. By assumption, we have that yn /∈ I, for every
n ∈ ω. Hence, for every n ∈ ω there exists an essential monomial summand m of yn. Therefore,
by definition of T0, it follows that T0 contains nodes of arbitrarily large length. Next, we complete
the proof of Lemma 3.11 by showing that T0 is a finitely branching tree.

To show that T0 is finitely branching, fix a node τ ∈ T0, and let n ∈ ω be large enough so that
every essential monomial summand m of yn contains an occurrence of an indeterminate of the form
Xρ, for some node ρ ∈ ω<ω such that |ρ| > |τ | (the previous paragraph explains why such an n
exists). We claim that the sets

S0 = {ρ ∈ T0 : |ρ| = |τ |+ 1 and ρ ⊃ τ}
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and
S1 = {ρ ∈ Tn0 : |ρ| = |τ |+ 1 and ρ ⊃ τ}

are equal. Since T0 = ∪s∈ωT s0 , it follows that S0 ⊇ S1. We need to show that S0 ⊆ S1. Suppose,
for a contradiction, that there exists a node ρ ∈ S0 \ S1. Then, by definition of S0, S1, T0, T

n
0 , it

follows that there exists a number m > n and a node ρ0 ⊇ ρ such that Xρ0 appears in an essential
monomial summand of ym. However, by definition of n, and the fact that m > n, it follows that
every monomial summand of ym contains an occurrence of some indeterminate Xλ, where |λ| > |τ |
and λ� (|τ | + 1) ∈ S1. Since ρ /∈ S1, it follows that λ and ρ0 are incomparable nodes for all such
λ. Now, by Corollary 3.9 it follows that no monomial summand of ym in which Xρ0 appears is
an essential monomial summand of ym, a contradiction. Thus, we have shown that S0 = S1, and
therefore T0 is finitely branching. �

Applying König’s Lemma to the infinite, finitely branching tree T0 ⊆ T ⊂ ω<ω yields an infinite
path f ∈ ωω through T extending σ ∈ T . This completes the proof of Proposition 3.10. �

We now construct a computable function h : ω → R by setting, for every number n ∈ ω
corresponding to the node 〈n〉 ∈ ω<ω, h(n) = X〈n〉 ∈ R. Proposition 3.10 says that n ∈ WF if
and only if h(n) ∈

√
〈0〉 ⊂ R. Therefore,

√
〈0〉 ⊂ R is Π1

1-complete. This completes the proof of
Theorem 1.7. �

4. Levitzki radical

In this section we prove the following theorem.

Theorem 1.8. There exists a noncommutative computable ring R such that the Levitzki radical
of R is Π0

2-complete.

First, however, we require two definitions and a proposition. Let R be a ring.

Definition 4.1. A set S ⊂ R is locally nilpotent if, for any finite subset S0 = {s0, s1, . . . , sn} ⊆ S,
there is a number N = N(S0) ∈ ω such that any product of N elements from {s0, s1, . . . , sn} is
zero. This is equivalent to Definition 1.5.

The following proposition is standard. We omit its proof.

Proposition 4.2. Let I, J be locally nilpotent one-sided ideals in R. Then RIR, and I + J are
locally nilpotent.

We now define the Levitzki radical of a ring R.

Definition 4.3. The Levitzki radical of R, L ⊂ R, is the largest locally nilpotent ideal in R. By
Proposition 4.2, we have that

L = {x ∈ R : xR is locally nilpotent},
and that L ⊂ R is an ideal.

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. We have already remarked that, for all x ∈ R, x ∈ L if and only if xR is
locally nilpotent. In other words, x ∈ L if and only if

(∀〈x0, x1, . . . , xn〉 ∈ xR)(∃N)(∀σ ∈ nN )[
∏
i<|σ|

xσ(i) = 0].

Hence, it follows that if R is a computable ring, then L ∈ Π0
2 (the last quantifier in the expression

above is bounded1). We now show that this (upper) bound on the complexity of the Levitzki
radical is sharp by constructing a computable ring R whose Levitzki radical is Π0

2-complete. The
rest of this section is dedicated to the construction of R.
R shall be a quotient of the form Q[

−→
X ]/I, where Q[

−→
X ] = Q[X0, X1, X2, . . .] is the noncommu-

tative polynomial ring in countably many variables over the rational numbers Q, and I ⊂ Q[
−→
X ] is

a (two-sided) ideal. We construct I = ∪s∈ωIs in stages such that for all s ∈ ω, Is ⊆ Is+1.
At stage 0 define I0 to be the computable ideal in Q[

−→
X ] generated by the monomials m ∈ Q[

−→
X ]

such that there are numbers e0, e1, i, j ∈ ω with e0 6= e1, and indeterminates X〈e0,i〉, X〈e1,j〉 both
occurring in m.

1Note that if p(y, x) is a computable formula with free variables y, x ∈ ω, then for every n ∈ ω the formula
q(x) = (∀y < n)p(y, x) is also computable. It follows that the bounded quantifier above does not contribute to the

arithmetical complexity of the formula which defines the Levitzki radical.
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At stage s + 1, we are given the computable ideal Is, and add to it all monomials m of
degree greater than s + 1, such that the only indeterminates appearing in m are in the set
{X〈e,0〉, X〈e,1〉, . . . , X〈e,s〉}, where e ∈ ω is such that We,s+1 6= We,s (without loss of generality
we assume that at every stage s there exists a unique e ∈ ω such that We,s+1 6= We,s).

We now verify that I = ∪s∈ωIs is computable. To see why this is the case, first note that
I is generated by monomials. Thus, it suffices to show that the set of monomials that generate
I, M ⊂ I, is a computable set. To see why this is the case, note that, by the construction of
I = ∪s∈ωIs, we have that for any monomial m ∈ Q[

−→
X ] of degree d, m ∈ I if and only if m ∈ Id.

For every X ∈ Q[
−→
X ], let X denote the image of X under the canonical quotient map ϕ : Q[

−→
X ]→ R.

Recall that the set Inf={e ∈ ω : We is infinite} is Π0
2-complete. Therefore, to show that L ⊂ R

is Π0
2-complete, it suffices to exhibit a computable function h : ω → Q[

−→
X ] such that for every

e ∈ ω, e ∈ Inf if and only if h(e) ∈ L. We claim that the computable map h : ω → R such that
h(e) = X〈e,0〉 satisfies this condition.

To verify that the function h above has the desired property, we shall prove that for every e ∈ ω,
X〈e,0〉 ∈ L if and only if We is infinite. It suffices to prove the following proposition.

Proposition 4.4. For every e ∈ ω, the right ideal X〈e,0〉 ·R, is locally nilpotent if and only if We

is infinite.

Proof. First, suppose that We is finite. Then there is a stage se ∈ ω such that for all s ≥ se we
have We,s+1 = We. Fix a number n ∈ ω. By the construction of R = Q[

−→
X ]/I, we have that

X = (X〈e,0〉 ·X〈e,se+1〉)n /∈ Ise
, since, by the construction of Ise

, we have that X〈e,0〉 /∈ Ise
, and no

(monomial) generator of Ise contains an appearance of the indeterminate X〈e,se+1〉 (and X〈e,se+1〉
appears in X). Furthermore, since at all stages t ≥ se we do not enumerate any new elements
into We, then by the construction of I = ∪s∈NIs, it follows that we do not enumerate X into I at
any stage t ≥ se. Therefore, X /∈ I, and so X 6= 0 ∈ R. It follows that X〈e,0〉 · R is not locally
nilpotent, and hence X〈e,0〉 /∈ L.

Now suppose that We is infinite. Let m0,m1, . . . ,mn ∈ R be nonzero, and let M ∈ ω be large
so that, for all 0 ≤ i ≤ n and X〈e,j〉 occurring in mi, we have that M > max{e, j}. We shall show
that there exists a number N ∈ ω such that

(2)
N∏
k=0

(X〈e,0〉) ·mik = 0,

where ik ∈ {0, 1, . . . , n} for all 0 ≤ k ≤ N . Without loss of generality, we can assume that for all
0 ≤ i ≤ n, we have that mi ∈ Q[

−→
X ] is a monomial. Therefore, it follows that the product in (2)

above is a monomial of degree greater than or equal to N . Now, by the construction of R, if we
let N = s, where s ∈ ω is the least stage greater than M such that We,s+1 6= We,s (note that s
exists, since We is infinite), then we have that (2) holds, as required. Hence, X〈e,0〉 · R is locally
nilpotent. �

This completes the proof of Theorem 1.8. �
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