
A REAL OF STRICTLY POSITIVE EFFECTIVE PACKING DIMENSION
THAT DOES NOT COMPUTE A REAL OF
EFFECTIVE PACKING DIMENSION ONE

CHRIS J. CONIDIS

Abstract. Recently, the Dimension Problem for effective Hausdorff dimension was solved
by J. Miller in [Mil], where the author constructs a Turing degree of non-integral Hausdorff
dimension. In this article we settle the Dimension Problem for effective packing dimension
by constructing a real of strictly positive effective packing dimension that does not compute
a real of effective packing dimension one (on the other hand, it is known via [FHP+06,
BDS09, DH] that every real of strictly positive effective Hausdorff dimension computes reals
whose effective packing dimensions are arbitrarily close to, but not necessarily equal to,
one).

1. Introduction and background

1.1. Our main theorem. The general subject of this article is that of fractal dimension,
a measure-theoretic notion that has its roots in the work of Borel, Lebesgue, Carathéodory,
and Hausdorff. In 1919 Hausdorff [Hau19] introduced the notion of Hausdorff dimension,
which gives a way of assigning a (nonnegative real-valued) dimension to arbitrary subsets
of a given metric space. Quite recently mathematicians also developed the notion of pack-
ing dimension [Sul84, Tri82], which is dual to Hausdorff dimension in the following sense.
Whereas Hausdorff dimension is computed by considering open covers (from the exterior)
of a fixed set, packing dimension is computed by considering packings (from the interior)
of a fixed set. For more information on the classical theory of fractal dimension, including
the precise definitions of open covers and packings, consult [Fal]. More recently, the notions
of Hausdorff and packing dimension were effectivized by Lutz and others [AHLM07, Lut03],
who created computability-theoretic analogs of Hausdorff dimension and packing dimension,
called effective Hausdorff dimension and effective packing dimension (defined below), re-
spectively. Futhermore, Lutz and others [AHLM07, Lut03, May02] were able to relate these
new notions to standard computability-theoretic concepts such as Kolmogorov complexity
(see Definition 2.7 and Definition 2.8 below). Generally speaking, the relationship between
effective fractal dimension and Kolmogorov complexity can be used to characterize “partial
randomness.”

One of the most interesting and significant computability-theoretic results of the last sev-
eral years is the solution of the Dimension Problem given by J. Miller in [Mil]. Generally
speaking, Miller’s result says that one cannot always extract randomness from partial ran-
domness. In particular, Miller constructs a real f ∈ 2ω such that the effective Hausdorff
dimension of f is strictly greater than zero, and such that there exists α ∈ Q, 0 < α < 1,
such that for every g ∈ 2ω that is computable relative to f , the effective Hausdorff dimen-
sion of g is at most α. For more information on Cantor space 2ω and reals f ∈ 2ω, see
the next section. The definition of effective Hausdorff dimension is given in Definition 2.8
below. Our main theorem (i.e. Theorem 6.1 stated below) is the analog of Miller’s solution
to the Dimension Problem in the context of effective packing dimension, once the results of
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[FHP+06, BDS09, DH] (stated in the following paragraph) have been taken into considera-
tion.

Effective packing dimension (see Definition 2.7 below) is dual to effective Haudorff di-
mension, and it was first shown by Fortnow, Hitchcock, Pavan, Vinochandran, and Wang
in [FHP+06] that every real of strictly positive effective packing dimension computes reals
whose effective packing dimensions are less than, but arbitrarily close to, one. Later on,
different proofs of this fact were discovered by Bienvenu, Doty, and Stephan [BDS09]1 and
Bienvenu [DH, Section 12.11]. The original proof of this fact (given in [FHP+06]) uses the
multisource randomness extractors of Barak, Impagliazzo, and Wigderson [BIW06], which
were constructed via a recent result in additive number theory of Bourgain, Katz, and Tao
[BKT04] (i.e. an Erdös-Semerédi Theorem for finite fields) which, generally speaking, says
that a subset of integers in a finite prime field cannot simultaneously be close to an arithmetic
progression and geometric progression.

The main goal of this article is to examine the problem of computing reals of effective
packing dimension one from reals of strictly positive effective packing dimension. Intuitively
speaking, a real f ∈ 2ω has effective packing dimension at least α ∈ R, 0 ≤ α ≤ 1, if and
only if f has infinitely many initial segments whose information density is close to α. One
can think of such initial segments as “information packets” of “information density” α ∈ R,
0 ≤ α ≤ 1. The main theorem of this article is similar to Miller’s solution to the Dimension
Problem, and says that in general Turing reductions cannot always be used to obtain a real
of effective packing dimension one from a real of strictly positive effective packing dimension.
In other words, a real that possesses infinitely many information packets of strictly positive
information density cannot always Turing compute a real with infinitely many information
packets of density close to one (though [FHP+06], [BDS09], and [DH, Section 12.11] say that
Turing redutions can come arbitrarily close to achieving this goal). More precisely, our main
theorem is as follows.

Theorem 6.1. There exists X ∈ 2ω of effective packing dimension at least 1
4
> 0 and such

that for every e ∈ ω the effective packing dimension of ΦX
e is strictly less than one whenever

ΦX
e ∈ 2ω is a total Turing reduction relative to X.

This entire article is devoted to proving Theorem 6.1.

1.2. Turing degrees that possess a real of effective packing dimension one. A major
open question in the theory of effective fractal dimension is to classify the Turing degrees
that possess a real of effective packing dimension one. In [DG08], Downey and Greenberg
show that the class of computably enumerable Turing degrees (i.e. the Turing degrees that
contain a computably enumerable set) that contain a real of effective packing dimension
one coincides with the class of computably enumerable Turing degrees that contain a real
of strictly positive effective packing dimension. The authors also showed that this class
of Turing degrees is equal to the class of computably enumerable Turing degrees that are
array noncomputable, as well as the class of computably enumerable Turing degrees that are
c.e. traceable (for more information on array noncomputability and c.e. traceability, consult
[DG08, Nie, DH]).

More recently, however, Downey and Ng [DN] examined the class of Turing degrees that
contain a member of effective packing dimension one in general (i.e. not necessarily com-
putably enumerable Turing degrees) and showed that this class does not coincide with the
class of c.e. traceable Turing degrees, nor does it coincide with the class of array noncom-
putable Turing degrees. However, the question of whether or not the class of Turing degrees
that contain a member of effective packing dimension one coincides with the class of Turing
degrees that contain a member of strictly positive effective packing dimension remained open.

1An error was discovered in the construction of the effective packing dimension extractors given in the
article [BDS09] that has since been corrected by the authors and posted on the arXiv.
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On the other hand, as we mentioned in the previous paragraph, it is known (via [DG08]) that
these classes coincide when restricted to the computably enumerable Turing degrees. Our
main theorem says that in general the class of Turing degrees of effective packing dimension
one is not equal to the class of Turing degrees that contain a member of strictly positive
effective packing dimension.

2. Preliminaries and notation

2.1. Basic computability theory. We now review our notation, and introduce some of
the basic concepts from computability theory and effective randomness that play a central
role in this article. Most of our basic notation is taken from [Soa, Nie]. We will assume that
the reader is familiar with the basic concepts and notation from computability theory such
as: convergent and divergent computations (denoted by ↓ and ↑ , respectively), computable
function/set, computably enumerable (c.e.) set, oracle Turing machine, and the use of an
oracle Turing computation on a given input x ∈ {0, 1, 2, . . .}. For more information on the
basics of computability theory, consult [Soa, Nie, DH]. We define the use of a divergent
computation to be ∞, where ∞ is a number that satisfies n < ∞ for all n = 0, 1, 2, . . . ,∞.

First, we set ω = {0, 1, 2, . . .}; thus ω denotes the set of natural numbers. Let {Φ̂e}e∈ω be
an effective listing of all the oracle Turing machines. For any given e ∈ ω and A,B ⊆ ω, we

write Φ̂B
e = A to mean that A is computable via the oracle Turing machine Φ̂e relative to

the oracle B; i.e. for every x ∈ ω we have that Φ̂B
e (x) ↓= A(x) (recall that we are actually

computing the characteristic function of A ⊆ ω from the characteristic function of B ⊆ ω).

We say that A is Turing reducible to B if there exists e ∈ ω such that Φ̂B
e = A.

Remark 2.1. We leave it to the reader to verify that there is an effective listing of oracle
Turing machines {Φe}e∈ω such that for all A,B ⊆ ω and e ∈ ω the following conditions are
satisfied:

(1) (∀x ∈ ω)[ΦB
e (x)↓⇒ ΦB

e (x) ∈ {0, 1}].2
(2) For all x ∈ ω, if ΦB

e (x)↓ and ΦB
e (x+ 1)↓ , then the use of the latter computation is

strictly larger than the use of the former computation.

Throughout the rest of this article we will work exclusively with the Turing reductions
{Φe}e∈ω of Remark 2.1 above.

Note that since we have defined the use of a divergent computation to be ∞ (above), then
condition (2) of Remark 2.1 implies that for all B ⊆ ω, e, x ∈ ω, if we have that ΦB

e (x) ↑ ,
then for all y > x, y ∈ ω, we also have that ΦB

e (y) ↑ . It follows from condition (2) above
that the use of the computation of ΦB

e (x), for any B ∈ 2ω and e, x ∈ ω, is always greater
than or equal to x.
Finally, recall that there is a computable one-to-one pairing function

⟨·, ·⟩ : ω × ω → ω

such that the associated projection functions are also computable (see [Soa] for more details).
For any given pair of natural numbers, ⟨x, y⟩, we write π1(⟨x, y⟩) = x to denote projection
onto the first coordinate, and similarly π2(⟨x, y⟩) = y denotes projection onto the second
coordinate. Moreover, if A ⊆ ω × ω is a set of pairs, then we define

π1(A) = {x ∈ ω : (∃y)[⟨x, y⟩ ∈ A]} and π2(A) = {y ∈ ω : (∃x)[⟨x, y⟩ ∈ A]}.

2Since our main theorem deals entirely with effective packing dimension, which is only defined on elements
of Cantor space (see the following subsections for more details), it suffices to consider only those Turing
reductions whose output lives in {0, 1} ⊆ ω, for every input x ∈ ω.
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2.2. Cantor space and 2<ω. We let 2<ω denote the set of all finite binary sequences (in-
cluding the empty sequence, which we denote by ∅ ∈ 2<ω), and we also let 2ω denote the set
of all infinite binary sequences. Since we can effectively code finite binary strings as natural
numbers (and vice versa), we will often simultaneously think of elements of 2<ω as both
finite binary strings and natural numbers. For all σ, τ ∈ 2<ω and f ∈ 2ω, we write σ ⊆ τ to
mean that σ is an initial segment of τ and σ ⊂ τ to mean that σ is a proper initial segment
of τ . Similarly, we write σ ⊂ f to mean that σ ∈ 2<ω is an initial segment of f ∈ 2ω. There
is a topology on 2ω that is generated by basic clopen sets of the form

Uσ = {f ∈ 2ω : σ ⊂ f},
for every σ ∈ 2<ω. The resulting topological space is referred to as Cantor space. We
often refer to elements of Cantor space f ∈ 2ω as reals. For all f ∈ 2ω, we will write
f(n) ∈ {0, 1}, n ∈ ω, to denote the nth bit of f . Furthermore, we will write ⟨0⟩ ∈ 2<ω to
refer to the finite binary string consisting of exactly one zero (and no ones), and we will
write 0n ∈ 2<ω, n ∈ ω, n ≥ 2, to refer to the finite binary string consisting of exactly n
zeros (and no ones); i.e. 0n = 000 · · · 0︸ ︷︷ ︸

n

∈ 2<ω. Henceforth the variable X will always refer to

the real X ∈ 2ω of the main theorem (i.e. Theorem 6.1).
Let σ ∈ 2<ω. We write |σ| ∈ ω to mean the length of sigma – i.e. the number of bits of

σ. For every n ∈ ω, we write 2≤n ⊆ 2<ω to denote the set of finite binary strings of length
at most n (including the empty string ∅ ∈ 2<ω of length 0), 2=n ⊆ 2<ω to denote the set of
finite binary strings of length equal to n, and 2≥n ⊆ 2<ω to denote the set of finite binary
strings of length at least n. For every σ ∈ 2<ω such that |σ| ≥ 1 we write σ− ∈ 2<ω to
denote the unique initial segment of σ of length |σ| − 1. This is equivalent to saying that
σ− ∈ 2<ω, σ− ⊂ σ, is the finite binary string obtained by deleting the last bit of σ. Also,
for all D ⊆ 2<ω or D = 2ω, we write (D)n, n ∈ ω, to denote the n-fold direct product of D
with itself, i.e.

(D)n = D ×D × · · · ×D︸ ︷︷ ︸
n

.

If Φe, e ∈ ω, is an oracle Turing machine constructed in Remark 2.1 above, then for all
σ ∈ 2<ω we define Φσ

e ∈ 2<ω to be the unique finite binary string

Φσ
e = ⟨x0, x1, . . . , xk⟩ ∈ 2<ω,

where xi ∈ {0, 1}, 0 ≤ i ≤ k, is the value of the computation Φσ
e (i) ↓ , and k ∈ ω is the

largest number for which the use of the computation Φσ
e (k)↓ is at most |σ|. Note that, for

a given e ∈ ω, Φσ
e ∈ 2<ω is not necessarily uniformly computable in σ ∈ 2<ω. More generally

though, for all D ⊆ 2<ω and e ∈ ω we define

ΦD
e = {Φσ

e ∈ 2<ω : σ ∈ D} ⊆ 2<ω.

Note that, by condition (2) in Remark 2.1 above, it follows that for all σ ∈ 2<ω and e ∈ ω,
we have that |Φσ

e | ≤ |σ|.
For given finite binary strings σ, τ ∈ 2<ω, let στ denote the concatenation of σ and τ (i.e.

the string σ followed by the string τ to the right of σ). More generally, for any given sets
D,E ⊆ 2<ω, we define the product

DE = {ρ ∈ 2<ω : (∃σ ∈ D, τ ∈ E)[ρ = στ ]},
and for any given σ ∈ 2<ω and D ⊆ 2<ω, we define σD ⊆ 2<ω and Dσ ⊆ 2<ω to be the
same as {σ}D ⊆ 2<ω and D{σ} ⊆ 2<ω, respectively. One can check that this multiplication
operation (i.e. concatenation) is associative on individual strings, as well as subsets of 2<ω,
and so we will never include parentheses when multiplying/concatenating several strings or
subsets of 2<ω.

We call a subset of strings of the form σ2≤|σ| ⊆ 2<ω, for some σ ∈ 2<ω, a clump. For
any number a ∈ ω, we call a set of strings of the form σ2≤a|σ| ⊆ 2<ω a generalized clump.
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Clumps, generalized clumps, and other sets of strings called pruned clumps (to be defined
later on) will play a prominent role in the following sections. Note that a clump is just a
generalized clump with a = 1 ∈ ω, and for a given σ ∈ 2<ω, a ∈ ω, the generalized clump
σ2≤a|σ| ⊆ 2<ω consists of the extensions of σ (including σ itself) that have length at most
(a+ 1)|σ| ∈ ω.

For any given f ∈ 2ω and n ∈ ω, we let f↾n = f(0)f(1) · · · f(n− 1) ∈ 2<ω denote the first

n bits of f (f↾0 = ∅ ∈ 2<ω, for all f ∈ 2ω), and we also define f̂ ⊆ 2<ω via

f̂ = {f↾1, f↾2, f↾3, . . . , f↾k, . . .} ⊆ 2<ω.

We say that T ⊆ 2<ω is a tree if for every σ ∈ T and τ ∈ 2<ω, τ ⊆ σ, we have that τ ∈ T
(i.e. the set T ⊆ 2<ω is downwards closed with respect to ⊆). We say that T0 ⊆ T ⊆ 2<ω

is a subtree of the tree T whenever T0 is also a tree. If T ⊆ 2<ω is a tree, then we define
[T ] ⊆ 2ω via

[T ] = {f ∈ 2ω : (∀n ∈ ω)[f↾n ∈ T ]} ⊆ 2ω.

We say that σ ∈ T is extendible whenever there is an infinite path f ∈ [T ] ⊆ 2ω such that
σ ⊂ f . Let T ⊆ 2<ω be a tree. Then for all σ ∈ 2<ω and A ⊆ 2<ω, we say that σ is on T
and A is on T to mean that σ ∈ T and A ⊆ T , respectively. A set of strings A ⊆ T ⊆ 2<ω is
dense in the given tree T ⊆ 2<ω whenever every σ ∈ T has an extension τ ∈ T , τ ⊇ σ, such
that τ ∈ A. Let σ ∈ 2<ω and A ⊆ 2<ω. By downward closure of σ, we refer to the set of
(nonproper) initial segments of σ. Similarly, the downward closure of A ⊆ 2<ω is the union
of the downward closures of all τ ∈ A. In the next section we will define the term “clumpy
tree.” Clumpy trees are essentially trees that are built via clumps (defined in the second last
paragraph above). Let D ⊆ 2<ω, and σ ∈ 2<ω. We say that σ is a leaf of D if σ ∈ D, and
for all τ ⊃ σ, τ ∈ 2<ω, we have that τ /∈ D. In other words σ ∈ 2<ω is a leaf of D ⊆ 2<ω if
there is no proper extension of σ in D. Note that every finite nonempty set D ⊆ 2<ω has
at least one leaf. On the other hand, we say that σ ∈ 2<ω is the root of D ⊆ 2<ω if for all
τ ∈ D we have that σ ⊆ τ . In other words, σ is the (unique) element of D such that every
other element of D extends σ. Note that not every set D ⊆ 2<ω has a root, but it follows by
the definition that if the root of D exists then it is unique. Note that for any given σ ∈ 2<ω

and a ∈ ω, we have that σ is the root of the generalized clump σ2≤a|σ| ⊆ 2<ω.
We conclude this subsection by observing that, by Remark 2.1 above, and our definition

of Φσ
e ∈ 2<ω, σ ∈ 2<ω, e ∈ ω, it follows that if T ⊆ 2<ω is a tree then so is ΦT

e ⊆ 2<ω.
Furthermore, for a fixed e ∈ ω, if T is a computable tree for which Φσ

e ∈ 2<ω is uniformly
computable in σ ∈ T , then the tree ΦT

e ⊆ 2<ω is computable. We will use this fact later on
in this article.

2.3. Kolmogorov complexity and effective fractal dimension. We say that a set D ⊆
2<ω is prefix-free if for all σ, τ ∈ D such that σ ̸= τ we have that σ ⊈ τ . In other words
D ⊆ 2<ω is prefix-free if every pair of distinct elements of D are incomparable with respect
to ⊆. We say that a Turing machine M : 2<ω → 2<ω is prefix-free if the domain of M is
prefix-free. It is well-known that there exists a universal prefix-free Turing machine, M – i.e.
there exists a Turing machine M that is prefix-free and can uniformly and effectively emulate
any other prefix-free Turing machine M ′ (for more information, consult [Nie, Section 2.2]).
It is also well-known that there exists a universal Turing machine M0 – i.e. there exists a
Turing machine M0 that can uniformly and effectively emulate every other Turing machine
M ′

0. We fix M,M0 for the rest of this subsection.
We are now ready to state the definitions of plain and prefix-free Kolmogorov complexity.

Let σ ∈ 2<ω.

Definition 2.2. The plain Kolmogorov complexity of σ ∈ 2<ω with respect to (the universal
Turing machine) M0 is given by

CM0(σ) = min{|τ | ∈ ω : τ ∈ 2<ω and M0(τ)↓= σ}.
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Definition 2.3. The prefix-free Kolmogorov complexity of σ ∈ 2<ω with respect to (the
prefix-free universal Turing machine) M is given by

KM(σ) = min{|τ | ∈ ω : τ ∈ 2<ω and M(τ)↓= σ}.

It is well-known that if M ′
0 is any universal Turing machine and M is any prefix-free

universal Turing machine, then there exists a constant C ∈ ω such that for all σ ∈ 2<ω,

|CM0(σ)− CM ′
0
(σ)| ≤ C and |KM(σ)−KM ′(σ)| ≤ C.

Therefore, it follows that the notions of plain and prefix-free Kolmogorov complexity are
well-defined up to a constant. With this in mind, for all σ ∈ 2<ω we write C(σ) and K(σ) to
mean CM0(σ) andKM(σ), respectively, whereM0,M are the (fixed) Turing machines that we
defined above, and we will refer to these quantities as the plain and prefix-free Kolmogorov
complexity of σ, respectively (with no explicit mention of the machines M0,M). It follows
that all facts and theorems concerning plain and prefix-free Kolmogorov complexity are
well-defined only up to a constant, since the notions of plain and prefix-free Kolmogorov
complexity are well-defined only up to a constant. Often we will simply refer to the prefix-
free Kolmogorov complexity of a given string σ ∈ 2<ω as the Kolmogorov complexity of σ.
However, when speaking about plain Kolmogorov complexity we will always use the term
plain to distinguish this notion from that of prefix-free Kolmogorov complexity. Since M
also qualifies as a universal Turing machine, it follows that there is a constant C0 ∈ ω such
that for all σ ∈ 2<ω we have that K(σ) + C0 ≥ C(σ). Without any loss of generality (i.e.
by modifying M slightly), we can assume that C0 = 0 so that we have K(σ) ≥ C(σ), for all
σ ∈ 2<ω (this extra hypothesis simplifies some of our proofs below).

To prove the main theorem of this article we will need a method for showing that every
member of various computable sets of strings has low Kolmogorov complexity. There is a
standard method that does this that uses the notion of a bounded request set, as well as
the Machine Existence Theorem. We now introduce our version of these concepts, some of
which differ slightly from the corresponding concepts in [Nie] cited below.

Definition 2.4. [Nie, Definition 2.2.15] A bounded request set R ⊆ ω×2<ω is a computably
enumerable set of pairs of the form ⟨rσ, σ⟩, rσ ∈ ω, σ ∈ 2<ω, such that∑

r∈R

2−π1(r) < 1.

We also call a computably enumerable set R ⊆ ω × 2<ω simply a request set.

The first part of the following definition is standard, and can be found in [Nie, Definition
2.2.15]. However, the second part is not standard, but is useful in the context of effective
fractal dimension (as we shall see later on). The notion of α-weight (defined below) will play
a significant role later on in this article.

Definition 2.5. Let R ⊆ ω × 2<ω be a request set. Then the weight of R is given by∑
r∈R

2−π1(r),

which may be infinite. Note that a request set is a bounded request set if and only if its weight
is strictly less than one.

If D ⊆ 2<ω and α ∈ Q, 0 ≤ α < 1, we define the α-weight of D to be∑
σ∈D

2−rσ ,

where rσ ∈ ω is the greatest integer less than α|σ| + 1, and σ ∈ D. Here the associated
request set consists of those pairs of the form ⟨rσ, σ⟩, for all σ ∈ D. Often times we will have
already fixed a value for α ∈ Q, 0 ≤ α < 1, and we will simply say the weight of D ⊆ 2<ω to
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mean the α-weight of D ⊆ 2<ω. Note that, by our definition of rσ ∈ ω above, we have that
the α-weight of a given set D ⊆ 2<ω is bounded above by∑

σ∈D

2−α|σ|.

We will exploit this fact later on.

The following theorem is usually called the Kraft-Chaitin Theorem.

Theorem 2.6. [Nie, Theorem 2.2.17] Let R ⊆ ω×2<ω be a bounded request set. Then there
exists a prefix-free machine M0 such that

(∀r ∈ ω)(∀σ ∈ 2<ω)[⟨r, σ⟩ ∈ R ⇔ (∃τ ∈ 2<ω)[|τ | = r and M0(τ) = σ].

Furthermore, it follows (by the previous sentence above) that there exists a constant C0 ∈ ω
(depending only on M0 and not on σ) such that for every σ ∈ 2<ω and every rσ ∈ ω such
that ⟨rσ, σ⟩ ∈ R, we have that

K(σ) ≤ rσ + C0.

The following definition is not standard, although it is equivalent to the standard definition
of effective packing dimension. For the standard definition of effective packing dimension,
as well as the proof that it coincides with our definition below, please consult [AHLM07,
Lut03, May02]. It is worth noting that effective packing dimension is sometimes referred to
as constructive packing dimension or constructive strong dimension.

Definition 2.7. Let f ∈ 2ω. The effective packing dimension of f is given by

dimP(f) = lim sup
n→∞

K(f↾n)
n

.

Effective Hausdorff dimension is dual to effective packing dimension. Although the follow-
ing definition is not the standard one, it is equivalent to the standard definition of effective
Hausdorff dimension. Sometimes effective Hausdorff dimension is referred to as constructive
dimension.

Definition 2.8. Let f ∈ 2ω. The effective Hausdorff dimension of f is given by

dimP(f) = lim inf
n→∞

K(f↾n)
n

.

It is well-known (see [Nie, Proposition 2.2.8], for example) that there exists a constant
C ∈ ω such that 0 ≤ K(f↾ n) ≤ 2 log(n) + n + C, for all f ∈ 2ω and n ∈ ω. From this it
follows that for any given f ∈ 2ω, the effective packing/Hausdorff dimension of f is a real
number between zero and one (inclusive).

3. Clumpy trees, bounded request sets, and Kolmogorov complexity

We begin this section with some important definitions, some of which will be slightly
modified in the next section (see Definition 4.1 below for more details).

Definition 3.1. Let T ⊆ 2<ω be a computable tree. We say that T is a clumpy tree3 if for
every σ ∈ T there is a τ ∈ T ⊆ 2<ω such that τ ⊃ σ and the clump τ2≤|τ | ⊆ 2<ω is on T .

We say that T ⊆ 2<ω is a pruned clumpy tree if T is a computable tree and for every
extendible node σ ∈ T there is a string τ ∈ T , τ ⊃ σ, such that T ∩ τ2≤|τ | contains at least
two leaves of the clump τ2≤|τ |. We call T ∩ τ2≤|τ | ⊆ T ⊆ 2<ω a pruned clump of T .

3The terminology “clump” and “clumpy tree” was first introduced by Downey and Greenberg in [DG08],
although these concepts were also discovered and used to construct reals of strictly positive effective packing
dimension by the author in [Con08].
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Note that, by definition, every node σ ∈ 2<ω on a clumpy tree is extendible. Also note that
a clumpy tree is a pruned clumpy tree. In the next section we will define an initial clumpy
tree T0 ⊆ 2<ω inside of which our entire construction that is the proof of the main theorem
(i.e. Theorem 6.1) will take place. Once we have defined T0, we will use T0 to modify the
definition of pruned clumpy tree slightly, making it a bit more restrictive and easier to talk
about for our purposes. All of our pruned clumpy trees will be subtrees of T0. In Section 5
we will show that whenever pruned clumps live on a tree Ts, s ∈ ω, that we are constructing,
then they have many incomparable nodes in Ts. This fact will make it possible to apply
Lemma 3.2 below to find strings of high complexity on Ts, which, in turn will help us to
ensure that X ∈ [Ts] ⊆ 2ω of Theorem 6.1 has strictly positive effective packing dimension
(via Definition 2.7 above).

Whenever we construct a (pruned) clumpy tree, we will always do so uniformly and com-
putably via finite approximations in stages/substages k ∈ ω, i.e. we shall have that

T = ∪k∈ωT
k ⊆ 2<ω,

where T k+1 ⊇ T k are uniformly computable increasing finite approximations to T . At stage
k = 0, we will define T 0 ⊆ 2<ω to be the downward closure of a single string σ ∈ 2<ω. Then,
at stage k + 1 ∈ ω, we will properly, uniformly, and computably extend every leaf λ ∈ T k of
the finite tree T k and add clumps of the form τλ2

≤|τλ| ⊆ 2<ω, τλ ⊇ λ, above λ.
We now prove a lemma that essentially gives the main reason for considering pruned

clumpy trees in the context of effective packing dimension. Generally speaking, the reason
why we consider pruned clumpy trees when examining effective packing dimension is that
if A ⊆ τ2≤|τ | ⊆ T is a pruned clump of nodes on the tree T ⊆ 2<ω that contains at least
2q|τ |-many leaves of τ2≤|τ |, for some q ∈ Q, then there exists a leaf of τ2≤|τ |, σ ∈ A ⊆ 2<ω,
such that

K(σ) ≥ q

2
|σ| − 1.

In other words, inside every pruned clump with sufficiently many leaves of maximal length
there are nodes of relatively high Kolmogorov complexity. It follows that in a clumpy tree
the set of nodes of relatively high Kolmogorov complexity is a dense set. We will need to find
nodes of relatively high Kolmogorov complexity to ensure that the real X ∈ 2ω of Theorem
6.1 is of strictly positive effective packing dimension. Variants of the following lemma and
corollary first appeared in [Con08] and [DG08], where (as in this article) they are used to
construct reals of strictly positive effective packing dimension that satisfy other properties
as well.

Lemma 3.2. Let q ∈ Q, 0 ≤ q ≤ 1, and τ ∈ 2<ω be given, and let qτ ∈ ω be the least natural
number that is greater than or equal to q|τ | (note that qτ ∈ ω can be computed uniformly
from τ and q). Then, for any given pruned clump of the form A ⊆ τ2≤|τ | ⊆ 2<ω such that A
contains at least 2qτ -many leaves of τ2≤|τ |, there is a leaf σ ∈ τ2≤|τ | ⊆ 2<ω in A such that

K(σ) >
q

2
|σ| − 1.

Proof. There exist 2qτ -many leaves of τ2≤|τ |, all of length at most 2|τ | ∈ ω. There are (2qτ−1)-
many nodes of plain complexity at most qτ − 1. Therefore, by the pigeonhole principle it
follows that there exists a node σ ∈ A that is a leaf of the pruned clump τ2≤|τ | ⊆ 2<ω and
such that σ has plain complexity C(σ) > qτ − 1 ≥ q|τ | − 1 ≥ q

2
|σ| − 1. Now, since we are

under the assumption that K(ρ) ≥ C(ρ) for all ρ ∈ 2<ω, the conclusion of the lemma now
follows. □

Corollary 3.3. Let q ∈ Q, 0 ≤ q ≤ 1, and τ ∈ T ⊆ 2<ω be given, and for all ρ ∈ 2<ω let
qρ ∈ ω be as in Lemma 3.2 above. Also, suppose that T ⊆ 2<ω is a pruned clumpy tree such
that τ ∈ T is extendible and whenever a pruned clump A ⊆ ρ2≤|ρ|, ρ ∈ 2<ω, is on T , then
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there are at least 2qρ-many leaves of ρ2≤|ρ| in A. Then there exists σ ∈ T such that σ ⊃ τ
and

K(σ) ≥ q

2
|σ| − 1.

Proof. Given T ⊆ 2<ω and τ ∈ T as above, use our hypotheses on τ and T to find ρ ⊃ τ ,
ρ ∈ 2<ω, such that there are at least 2qρ-many leaves of ρ2≤|ρ| in T . Now, apply the previous
lemma to find a leaf σ ∈ ρ2≤|ρ| ⊆ T , σ ⊇ ρ ⊃ τ , such that K(σ) ≥ q

2
|σ| − 1. □

Aside from finding nodes of relatively high Kolmogorov complexity to push the effective
packing dimension of X (of Theorem 6.1) strictly above zero, we will also need to bound the
Kolmogorov complexity of some finite binary strings so that the effective packing dimension
of every Y ∈ 2ω such that Y ≤T X is strictly less than one. We will always use bounded
request sets and the Machine Existence Theorem, i.e. Theorem 2.6, to achieve this goal. We
now prove an easy lemma that says to bound the effective packing dimension of Y ∈ 2ω by
0 ≤ α ≤ 1, α ∈ Q, it suffices to fix a number N0 ∈ ω and then include every pair of the form
⟨rn, σn⟩, n ≥ N0, in our bounded request set, where σn = Y ↾n ∈ 2<ω is the first n bits of Y ,
and rn ∈ ω is the greatest integer that is less than or equal to α|σn|+ 1 ∈ Q (note that, by
our construction of rn, it follows that α|σn| < rn).

Lemma 3.4. Suppose that N0 ∈ ω, α ∈ Q, α ≤ 1, Y ∈ 2ω are given, and that for all
n ≥ N0 the pairs ⟨rn, σn⟩n≥N0 are included in a bounded request set R ⊆ ω × 2<ω, where
σn = Y ↾n ∈ 2<ω and rn ∈ ω is the greatest integer that is less than or equal to α|σn|+1 ∈ Q.
Then we have that the effective packing dimension of Y ∈ 2ω is at most α ∈ Q.

Proof. By the Machine Existence Theorem, i.e. Theorem 2.6 above, we have that there is a
constant C ∈ ω such that for all n ≥ N0

K(σn) ≤ α|σn|+ 1 + C.

It follows that for all n ≥ N0 we have K(Y ↾n) = K(σn) ≤ α|σn|+ 1+C = αn+ 1+C, and
therefore the effective packing dimension of Y is given by

lim sup
n→∞

K(Y ↾n)
n

= lim sup
n≥N0

K(Y ↾n)
n

≤ lim sup
n≥N0

αn+ 1 + C

n
= α.

□

Since it is relatively intuitive, and its proof is quite simple, we will henceforth use Lemma
3.4 above without necessarily saying so.

3.1. A brief overview of the proof of the main theorem. Now that we have given the
reader a glimpse of some of the main ideas used to prove the main theorem (i.e. Theorem
6.1), we will briefly explain how these concepts will be applied in the next two sections which
contain most of the proof of the main theorem.

Recall that the main theorem aims to construct a real X ∈ 2ω of strictly positive effective
packing dimension and such that for all Y ∈ 2ω such that Y ≤T X, the effective packing
dimension of Y is strictly less than one. There are two parts to the proof of the main
theorem, i.e. Theorem 6.1. The first part is easier than the second, and aims to construct
X ∈ 2ω so that it has strictly positive effective packing dimension. We will essentially achieve
this goal via Corollary 3.3 above. The second part of the main theorem aims to bound the
effective packing dimension of all total Turing reductions from X to another real Y ∈ 2ω.
Generally speaking, to achieve this goal we will use the Machine Existence Theorem and
bounded request sets. We now explain the overall construction of X ∈ 2ω in stages s ∈ ω,
i.e. X = ∪s∈ωξs, ξs ∈ 2<ω, ξs+1 ⊃ ξs.

Section 4 of this article deals with the stage s = 0. At stage s = 0 our main goal is to
construct a clumpy tree T0 ⊆ 2<ω inside of which the rest of the construction of X ∈ 2ω will
take place. As a warm up to the main theorem, after constructing T0 we prove that there is
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a real X0 ∈ [T0] ⊆ 2ω such that the effective packing dimension of X0 is strictly positive, and
we also show that every Y ∈ [T0] ⊆ 2ω has effective packing dimension strictly less than one.
Along the way, we develop some important machinery that will be used to handle the most
difficult parts of the proof of the main theorem. We also define ξ0 = ⟨0⟩ ∈ T0 ⊆ 2<ω. At the
end of our construction (i.e. at the end of Section 5) we will have that X ⊃ ξ0 = ⟨0⟩ ∈ 2<ω,
where X ∈ 2ω is as in Theorem 6.1. Note that, since |ξ0| = 1, we (trivially) have that
K(ξ0) ≥ 1

4
|ξ0| − 1.

Section 5 of this article handles the construction of X ∈ 2ω at stage s + 1 > 0. At the
beginning of stage s + 1 > 0, we assume that we are given a string ξs ∈ 2<ω (ξs will be an
initial segment of X ∈ 2ω) and a pruned clumpy tree Ts ⊆ T0 ⊆ 2<ω such that ξs ∈ Ts and
such that every pruned clump on Ts has (sufficiently) many incomparable strings in it. Our
first goal at stage s + 1 is to find an extension of ξs, ξs+1 ⊃ ξs, ξs+1 ∈ Ts ⊆ 2<ω, such that
K(ξs+1) ≥ 1

4
|ξs+1| − 1. This will be possible since the clumps of Ts have sufficiently many

incomparable nodes in them. More specifically, we will show that whenever A ⊆ τ2≤|τ | ⊂
2<ω, τ ∈ A ⊆ 2<ω, is a pruned clump on the pruned clumpy tree Ts ⊆ 2<ω, then there are
at least 2

1
2
|τ |-many leaves of τ2≤|τ | on Ts. It will then follow by Corollary 3.3 above that the

node ξs+1 ∈ Ts, ξs+1 ⊃ ξs, mentioned earlier exists. Our second goal at stage s + 1 is more
difficult; it is to construct a clumpy subtree of Ts, Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω, such that the
effective packing dimension of the output of every total Turing reduction Y ∈ [ΦTs+1

s ] ⊆ 2ω is
strictly less than one. This goal will mostly be achieved via the machinery that we develop
in Section 4, when we bound the effective packing dimension of every X ∈ [T0] ⊆ 2ω by
4
5
< 1.

3.1.1. Forcing. Though we will not explicitly do so, we wish to note that one may view our
construction of X ∈ 2ω, X = ∪s∈ωξs, ξs+1 ⊃ ξs, ξs ∈ 2<ω, as a forcing construction. In this
case our forcing conditions are pairs of the form ⟨σ, T ⟩, where σ ∈ 2<ω and T ⊆ 2<ω is a
pruned clumpy tree such that σ ∈ T (σ is an initial segment of X and T is the set of possible
extensions of σ). Furthermore, we have that ⟨σ1, T1⟩ ≥ ⟨σ2, T2⟩ whenever σ2 ⊇ σ1 and T2

is a pruned clumpy subtree of T1. Our initial forcing condition is given by ⟨ξ0, T0⟩, and our
generic filter is constructed in stages s ∈ ω, s > 0, so that at stage s we force one more initial
segment of X to have relatively high Kolmogorov complexity (so that in the end X will have
strictly positive effective packing dimension), and we also force that the effective packing
dimension of ΦX

s is strictly less than one whenever ΦX
s ∈ 2ω is a total Turing reduction via

a specific linear bound on the use of the computation.

4. Stage s = 0

At stage s = 0 of our construction we set ξ0 = ⟨0⟩ ∈ 2<ω and we produce a clumpy tree
T0 ⊆ 2<ω such that ξ0 ∈ T0 and the real X ∈ 2ω, X = ∪s∈ωξs, of Theorem 6.1 satisfies
X ∈ [T0] ⊆ 2ω. The fact that T0 ⊆ 2<ω is a clumpy tree will help us to ensure that the
effective packing dimension of X = ∪s∈ωξs ∈ 2ω is nonzero. We will also construct T0 sparse
enough so that there exists a bounded request set that witnesses that the effective packing
dimension of every real Y ∈ [T0] ⊆ 2ω is strictly less than one. We build T0 = ∪k∈ωT

k
0 ⊆ 2<ω

in substages k ∈ ω as follows.

4.1. Constructing the clumpy tree T0 ⊆ 2<ω. At substage k = 0, let T k
0 = T 0

0 = {∅, 0} ⊆
2<ω. Note that we have ξ0 = ⟨0⟩ ∈ T 0

0 ⊆ T0 ⊆ 2<ω. At subsequent stages k > 0, k ∈ ω, let
T k−1
0 be given, and define T k

0 to be the downward closure of⋃
λ∈Tk−1

0
λ a leaf

λ2=|λ|02|λ| ⊆ 2<ω.
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This ends the construction of T0 = ∪k∈ωT
k
0 ⊆ 2<ω. It is not difficult to check that T0 is

indeed a clumpy tree.
Note that at substage k > 0 we obtain the tree T k

0 ⊆ 2<ω by extending every leaf λ ∈ T k−1
0

via a clump λ2≤|λ|, and then extending again via 02|λ|. Thus, by induction we have that the
leaves of T k

0 are all of length 4k, for every k ∈ ω, and every node of T0 is extendible. Fix a
leaf λ ∈ T k−1

0 ⊆ 2<ω. We say that λ2≤|λ| ⊆ T k
0 ⊆ T0 ⊆ 2<ω is a clump of level k in T0. Now,

via Lemma 3.3, it follows that there exists a leaf of λ2≤|λ| ⊆ T k
0 ⊆ 2<ω, ρ ∈ λ2≤|λ|, such that

K(ρ) ≥ 1
2
|ρ| − 1; we will use this fact in the proof of Proposition 4.2 below.

The following definition augments Definition 3.1.

Definition 4.1. Henceforth, by clump we will mean a set of nodes of the form σ2≤|σ| ⊆ 2<ω,
σ ∈ 2<ω such that σ2≤|σ| is on T0. By pruned clump we will mean a set A ⊆ 2<ω such that
A ⊆ σ2≤|σ| for some σ ∈ 2<ω satisfying σ2≤|σ| ⊆ T0 ⊆ 2<ω, σ ∈ A, A is downwards closed
with respect to ⊆ and σ2≤|σ| ⊆ 2<ω, and A contains at least two leaves of σ2≤|σ| (by the way
in which we will construct our clumpy trees it will follow that our clumps will contain many
more than two leaves). By pruned clumpy tree we will mean a tree T ⊆ 2<ω such that every
extendible node on T is a proper initial segment of a pruned clump that is also on T . The
definition of clumpy tree remains the same as in Definition 3.1 above.

Note that, by our construction of T0 above, it follows that if σ ∈ 2<ω is the root of a
pruned clump (or clump), then |σ| = 4n, for some n ∈ ω. Moreover, if T ⊆ 2<ω is a pruned
clumpy tree and τ ∈ T is extendible, then for any given n ∈ ω we can find a pruned clump
A ⊆ T ⊆ 2<ω such that if σ ∈ 2<ω is the root of A then |σ| = 4m, for some m ∈ ω such that
m ≥ n. We will use these facts in the next section when constructing the pruned clumpy
tree Ts+1 ⊆ Ts ⊆ 2<ω.
Throughout the rest of this section we will work exclusively with clumpy trees, except in

Proposition 4.10 where we work with “generalized clumpy trees”, i.e. trees that are built out
of generalized clumps (as defined in Section 2 above) in the same way that clumpy trees are
built out of clumps in Definition 3.1 above. We shall utilize pruned clumpy trees in the next
section when we construct Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω at stage s+ 1 > 0.

4.2. Finding strings of high Kolmogorov complexity in T0.

Proposition 4.2. There exists a real X0 ∈ [T0] ⊆ 2ω such that the effective packing dimen-
sion of X0 ∈ 2ω is greater than or equal to 1

2
.

Proof. Note that we are not constructing the real X ∈ 2ω of Theorem 6.1, but the basic
idea behind the construction of X0 is the one that we shall use to ensure that the effective
packing dimension of X ∈ 2ω of Theorem 6.1 is strictly positive. We build X0 = ∪k∈ωξ

k
0 ∈

2ω, ξk+1
0 ⊃ ξk0 , ξ

k
0 ∈ 2<ω, in stages k ∈ ω. At stage k = 0 let ξk0 = ξ00 = ⟨0⟩ ∈ T 0

0 ⊆ T0 ⊆ 2<ω.
At stage k > 0, suppose that we are given ξk−1

0 ∈ T0 ⊆ 2<ω; we shall find a string σ ⊃ ξk−1
0

such that K(σ) ≥ 1
2
|σ| − 1 and set ξk0 = σ. It follows from Lemma 3.3 above that, since

T0 ⊆ 2<ω is a clumpy tree (as defined in Definition 3.1 above), then such a string σ ∈ 2<ω

exists. Therefore it follows that for every k ∈ ω we have

K(ξk0 ) ≥
1

2
|ξk0 | − 1,

from which it follows that the effective packing dimension of X = ∪k∈ωξ
k
0 ∈ 2ω is

lim sup
n→∞

K(X↾n)
n

≥ lim sup
k→∞

K(ξk0 )

|ξk0 |
≥ |ξk0 | − 2

2|ξk0 |
=

1

2
.

□

We will use essentially the same proof in the next section to prove that the real X ∈ 2ω

of the main theorem has effective packing dimension at least 1
2
.



12 CHRIS J. CONIDIS

4.3. Bounding the Kolmogorov complexity of strings in T0. We now aim to show
that the effective packing dimension of every Y0 ∈ [T0] ⊆ 2ω is bounded above by 4

5
< 1.

Along the way we will prove a parallel set of more general lemmas that we will apply in the
next section to show that the effective packing dimension of every Y ≤T X, X, Y ∈ 2ω, is
strictly less than one. The following key lemmas will eventually aid us in showing that a
particular bounded request set (to be constructed later on in this section) witnesses the 4

5

upper bound on the effective packing dimension of every Y0 ∈ [T0] ⊆ 2ω. These lemmas are
very important, and will also be used in the next section to prove the most difficult part of
the main theorem (i.e. Theorem 6.1) in Section 6.

Lemma 4.3. Let l, a ∈ ω be given, and define

A(l, a) = 2=l0l2≤al ⊆ 2<ω.

If we set α = a+2
a+3

∈ Q, α < 1, then we have that∑
σ∈A(l,a)

2−α|σ| ≤ C12
−c1l,

for some constants C1 ∈ ω and c1 ∈ Q, c1 > 0, that only depend upon a ∈ ω and do not
depend upon l ∈ ω.

Proof. First of all, note that it follows from our construction of A(l, a) ⊆ 2<ω above that:

(1) Every ρ ∈ A(l, a) ⊆ 2<ω has length at least 2l.
(2) There are exactly 2l-many strings ρ1, ρ2, . . . , ρ2l ∈ A(l, a) such that |ρi| = 2l and

ρi = (ρi↾ l) 0l ∈ 2<ω.
(3) For every τ ∈ A(l, a) there exists 1 ≤ i ≤ 2l such that ρi ⊆ τ .

To prove the lemma, first fix a string ρ ∈ A(l, a) of length 2l ∈ ω in A(l, a) ⊆ 2<ω. By
our comments in the previous paragraph and our definition of A(l, a) above, we have that
ρ2≤al ⊆ A(l, a) ⊆ 2<ω is exactly the set of elements of A(l, a) that extend ρ. Furthermore,
we have that ∑

σ∈ρ2≤al

2−α|σ| =

(a+2)l∑
i=2l

2−αi2i−2l.

The rightmost sum above is a geometric series with initial term 2−α2l, and common ratio
21−α. Therefore, the expression sums to

(2−α(2l))
2(1−α)(al+1) − 1

21−α − 1
≤ (21−α − 1)−1(21−α)(2(−2α+a−αa)l).

Now, A(l, a) ⊆ 2<ω contains 2l-many strings of length 2l, and by our comments in the
previous paragraph it follows that to obtain the total weight of the set A(l, a) ⊆ 2<ω, we
must multiply the above expression by 2l, since there are 2l-many choices for the string
ρ ∈ A(l, a) of length 2l. Therefore, the total weight of A(l, a) ⊆ 2<ω is bounded above by

(21−α − 1)−1(21−α)(2(−2α+a−αa+1)l).

Notice that only the exponent of the last factor depends upon l ∈ ω, and that the exponent
is negative if α > a+1

a+2
. Therefore, by our choice of α = a+2

a+3
> a+1

a+2
, it follows that there exist

constants C1 ∈ ω, c1 ∈ Q, c1 > 0, that depend only on a ∈ ω and not on l ∈ ω and such
that ∑

σ∈A(l,a)

2−α|σ| ≤ 2l ·
∑

σ∈ρ2≤al

2−α|σ| ≤ 21−2α

21−α − 1
(2(−2α+a−αa+1)l) ≤ C12

−c1l.

□

The following modified version of Lemma 4.3 also holds via a similar proof.
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Lemma 4.4. Let a, l ∈ ω, a > 0, be given. Let τ1, τ2, . . . , τ2l ∈ 2=l be the (unique) lexi-
cographic listing of all finite binary strings of length l ∈ ω (any one-to-one listing would
suffice) and let α = 2a+2

2a+3
∈ Q, α < 1. Then, for any given strings ρ1, ρ2, . . . , ρ2l ∈ 2≥l, if we

define

A(l, a, ρ⃗) = A(l, a, ρ1, ρ2, . . . , ρ2l) =
⋃

1≤i≤2l

τiρi2
≤a|τiρi|,

then there exist constants C1 ∈ ω, c1 ∈ Q, c1 > 0, that are independent of l ∈ ω and such
that ∑

σ∈A(l,a,ρ⃗)

2−α|σ| ≤ C12
−c1l.

Recall that for any given f ∈ 2ω, we have that f̂ = {f ↾ 1, f ↾ 2, f ↾ 3, . . .} ⊆ 2<ω, where
f↾n = f(0)f(1) · · · f(n− 1) ∈ 2<ω, n ∈ ω, denotes the first n bits of f .

Lemma 4.5. Let l, a ∈ ω be given, and let α ∈ Q, A(l, a) ⊆ 2<ω, be as in Lemma 4.3 above.
Define α = a+2

a+3
∈ Q, α < 1, and

B(l, a) =
⋃

ρ∈A(l,a)
ρ a leaf

ρ0̂∞ ⊆ 2<ω.

Then there exist constants C2 ∈ ω, c2 ∈ Q, c2 > 0, that are independent of l ∈ ω and such
that ∑

σ∈B(l,a)

2−α|σ| ≤ C22
−c2l.

Proof. Fix ρ ∈ A(l, a) ⊆ 2<ω a leaf. By our construction of A(l, a) in lemma 4.3 above, there
are 2(a+1)l-many choices for ρ. Then, by the construction of B(l, a) ⊆ 2<ω, we have that the
part of B(l, a) above ρ is exactly ρ0̂∞ = {ρ0, ρ00, . . . , ρ0k, . . .} ⊆ 2<ω. We have that∑

σ∈ρ ˆ0∞

2−α|σ| =
∞∑

i=|ρ|+1

2−αi =
∞∑

i=(a+2)l+1

2−αi =
2−α[(a+2)l+1]

1− 2−α
.

Now, recall that there are 2(a+1)l-many choices for ρ ∈ A(l, a) ⊆ 2<ω. Therefore, it follows
that∑

σ∈B(l,a)

2−α|σ| = 2(a+1)l
∑

σ∈ρ ˆ0∞

2−α|σ| = 2(a+1)l 2
−α[(a+2)l+1]

1− 2−α
=

2−α

1− 2−α
2[a+1−α(a+2)]l.

Now, since α = a+2
a+3

> a+1
a+2

, then it follows that the exponent of the rightmost expression in
the line of equalities above is negative. It now follows that there exist constants C2 ∈ ω,
c2 ∈ Q, c2 > 0 that are independent of l ∈ ω and such that∑

σ∈B(l,a)

2−α|σ| =
2−α

1− 2−α
2[a+1−α(a+2)]l ≤ C22

−c2l.

□

Note that the following slightly modified version of Lemma 4.5 above also holds via a very
similar proof.

Lemma 4.6. Let a, l ∈ ω, a > 0, α = 2a+1
2a+2

∈ Q, α < 1, τ1, τ2, . . . , τ2l ∈ 2=l, and ρ⃗ ∈ (2≥l)2
l

be as in the statement of Lemma 4.4 above, and for every 1 ≤ i ≤ 2l, let ηi1, η
i
2, . . . , η

i
2a|τiρi|

∈
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2=a|τiρi| be the unique lexicographic listing of the elements of 2=a|τiρi| ⊆ 2<ω. Then, for any

given f⃗ ∈ (2ω)
∑2l

i=1 2
a|τiρi| , f⃗ = ⟨fi,j⟩ 1≤i≤2l

1≤j≤2a|τiρi|
, fi,j ∈ 2ω, if we define

B(l, a, ρ⃗, f⃗) = B(l, a, ρ1, . . . , ρ2l , f0,0, . . . , f2l,2a|τ2l ρ2l |) =
⋃

1≤i≤2l

1≤j≤2a|τiρi|

τiρiηj f̂i,j,

B(l, a, ρ⃗, f⃗) ⊆ 2<ω, then there exist constants C2 ∈ ω and c2 ∈ Q, c2 > 0, that are indepen-
dent of l ∈ ω and such that ∑

σ∈B(l,a,ρ⃗,f⃗)

2−α|σ| ≤ C22
−c2l.

We now combine Lemmas 4.3 and 4.5 above to obtain the following stronger lemma.

Lemma 4.7. Let a, l ∈ ω be given. Set α = a+2
a+3

∈ Q, α < 1, and define

D(l, a) = A(l, a) ∪B(l, a) ⊆ 2<ω,

then there exist constants C0 ∈ ω and c0 ∈ Q, c0 > 0 that are independent of l ∈ ω (i.e.
C0, c0 depend only on a ∈ ω) and such that∑

σ∈D(l,a)

2−α|σ| ≤ C02
−c0l.

Proof. First, apply Lemmas 4.3 and 4.5 above to obtain constants C1, C2 ∈ ω and c1, c2 ∈ Q,
c1, c2 > 0, that are independent of l ∈ ω and such that∑

σ∈A(l,a)

2−α|σ| ≤ C12
−c1l and

∑
σ∈B(l,a)

2−α|σ| ≤ C22
−c2l.

Now, letting C0 = 2max{C1, C2} and c0 =
1
2
min{c1, c2}, c0 > 0, and adding the inequalities

above yields∑
σ∈D(l,a)

2−α|σ| =
∑

σ∈A(l,a)

2−α|σ| +
∑

σ∈B(l,a)

2−α|σ| ≤ C12
−c1l + C22

−c2l ≤ C02
−c0l.

□

We shall use Lemma 4.7 above to prove Proposition 4.9 below.
We now note that Lemmas 4.4 and 4.6 above can be combined to prove the following

lemma.

Lemma 4.8. Let a, l ∈ ω, a > 0, α = 2a+2
2a+3

∈ Q, α < 1, τ1, τ2, . . . , τ2l ∈ 2=l, ρ⃗ ∈ (2≥l)2
l
,

f⃗ ∈ (2ω)
∑2l

i=1 2
a|τiρi| be as in the statement of Lemma 4.6 above. If we define

D(l, a, ρ⃗, f⃗) = A(l, a, ρ⃗) ∪B(l, a, ρ⃗, f⃗) ⊆ 2<ω,

then there exist constants C0 ∈ ω and c0 ∈ Q, c0 > 0 that are independent of l ∈ ω (i.e.
C0, c0 depend only on a ∈ ω) and such that∑

σ∈D(l,a)

2−α|σ| ≤ C02
−c0l.

Proof. The proof is exactly the same as that of Lemma 4.7 above, except that we use Lemmas
4.4 and 4.6 in place of Lemmas 4.3 and 4.5, respectively. □

Lemma 4.8 above will play a crucial role in the proof of Proposition 4.10 below. In turn,
Proposition 4.10 will play a crucial role in the proof of the main theorem of this article (i.e.
Theorem 6.1). Therefore, it follows that Lemma 4.8 above is very important and will play a
key role in the proof of the main theorem.
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The key fact about D(l, a) = A(l, a) ∪ B(l, a) ⊆ 2<ω of Lemma 4.7 above that we use to
prove Proposition 4.9 below is that at substage k > 1, k ∈ ω, of the construction of the
clumpy tree T0 ⊆ 2<ω above, we have that

T k
0 \ T k−1

0 ⊆ D(
1

2
|λ|, 2),

where λ ∈ T k−1
0 ⊆ 2<ω is any leaf of T k−1

0 (by the construction of T k
0 ⊆ 2<ω it follows that

|λ| ∈ ω is well-defined and always an even number). We will use this fact in the proof of
Proposition 4.9 below, and leave its verification, which follows from our constructions of
T0 = ∪k∈ωT

k
0 ⊆ 2<ω and D(l, a) ⊆ 2<ω, a, l ∈ ω, above, to the reader. Therefore, it follows

from what we have just stated that to give short descriptions of every string σ ∈ T k
0 \ T k−1

0 ,
k > 1, it suffices to give short descriptions of every σ ∈ D(1

2
|λ|, 2), where λ ∈ T k−1

0 ⊆ 2<ω

is any leaf of T k−1
0 . Lemma 4.7 combined with the Machine Existence Theorem will imply

that this is possible for long enough strings (i.e. large enough k ∈ ω).

Proposition 4.9. Let Y0 ∈ 2ω, Y0 ∈ [T0]. Then we have that the effective packing dimension
of Y0 is less than or equal to α = 4

5
< 1.

Proof. We shall construct a bounded request setR ⊆ ω×2<ω such that there exists a number
N0 ∈ ω so that for every σ ∈ T0 ⊆ 2<ω, |σ| > N0, we have that ⟨rσ, σ⟩ ∈ R and rσ ∈ ω,
rσ ≤ 4

5
|σ| + 1. It will then follow that the effective packing dimension of every Y0 ∈ [T0] is

at most 4
5
< 1.

The construction of R ⊆ ω× 2<ω is fairly simple. After choosing an appropriate value for
N0 ∈ ω, we will simply put all pairs of the form ⟨rσ, σ⟩, rσ ∈ ω, σ ∈ T0, |σ| > N0, into R,
where rσ is the greatest integer less than or equal to 4

5
|σ|+1. Note that for every σ ∈ T0 we

have that rσ ∈ ω is greater than or equal to 4
5
|σ| ∈ Q. By choosing N0 ∈ ω large enough, we

will ensure that the weight of our bounded request set R is at most one.
To see that an appropriate value of N0 ∈ ω exists, consider the following line of reasoning.

Fix a value of N0 ∈ ω, so that we put all pairs ⟨rσ, σ⟩ such that |σ| > N0 into R (here rσ ∈ ω
and σ ∈ T0 are as defined in the previous paragraph). Then we have that the weight of R is:∑

r∈R
|π2(r)|≥N0

2−π1(r) =
∑
σ∈T0
|σ|>N0

2−rσ ≤
∑
σ∈T0
|σ|>N0

2−
4
5
|σ|.

Therefore, to find an upper bound for the weight of R, we need to find an upper bound for∑
σ∈T0
|σ|>N0

2−
4
5
|σ|. But, as we shall see, such an upper bound follows from Lemma 4.7 above.

We now apply Lemma 4.7 with a = 2 and thus α = a+2
a+3

= 4
5
< 1. Let C0 ∈ ω and

c0 ∈ Q, c0 > 0, be as in the conclusion of Lemma 4.7 above with a = 2. Choose k0 ∈ ω large
enough so that

C0 ·
∞∑
k=1

2−
1
2
c0k0k < 1.

We define the bounded request set R ⊆ ω × 2<ω as follows. For every σ ∈ T0 ⊆ 2<ω such
that σ ∈ T0 \ T k0

0 , put ⟨rσ, σ⟩ ∈ R, where rσ ∈ ω is the greatest integer that is less than or
equal to 4

5
|σ| + 1 ∈ Q. This is equivalent to setting N0 ∈ ω to be the length of any leaf of

T k0
0 ⊆ 2<ω. We claim that the weight of R is bounded above by C0 ·

∑∞
k=1 2

− 1
2
c0k0k < 1.

To see why this is the case, let t > k0 be a substage of the construction of the clumpy tree
T0 ⊆ 2<ω. Now, by our construction of T t

0 ⊆ 2<ω and rσ ∈ ω above, Lemma 4.7, and the
fact that T t

0 \ T t−1
0 ⊆ D(1

2
|λ|, 2), it follows that∑
r∈R

π2(r)∈T t
0\T

t−1
0

2−π1(r) ≤
∑

σ∈T t
0\T

t−1
0

2−
4
5
|σ| ≤ C02

−c0
1
2
|λ|,
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where λ ∈ T t−1
0 is any leaf of T t−1

0 ⊆ 2<ω, and hence |λ| = 4t−1. By induction on t > k0, it
is easily verified that for every t > k0 we have that |λ| = 4t−1 ≥ k0(t− k0), since it is easily
verifiable for t = k0+1, and the height of T t

0 quadruples at each successive stage t > k0, while
the quantity k0(t− k0) at most doubles at each successive stage t > k0, t ∈ ω. Therefore, we
have that

C02
−c0

1
2
|λ| ≤ C02

− 1
2
c0k0(t−k0),

which is the (t− k0)
th term in the sum

C0 ·
∞∑
k=1

2−
1
2
c0k0k < 1.

Thus, we count the weight of the node σ ∈ T t
0 \ T t−1

0 , t > k0, in the (t − k0)
th term of the

sum above. It follows that the total weight of our bounded request set R is strictly less than
one. □

The proof of Proposition 4.10 (below) is similar to that of Proposition 4.9 (above). The
main difference being that we apply Lemma 4.8 in the proof of Proposition 4.10 where we
applied Lemma 4.7 in the proof of Proposition 4.9. Fix a ∈ ω and recall that a generalized
clump is a set of strings of the form σ2≤a|σ| ⊆ 2<ω. The next proposition, i.e. Proposition
4.10 below, deals with “generalized clumpy trees” – i.e. trees that are built via generalized
clumps, in the same way that clumpy trees are built via clumps.

Proposition 4.10. Fix a ∈ ω, a > 0, and set α = 2a+2
2a+3

∈ Q, α < 1. Let T ⊆ 2<ω be a tree,

constructed as follows. We have that T = ∪k∈ωT
k, where T k ⊆ 2<ω is a finite subtree of T

for all k ∈ ω that is constructed (uniformly and computably) in stages (k ∈ ω), and with
the additional property that T 0 ⊆ 2<ω is the downward closure of some particular σ ∈ 2<ω.
Now, if at every stage of the construction of T = ∪k∈ωT

k ⊆ 2<ω, k ∈ ω, we define lk ∈ ω to
be the length of the longest leaf of the finite subtree T k ⊆ 2<ω, and at stage k + 1 we obtain
the finite tree T k+1 ⊇ T k by:

(1) extending each leaf λ of T k ⊆ 2<ω to a node τλ ∈ 2<ω such that |τλ| ≥ 2lk, and
(2) further extending these extensions τλ by some downwards closed subset of the finite

generalized clump 2≤a|τλ| ⊆ 2<ω

(note that we have divided the stage k + 1 construction up into “two halves,” which we will
refer to in the proof below). Then the effective packing dimension of every Z ∈ [T ] ⊆ 2ω is
bounded above by α < 1.

Proof. First, we leave it to the reader to check that for every k ∈ ω, if we denote the set of
nodes that we added to T = ∪t∈ωT

t during the second half of stage k ∈ ω and the first half

of stage k + 1 by Dk ⊆ 2<ω, then there exist ρ⃗k ∈ (2≥lk)2
lk and f⃗k ∈ (2ω)

∑2lk
i=1 2

a|τiρi| as in
Lemma 4.8 above such that

Dk ⊆ D(lk, a, ρ⃗k, f⃗k) ⊆ 2<ω.

This is straightforward to verify, and follows from the construction of T = ∪k∈ωT
k given

in the statement of the Lemma, as well as the definition of D(l, a, ρ⃗, f⃗) ⊆ 2<ω given in the
statement of Lemma 4.8 above.

Now, by Lemma 4.8 above, there exist constants C0 ∈ ω and c0 ∈ Q, c0 > 0, that are
independent of lk ∈ ω and such that∑

σ∈Dk

2−α|σ| ≤
∑

σ∈D(lk,a,ρ⃗k,f⃗k)

2−α|σ| ≤ C02
−c0lk .

Let k0 ∈ ω be large enough so that for all k ≥ k0 we have that k2 ≤ 2k, and

C0

∞∑
k=1

2−c0k0k < 1.
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We now construct a bounded request set R ⊆ ω × 2<ω by setting

R = {⟨rσ, σ⟩ : σ ∈ Dk, k ≥ k0},

where rσ ∈ ω is the greatest integer that is less than or equal to α|σ| + 1 ∈ Q, for each
σ ∈ 2<ω. Note that, for all σ ∈ 2<ω, we have that rσ ≥ α|σ|. By our construction of R it
follows that T \ T k0 ⊆ π2(R), from which it follows that for every Z ∈ [T ] ⊆ 2ω, and every
initial segment of Z, σ ⊂ Z, σ ∈ 2<ω, that was added to T = ∪k∈ωT

k after stage k0, we have
that the pair ⟨rσ, σ⟩ is in R. Hence, if we can show that R is indeed a bounded request set,
then by our construction of R and T it will follow that the effective packing dimension of
every Z ∈ [T ] ⊆ 2ω is bounded above by α ∈ Q, α < 1.

Note that since our construction of T = ∪k∈ωT
k ⊆ 2<ω is assumed to be uniformly

computable in k ∈ ω, it follows that T is a computable tree and by our construction of
R ⊆ ω × T above it also follows that R is a computable set. Also note that, by our
construction of R above, we have that the weight of R is given by

∞∑
k=k0

∑
σ∈Dk

2−rσ ≤
∞∑

k=k0

∑
σ∈Dk

2−α|σ| ≤
∞∑

k=k0

C02
−c0lk .

Now, note that our hypothesis (1) on the construction of T = ∪k∈ωT
k ⊆ 2<ω given in the

statement of the current proposition above says that, at the very least, we double the length
of every leaf at every step of the construction of T = ∪k∈ωT

k, and hence (by induction) it
follows that lk ≥ 2k, for all k ∈ ω. Therefore, since k0 ∈ ω was chosen large enough so
that for all k ≥ k0 we have 2k ≥ k2 ≥ k0k, it follows that the weight of our request set
R ⊆ ω × 2<ω is bounded (above) by

C0

∞∑
k=k0

2−c02k ≤ C0

∞∑
k=k0

2−c0k0k ≤ C0

∞∑
k=1

2−c0k0k < 1.

Hence R is a bounded request set. □

Proposition 4.10 above is the most impotant result of this section, and will play a major
role at the end of the next section, where we use it to bound the effective packing dimension
of every Z ∈ [ΦT

e ] ⊆ 2<ω, for some given clumpy tree T ⊆ 2<ω and e ∈ ω. Although, we
should remark that Proposition 4.10 is slightly more general than we actually need in this
article.

We have now completely analyzed the stage zero construction of X ∈ 2ω. We begin with
the clumpy tree T0 ⊆ 2<ω that we constructed early in this section. We have shown, via
Lemma 3.3 which was key in proving Lemma 4.2 above, that there exists X0 ∈ [T0] ⊆ 2ω such
that the effective packing dimension of X0 is at least 1

2
> 0. We will use a similar argument

in the proof of Theorem 6.1 to show that the real X = ∪s∈ωξs ∈ 2ω mentioned in Theorem
6.1, that we construct in the next section, has effective packing dimension at least 1

4
> 0.

We then proved a key lemma (i.e. Lemma 4.7), which we later used to prove Proposition 4.9
above. Proposition 4.9 says that the effective packing dimension of every X ∈ [T0] ⊆ 2<ω

is bounded above by 4
5
< 1. In the following section we will use the most important result

of this section, Proposition 4.10, which is similar to Proposition 4.9, to help us show that
every Y ∈ 2ω, Y ≤T X, has effective packing dimension strictly less than one. In fact, the
only content of this section that is necessary for a complete understanding of this article is
our construction of the initial clumpy tree T0 ⊆ 2<ω and Proposition 4.10. Everything else is
superfluous and has been included only to help the reader better understand the statements
and proofs of these facts, as well as the lemmas and theorems to come in the next section.
The next section explains the construction of the string ξs+1 ⊇ ξs, ξs+1 ∈ 2<ω, and the tree
Ts+1 ⊆ Ts ⊆ 2<ω at stage s + 1 > 0. Recall that we will have X = ∪s∈ωξs ∈ ∩s∈ωTs ⊆ 2ω,
where X ∈ 2ω is the real mentioned in our main theorem, i.e. Theorem 6.1.
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5. Stage s+ 1 > 0

At stage s + 1 > 0, we assume that we are given a finite string ξs ∈ 2<ω and a pruned
clumpy tree Ts ⊆ T0 ⊆ 2<ω such that ξs ∈ Ts is extendible (recall that we will have ξs ⊂
X ∈ [Ts] ⊆ 2ω) and such that whenever A = A ∩ σ2≤|σ| ⊆ σ2≤|σ| ⊆ 2<ω, σ2≤|σ| ⊆ T0, σ ∈ A,
is a pruned clump on Ts, then A contains at least 2qσ -many leaves of σ2≤|σ|, where qσ ∈ ω is
the smallest number that is greater than or equal to (1 −

∑s
k=1 2

−2k)|σ| ≥ 1
2
|σ|. The main

goal of our construction at stage s+1 > 0 is to produce a finite string ξs+1 ∈ 2<ω, ξs+1 ⊃ ξs,
and a pruned clumpy tree Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω such that ξs+1 ∈ Ts+1 is extendible and
K(ξs+1) ≥ 1

4
|ξs+1| − 1. Furthermore, we will construct the tree Ts+1 ⊆ Ts so that for all

Z ∈ [Ts+1] ⊆ 2ω we have that ξs+1 ⊂ Z and the effective packing dimension of ΦZ
s is strictly

less than one whenever ΦZ
s ∈ 2ω is a total Turing reduction relative to the oracle Z ∈ 2ω.

In the end we will set X = ∪s∈ωξs ∈ 2ω and we will have that {X} = ∩s∈ω[Ts] ⊆ 2ω,
where X ∈ 2ω is as in Theorem 6.1. Most of this section will be devoted to constructing
the clumpy tree Ts+1 ⊆ 2<ω, and verifying that it satisfies the properties mentioned earlier
in this paragraph. In the next section we will put these results together to prove our main
theorem (i.e. Theorem 6.1).

We must be somewhat careful when constructing Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω to ensure that
Ts+1 is still “clumpy enough” to apply Lemma 3.3 so that we may find a string ξs+1 ∈
Ts+1, ξs+1 ⊃ ξs, of high enough relative complexity and in the end conclude that the effective
packing dimension of X = ∪s∈ωξs ∈ 2ω is bounded below by 1

4
> 0. However, we must also

ensure that there are few enough nodes on our trees {Ts}s∈ω to guarantee that for any given
s ∈ ω and Z ∈ [Ts] ⊆ 2ω, whenever ΦZ

s ∈ 2ω is a total Turing reduction relative to Z, we have
that the effective packing dimension of ΦZ

e is strictly less than one. Thus, in constructing
the tree Ts+1 from the tree Ts, we shall omit some clumps of Ts, while ensuring that we
leave enough clumps on Ts+1 to guarantee the existence of strings of high enough relative
complexity to be able to construct the real X = ∪s∈ωξs ∈ ∩t∈ω[Tt] ⊆ 2ω of Theorem 6.1.

5.1. Constructing ξs+1 ⊃ ξs. Under the assumptions made in the first sentence of this
section (above), we may apply Corollary 3.3 to construct ξs+1 ∈ 2<ω, ξs+1 ⊃ ξs, xs+1 ∈ Ts+1,
such that

K(ξs+1) ≥
1

4
|ξs+1| − 1.

The entire construction of Ts+1 ⊆ Ts will take place above ξs+1 ∈ Ts. In other words, for all
σ ∈ Ts+1 such that |σ| ≤ |ξs+1| we will have that σ ⊆ ξs+1.

5.2. Constructing Ts+1 ⊆ Ts. The main purpose of constructing Ts+1, Ts+1 ⊆ Ts ⊆ T0 ⊆
2<ω, Ts+1 = ∪k∈ωT

k
s+1, is to guarantee (i.e. force) that for every Z ∈ [Ts] ⊆ 2ω such that

ΦZ
s ∈ 2ω is a total Turing reduction, we have that the effective packing dimension of ΦZ

s ≤T Z
is strictly less than one. We now proceed with the construction of the pruned clumpy tree
Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω.
The entire construction of Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω, Ts+1 = ∪k∈ωT

k
s+1, takes place above the

node ξs+1 ∈ 2<ω that we specified in the previous subsection. In other words, for all ρ ∈ 2<ω

such that |ρ| ≤ |ξs+1|, we have that ρ ∈ Ts+1 if and only if ρ ⊆ ξs+1. Throughout the rest of
this section we work above ξs+1 ∈ 2<ω. In fact, we let λs+1 ∈ 2<ω, λs+1 ⊇ ξs+1, be a fixed
extendible leaf of T k

s ⊆ 2<ω extending ξs+1 ∈ 2<ω, where k ∈ ω is the least number such
that ξs+1 ∈ T k

s , and we work above λs+1. We will eventually show (by induction) that all
nodes in Ts are extendible, and so λs+1 ∈ Ts, λs+1 ⊇ ξs+1, can be chosen arbitrarily. The
construction of Ts+1 ⊆ Ts is divided up into two cases. Set T 0

s+1 ⊆ 2<ω to be the downward
closure of λs+1 ∈ 2<ω.

5.2.1. Case 1. The first case says that there exists an (extendible) node ρ ∈ Ts, ρ ⊇ λs+1 ⊃
ξs+1, and x ∈ ω, such that for all τ ∈ Ts, τ ⊇ ρ, we have that Φτ

s,|τ |(x) ↑ . Let k + 1 > 0
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be given, let l ∈ ω be the length of the longest leaf of the finite tree T k
s+1 ⊆ 2<ω. We now

construct the finite tree T k+1
s+1 ⊇ T k

s+1 as follows. Let T k+1
s+1 ⊇ T k

s+1 be the finite tree obtained
by first extending every (extendible) leaf λ0 ∈ 2<ω of the finite tree T k

s+1 ⊆ 2<ω to a string

λ ⊇ λ0, λ ∈ 2<ω, such that λ is the root of some pruned clump A ⊆ λ2≤|λ| ⊆ Ts, λ ∈ A, and
2−2s−2|λ| ≥ 4l ≥ 4|λ0|, and then including the (downward closure of the) pruned clump A
in T k+1

s+1 . Now, by our construction of Ts+1 = ∪k∈ωT
k
s+1 ⊆ 2<ω above, it follows that every

real Z ∈ [Ts+1] ⊆ 2ω extends the finite binary string ρ ∈ 2<ω. Therefore, by definition
of ρ it follows that ΦZ

s is partial for every Z ∈ [Ts+1] ⊆ 2ω, and so our construction of
Ts+1 ⊆ Ts ⊆ 2<ω, Ts+1 = ∪k∈ωT

k
s+1, has forced ΦX

s to be a partial reduction (since we will
have that X ∈ ∩t∈ω[Tt] ⊆ [Ts+1] ⊆ 2ω. Also, by our construction of Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω,
it is not difficult to verify that Ts+1 is indeed a pruned clumpy subtree of Ts.

5.2.2. Case 2. The second case says that there does not exist ρ ∈ Ts as defined in the previous
paragraph. In this case it is not difficult to see that for every (extendible) ρ ∈ Ts such that
ρ ⊇ λs+1 and every x ∈ ω, there exists τ ∈ Ts, τ ⊇ ρ, such that Φτ

s,|τ |(x) ↓ . The key fact

about case two is that it allows us to uniformly and computably calculate Φρ
s ∈ 2<ω, for every

(extendible) node ρ ∈ Ts. To compute Φρ
s, ρ ∈ Ts, s ∈ ω, use the hypothesis that we are in

case two and ρ is extendible4 to (uniformly and computably) find a node τ ⊇ ρ, τ ∈ 2<ω,
such that Φτ

s,|τ |(|ρ|+ 1)↓ . Then search for the shortest substring of τ , call it σ ∈ Ts ⊆ 2<ω,

σ ⊆ τ , such that the use of Φσ
s exceeds |ρ| (it follows from our choice of τ ∈ 2<ω and Remark

2.1 (2) that σ = τ is an initial segment of τ that has this property, though it may not be
the shortest such segment). It follows that Φρ

s = (Φσ
s )

− ∈ 2<ω. Therefore, we can uniformly
compute Φρ

s ∈ 2<ω, for any given ρ ∈ Ts.
Next, we specify how to prune the given clumpy tree Ts ⊆ 2<ω to obtain the clumpy tree

Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω. Our construction of Ts+1 = ∪k∈ωT
k
s+1 ⊆ Ts proceeds in substages

k ∈ ω. Recall that we have already defined T 0
s+1 to be the downward closure of λs+1 ∈ Ts.

At stage k+1 > 0 of the construction of Ts+1 = ∪k∈ωT
k
s+1 ⊆ Ts ⊆ 2<ω, we construct T k+1

s+1

by extending the leaves of T k
s+1. Let l ∈ ω be the length of the longest leaf of the finite

tree T k
s+1 ⊆ 2<ω, and let λ0 be a fixed (extendible) leaf of T k

s+1. First, we extend λ0 to a
node λ ⊇ λ0, λ ∈ Ts ⊆ 2<ω, such that λ is the root of a pruned clump on Ts of the form
Cλ = Cλ ∩ λ2≤|λ| ⊆ 2<ω and we have that 2−2s−2|λ| ≥ 4l ≥ 4|λ0| and |λ| = 4n = 22n ∈ ω,
for some n ≥ s + 1, n ∈ ω. Let Lλ ⊆ Cλ denote the leaves of Cλ that are also leaves
of λ2≤|λ|, and recall that, by our assumptions on Ts (i.e. the first sentence of this section)

we have that |Lλ| ≥ 2(1−
∑s

j=1 2
−2j)|λ| (note that, by our assumptions on λ, we have that

(1 −
∑s

j=1 2
−2j)|λ| ∈ ω). Since we are in case two, for every ρ ∈ Lλ we can uniformly and

effectively extend ρ to a node ρ′ ⊇ ρ, ρ′ ∈ Ts ⊆ 2<ω, such that |Φρ′
s | ≥ 2−2s−2|λ| ∈ ω.

Now, since 2−2s−2|λ| ∈ ω (again, this follows from our assumptions on λ ∈ Ts) there are at

most 22
−2s−2|λ|-many nodes in the set 2=2−2s−2|λ| ⊆ 2<ω. Now, by the pigeonhole principle5,

it follows that there exists a node τ ∈ 2=2−2s−2|λ| such that there are at least 2(1−
∑s+1

j=1 2
−2j)|λ|-

many strings ρ ∈ Lλ ⊆ 2<ω that have an extension ρ′ ∈ Ts such that Φρ′
s ⊇ τ (again,

note that by our assumptions on λ we have that (1 −
∑s+1

j=1 2
−2j)|λ| ∈ ω). Call the set of

strings ρ′ ∈ Ts ⊆ 2<ω of the previous sentence L0
λ. We define T k+1

s+1 to be the downward
closure of the set of nodes L0

λ, as λ0 (and λ ⊇ λ0) varies over all extendible leaves of T k
s+1.

This ends the construction of the finite tree T k+1
s+1 ⊆ 2<ω, and also ends the construction of

Ts+1 = ∪k∈ωT
k
s+1 ⊆ 2<ω.

Remark 5.1. Note that the oracle ∅′′ can distinguish between case one and case two, and
therefore the sequence of computable trees {Ts}s∈ω can be made computable in ∅′′. Since ∅′′

4We will eventually show that all nodes of the tree Ts ⊆ 2<ω are extendible.
5A similar argument involving the pigeonhole principle is used in [DN] to bound the effective packing

dimension of reals.
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can also compute K(σ) ∈ ω, uniformly in σ ∈ 2<ω, it follows that the real X = ∪s∈ωξs ∈ 2ω

of Theorem 6.1 can be chosen to be computable in ∅′′. We do not know for sure whether or
not this bound on the complexity of X can be improved to ∅′, although we conjecture that a
∅′ upper bound for X is attainable.

5.3. Some basic facts about Ts+1 ⊆ Ts ⊆ 2<ω. We now verify that Ts+1 ⊆ Ts ⊆ 2<ω

satisfies various properties by mathematical induction. We only consider the base case
T 0
s+1, and the induction step when Ts+1 is constructed via case two. The case when Ts+1 is

constructed via case one is always easier than when Ts+1 was obtained via case two.
The first thing to note about our construction of Ts+1 ⊆ Ts ⊆ 2<ω is that Ts+1 is a pruned

clumpy tree. This is because at every substage k + 1 ∈ ω, we add a pruned clump to
T k+1
s+1 above every (extendible) leaf of T k

s+1. Also note that by our construction of Ts+1 =
∪k∈ωT

k
s+1 ⊆ 2<ω, every node σ ∈ Ts+1 is extendible whenever the same is true of Ts. Since

every node of T0 is extendible (by construction), it follows by induction that every node
σ ∈ Ts is extendible, for all s ∈ ω.

Note that by our construction of Ts+1 ⊆ Ts above it follows that if for every pruned clump
of the form A = A ∩ σ2≤|σ| ⊆ Ts ⊆ 2<ω, σ2≤|σ| ⊆ T0 ⊆ 2<ω, σ ∈ A ⊆ 2<ω, A contains at

least 2(1−
∑s

j=1 2
−2j)|σ|-many leaves of σ2≤|σ|, then the same is true of every clump in the tree

Ts+1 with the exponent (1 −
∑s

j=1 2
−2j)|σ| ≥ 1

2
|σ| replaced by (1 −

∑s+1
j=1 2

−2j)|σ| ≥ 1
2
|σ|.

In either case, however, we have the uniform lower bound of 1
2
|σ|. Since the tree T0 ⊆ 2<ω

obviously satisfies this condition with s = 0, then it follows by induction that every Ts,
s ∈ ω, satisfies this condition also. Therefore, we were justified when applying Corollary
3.3 to the sequence of pruned clumpy trees Ts ⊆ 2<ω, s ∈ ω, to produce strings ξs, s ∈ ω,
such that K(ξs) ≥ 1

4
|ξs| − 1 in Subsection 5.1 above. Generally speaking, this shows that

in constructing Ts+1 from Ts, we did not remove too many nodes in the process and are
therefore able to find strings on Ts of relatively high complexity.

Finally, we claim that we can arrange it so that at every substage k ∈ ω of the construc-
tion of Ts+1 = ∪k∈ωT

k
s+1 we choose the strings λ ⊇ λ0 (above) so that the length of λ ⊇ λ0

is independent of λ, λ0 ∈ 2<ω and depends only on k ∈ ω. The proof of this claim is by
mathematical induction. By our construction of T0 = ∪k∈ωT

k
0 ⊆ 2<ω, the claim is true for

the tree T0. Now, assume that the claim holds for the tree Ts; we aim to show that it holds
for Ts+1 as well. Note that the conditions that define λ ⊇ λ0 only depend on the (largeness of
the) length of λ and the fact that λ is the root of some clump in T0; they do not mention any
other properties of λ. Now, since there are finitely many leaves in any T k

s+1, and since every

leaf of T k′
s is the initial segment of some pruned clump of T k′+1

s , for all k′ ∈ ω, we can wait
until some finite tree T k′

s presents itself with pruned clumps above every leaf λ0 ∈ T k
s+1 whose

roots are all of sufficiently large and equal length to satisfy the requirements that we imposed
on λ ⊇ λ0. At this point we extend every leaf λ0 ∈ T k

s+1 to a corresponding node λ ⊇ λ0 such

that λ2≤|λ| ⊆ T0 ⊆ 2<ω, |λ| ∈ ω is independent of λ0, and |λ| is sufficiently large to satisfy
the requirements that we imposed on λ. The claim now follows. Note that the sequence
of uniform lengths |λk| ∈ ω, k ∈ ω, that we have just finished choosing for λk = λ ⊃ λ0

during the construction of T k
s+1 ⊇ T k−1

s+1 , k > 0, is computable, uniformly in k. Also, by
our construction of λk+1 ⊇ λ0 above (i.e. since we required that 2−2s−2|λk+1| ≥ 4l ≥ 2|λ0|
at stage k + 1 > 0 of our construction of Ts+1 = ∪k∈ωT

k
s+1 ⊆ 2<ω above), it follows that

2−2s−2|λk+1| ≥ 4|λk|, where λk = λ ∈ T k
s+1 ⊆ 2<ω is as in the previous sentence.

We have now completed the construction of Ts+1 ⊆ Ts ⊆ T0 ⊆ 2<ω and established some
basic facts about the construction, one of which allows us to find the strings ξs, s ∈ ω, in
Subsection 5.1 above such that X = ∪s∈ωξs ∈ 2ω is the real of our main theorem. In the next
subsection we will prove a key lemma that will eventually help us to prove the main theorem
by verifying that for every s ∈ ω and every Z ∈ [Ts] ⊆ 2ω, the effective packing dimension of
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ΦZ
s is strictly less than one whenever ΦZ

s ∈ 2ω is a total Turing reduction relative to Z ∈ 2ω,
i.e. ΦZ

s ≤T Z.

5.4. Bounding the effective packing dimension of every Z ∈ [ΦTs+1
s ] ⊆ 2ω. The

current subsection is entirely devoted to proving the following hard lemma.

Lemma 5.2. For every s ∈ ω such that the pruned clumpy tree Ts+1 ⊆ 2<ω was constructed
via case two (see above for details), there exists a rational number 0 ≤ αs+1 < 1 such that
the effective packing dimension of every Z ∈ [ΦTs+1

s ] ⊆ 2ω is at most αs+1.

Proof. Set as+1 = 22s+2 ∈ ω, and αs+1 = 2as+1+2
2as+1+3

= 22s+3+2
22s+3+3

∈ Q, 0 ≤ αs+1 < 1. We will

use the proof of Proposition 4.10 above to prove the current lemma by weighing the tree of
nodes ΦTs+1

s ⊆ 2<ω against a certain generalized clumpy tree (constructed via generalized
clumps of the form σ2≤a|σ| ⊆ 2<ω, where a = as+1 = 22s+2 ∈ ω) that we will construct
and that will satisfy the hypotheses of Lemma 4.10. More specifically, we shall construct a
generalized clumpy tree T ⊆ 2<ω that satisfies the hypotheses of Proposition 4.10 and such
that for every l ∈ ω, there are at least as many strings of length l on T ⊆ 2<ω as there
are on ΦTs+1

s ⊆ 2<ω. It will then follow that, for every n ∈ ω, the αs+1-weight of the set
Vn = {σ ∈ T : |σ| ≥ n} ⊆ 2<ω is at least that of Wn = {σ ∈ ΦTs+1

s : |σ| ≥ n} ⊆ 2<ω,
and therefore if we can show that for some n ∈ ω, the αs+1-weight of Vn is bounded above
by one, then the same must be true of Wn. The proof of Proposition 4.10 applied to the
generalized clumpy tree T will allow us to conclude that for some n ∈ ω, the αs+1-weight of
Vn is bounded above by one.

We construct the tree T ⊆ 2<ω in stages T = ∪k∈ωT
k, T k ⊆ T k+1 ⊆ 2<ω, as follows. First,

let l1 < l2 < l3 < · · · < lk < · · · be an infinite computable sequence of numbers such that
lk ∈ ω is the length of the roots of the pruned clumps that we added to Ts+1 = ∪k∈ωT

k
s+1 at

substage k ∈ ω, k > 0, of the construction of Ts+1 (we showed that lk ∈ ω is well-defined
and uniformly computable; see the second last paragraph of Subsection 5.3 above for more
details), and let m1 < m2 < · · · be such that mi = 2−2s−2li ∈ ω, for all i ∈ ω, i > 0. First,
we set T 0 ⊆ 2<ω to be the downward closure of the finite binary string 0m1 ∈ 2<ω. Then, for
all k + 1 > 0, we obtain the finite tree T k+1 ⊇ T k by first including the generalized clump
λ2≤as+1|λ| ⊆ 2<ω in T k+1, for every leaf λ of T k, where as+1 = 22s+2 ∈ ω, and then extending
every leaf of λ2≤as+1|λ| ⊆ T s+1, λ ∈ 2<ω a leaf of T k, by a string of zeros so that the leaves
of T k+1 ⊆ 2<ω are all of length (exactly) mk+2 ∈ ω. This ends the construction of T k+1, and
of T = ∪k∈ωT

k ⊆ 2<ω. Note that by our construction of T = ∪k∈ωT
k ⊆ 2<ω above we have

as+1|λ| = 22s+2mk+1 = lk+1, for all k ∈ ω, where λ ∈ 2<ω is a leaf of T k (as above).

Now, by our construction of lk+1 ∈ ω above, it follows that mk+1 =
lk+1

22s+2 ≥ 4lk (we proved
this in the previous subsection). Therefore, by the last sentence of the previous paragraph it
follows that after we include the generalized clumps λ2≤as+1|λ| = λ2≤as+1mk+1 = λ2≤lk+1 ⊆ 2<ω

in our tree T k+1 ⊆ 2<ω, T k+1 ⊇ T k, we (at least) double the length of each of the leaves of
the resulting intermediate tree to obtain T k+1 (note that by construction the leaves of the
intermediate tree have length mk+1 + lk+1 ≤ 2lk+1). It now follows that T = ∪k∈ωT

k ⊆ 2<ω

satisfies the hypotheses of Proposition 4.10 with a = as+1 = 22s+2 ∈ ω. Therefore, the
proof of Proposition 4.10 applies to the tree T ⊆ 2<ω, and produces a bounded request
set R ⊆ ω × 2<ω and a number N ∈ ω such that for all σ ∈ T , |σ| ≥ N , we have that

⟨rσ, σ⟩ ∈ R, where rσ ∈ ω, rσ ≤ αs+1|σ|+1 = 22s+3+2
22s+3+3

|σ|+1 = 2as+1+2
2as+1+3

|σ|+1. Now, since the

tree ΦTs+1
s ⊆ 2<ω is computable, (as we explained in the first paragraph of the proof of the

current lemma above) to prove the current lemma it suffices to show that for all l ∈ ω there
are at least as many nodes of length l in T as there are in ΦTs+1

s . The proof of this fact is by
induction on the stages k ∈ ω of our construction of T = ∪k∈ωT

k ⊆ 2<ω. First, however, we
prove an easier claim which says that for all k ∈ ω, T k has at least as many leaves as T k

s+1.
To prove this easier claim, note that the base case is trivial since both T 0 and T 0

s+1 are
constructed as the downward closures of some finite binary strings and therefore each have a
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single leaf. Now, at each subsequent stage k+1, by our constructions of T = ∪k∈ωT
k ⊆ 2<ω

and Ts+1 = ∪k∈ωT
k
s+1 ⊆ 2<ω, respectively, in passing from T k to T k+1 or T k

s+1 to T k+1
s+1 , any

single leaf λ ∈ 2<ω is extended by exactly 2lk+1-many incomparable nodes in the former case,
and at most 2lk+1-many nodes in the latter case. The claim now follows by induction on
k ∈ ω. In the next two paragraphs we will use what we have shown in the current paragraph
to prove that for all l ∈ ω there are at least as many nodes of length l in T as there are in
ΦTs+1

s .
At stage k = 0 we set T = 0m1 ∈ 2<ω (above). Now, note that T 0

s+1 ⊆ 2<ω is the downward

closure of a single λs+1 ∈ 2<ω, λs+1 ⊇ σs+1, therefore ΦT 0
s+1 ⊆ 2<ω is the downward closure

of some σ ∈ 2<ω as well. Furthermore, note that to construct T 1
s+1 from T 0

s+1 we first extend
the leaf λs+1 ∈ T 0

s+1 ⊆ 2<ω to a node λ ∈ Ts, λ ⊇ λs+1, such that |λ| = l1 ∈ ω (where the
computable sequence of numbers l1 < l2 < · · · is as in the previous two paragraphs), and
then we prune the pruned clump λ2≤|λ| ∩ Ts further so as to guarantee the existence of a
string ρ ∈ 2=m1 that every real f ∈ [Ts+1] ⊆ 2ω extending λ (which all reals in [Ts+1] do,
since we are considering the early stage k = 1 of the construction of Ts+1 = ∪k∈ωT

k
s+1 ⊆ 2<ω,)

must satisfy Φf
s ⊃ ρ. Therefore, it follows that for all l ∈ ω such that l ≤ m1, we have that

ΦTs+1
s ⊆ 2<ω has exactly one node of level l. This proves the base case.
For the induction step, let k+1 > 0 be given. We aim to show that for all l ∈ ω such that

mk+1 < l ≤ mk+2 there are at least as many nodes of length l on T k+1 ⊆ 2<ω as there are

on Φ
Tk+2
s+1

s ⊆ 2<ω. First note that (by what we have shown above) there are at least as many
leaves on T k as there are on T k

s+1. Without any loss of generality we can assume for all k ∈ ω

that the size of set of nodes {Φλ
s : λ a leaf of T k+1

s+1 } ⊆ 2<ω is equal to that of {λ ∈ 2<ω : λ a

leaf of T k+1
s+1 } ⊆ 2<ω, since this assumption could only increase the number of nodes of ΦTs+1

s

of any given level. Now, note that by our construction of T k+1
s+1 ⊇ T k

s+1 above, an argument
similar to that of the base case (i.e. by the way we pruned our clumps in passing from T k

s+1

to T k+1
s+1 in the construction of Ts+1 above), and our assumption in the previous sentence, it

follows that for all k ∈ ω the number of nodes of level mk+1 ∈ ω in ΦTs+1
s ⊆ 2<ω is in fact

equal to the number of leaves of T k
s+1. Therefore, since there are at least as many leaves on

T k as there are on T k
s+1, and (by construction) the leaves of T k are all of length mk+1 ∈ ω,

then it follows that for any given number of the form mi ∈ ω, i ∈ ω, i > 0, the tree T has
at least as many nodes as ΦTs+1

s ⊆ 2<ω of length mi. Now, the induction step follows from
the fact that at stage k + 1 of the construction of T k+1 ⊇ T k, above every leaf λ ∈ 2<ω of
T k we first include the generalized clump λ2≤as+1|λ| in T k+1, and then we extend the leaves
of the clump λ2≤a|λ| by a string of zeros. In other words, in our construction of T k+1 ⊇ T k,
the leaves of T k split as fast as possible. This completes the proof of Lemma 5.2. □

6. The main theorem

We now state and prove the main theorem of this article, using our results of the previous
two sections.

Theorem 6.1. There exists X ∈ 2ω of effective packing dimension at least 1
4
> 0 and such

that for every e ∈ ω the effective packing dimension of ΦX
e is strictly less than one whenever

ΦX
e ∈ 2ω is a total Turing reduction relative to X.

Proof. Most of the work has already been done. Let

X =
⋃
k∈ω

ξk ∈ 2ω,

where ξk ∈ 2<ω, ξk+1 ⊃ ξk, k ∈ ω, are as defined in Subsection 5.1 of the previous section.
Recall that by our construction of ξs+1 ∈ 2<ω, ξs+1 ⊃ ξs, in the previous section we have
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that

K(ξs) ≥
1

4
|ξs| − 1,

for all s ∈ ω, andX ∈ ∩s∈ω[Ts] ⊆ 2ω. Therefore, we have that the effective packing dimension
of X = ∪s∈ωξs is given by

lim sup
n→∞

K(X↾n)
n

≥ lim sup
s→∞

K(ξs)

|ξs|
≥ lim sup

s→∞

|ξs| − 4

4|ξs|
=

1

4
.

Therefore, the effective packing dimension of X = ∪s∈ωξs ∈ 2ω is at least 1
4
> 0.

Assume now that ΦX
e ∈ 2ω, e ∈ ω, X ∈ ∩s∈ω[Ts] ⊆ 2ω, is a total Turing reduction. Then

we must have constructed the clumpy tree Te+1 ⊆ 2<ω via case two (otherwise ΦX
e would have

been a partial Turing reduction). By Lemma 5.2 we have that for all Z ∈ [ΦTe+1
e ] ⊆ 2ω, the

effective packing dimension of Z is at most αe+1 =
22e+3+2
22e+3+3

< 1. Now, since X ∈ ∩s∈ω[Ts] ⊆
[Te+1] ⊆ 2ω, it follows that ΦX

e ∈ [ΦTe+1
e ] ⊆ 2ω, and therefore the effective packing dimension

of the real ΦX
e is at most αe+1 < 1. □

Finally, we wish to point out that our main theorem (i.e. Theorem 6.1 above) can be
combined with the results of [FHP+06, BDS09, DH] that we discussed in the first section
above in a simple way to yield the following stronger version of our main theorem.

Corollary 6.2. For every real number 0 < d < 1, there is a real Z ∈ 2ω of effective packing
dimension greater than or equal to d and such that for every e ∈ ω the effective packing
dimension of ΦZ

e is strictly less than one whenever ΦZ
e ∈ 2ω is a total Turing reduction

relative to Z.

Proof. Let 0 < d < 1 be any given real number, and let X ∈ 2ω be as in the main theorem
(i.e. Theorem 6.1) above. Now, by the results of [FHP+06, BDS09, DH] mentioned in the
first section of this article, it follows that there is a real Z ≤T X such that Z has effective
packing dimension greater than or equal to d. Furthermore, by our construction of X ∈ 2ω

above and the fact that Z ≤T X, it follows that Z cannot Turing compute a real of effective
packing dimension one. □

We end with the following question, which we alluded to in Remark 5.1 above. Recall that
Remark 5.1 says that the real X ∈ 2ω can be taken to be computable relative to ∅′′.

Question 6.3. Is there a real X ∈ 2ω, X ≤T ∅′, as in Theorem 6.1 above?

We conjecture that the answer to Question 6.3 above is “yes.”
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