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Abstract. We construct a Π0
1-class X that has classical packing dimension

0 and effective packing dimension 1. This implies that, unlike in the case of

effective Hausdorff dimension, there is no natural correspondence principle (as

defined by Lutz) for effective packing dimension. We also examine the rela-
tionship between upper box dimension and packing dimension for Π0

1-classes.

1. Introduction

A major theme of computability theory is the effectivization of classical math-
ematics. To do this one takes an existing (i.e. classical) mathematical notion
and develops a new computability-theoretic analogue of that notion. Afterwards,
one tries to determine the similarities and differences between the old classical no-
tion and its new effective counterpart. This article examines the classical notion of
packing dimension, as well as its effective counterpart which is called either effective
packing dimension or effective strong dimension.

In [7] Lutz effectivized the notion of Hausdorff dimension to obtain the notion of
effective Hausdorff dimension. Furthermore, he conjectured that for Hausdorff di-
mension there is a correspondence principle. By correspondence principle we mean
a theorem which says that there is a certain (natural) class of sets whose classical
and effective Hausdorff dimensions are equal. Hitchcock [5] found such a class by
showing that if X is a union of Π0

1-classes, then the classical and effective Hausdorff
dimensions of X are the same (for more information on Π0

1-classes see [10, 11]).
This is a beautiful and useful result, because it allows one to compute the classi-
cal Hausdorff dimension of a set by determining its effective Hausdorff dimension,
which, as is shown in [7], is the supremum of the effective Hausdorff dimensions of
its individual points.

Later, Athreya, Hitchcock, Lutz, and Mayordomo [1] effectivized the classical
notion of packing dimension to obtain the notion of effective packing dimension.
They also wondered whether or not there existed a correspondence principle for
this new notion of dimension. The main theorem of this article shows that there
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is a Π0
1-class X that has classical packing dimension 0 (in fact X is countable)

and effective packing dimension 1. Hence, there is no possibility for a reasonable
correspondence principle of the same sort as the one for Hausdorff dimension.

The plan of the rest of the paper is as follows. Section 2 contains the necessary
definitions and notational conventions. Section 3 consists of the proof of the main
theorem which says that there is a Π0

1-class X with classical packing dimension 0
and effective packing dimension 1. Finally, section 4 contains two theorems. The
first proves that the effective packing dimension of a Π0

1-class is always less than
or equal to its upper box dimension. The second theorem shows that there is a
Π0

1-class X that has effective packing dimension 0 and upper box dimension 1.
For further information on computability theory, effective randomness, and di-

mension theory, consult [2, 3, 8, 9].

2. Definitions and notation

2.1. Cantor space and Π0
1-classes. In this article ω denotes the set of natural

numbers, 2<ω denotes the set of finite binary sequences, and 2ω denotes the set
of infinite binary sequences (i.e. Cantor space). For any σ ∈ 2<ω, let |σ| denote
the length of σ. For any τ ∈ 2<ω and n ∈ ω we write Cτ

n for the set of nodes
{τσ ∈ 2<ω : 1 ≤ |σ| ≤ n} — i.e. the “cone” above τ of length n. Also, let
Cτ denote the set {σ ∈ 2<ω: σ extends τ}. 2n denotes the set of strings of length
n ∈ ω.

For all f ∈ 2ω and n ∈ ω, f � n denotes the first n bits of f . We write σ ⊆ τ
to mean that σ ∈ 2<ω is an initial segment of τ ∈ 2<ω; in other words τ extends
σ. Also, if f ∈ 2ω and σ ∈ 2<ω then σ ⊆ f means that σ is an initial segment
of f . A set A ⊆ 2<ω is prefix-free if for any σ, τ ∈ A such that σ 6= τ , we have
σ * τ . If A ⊆ 2<ω and k ∈ ω then A<k = {σ ∈ A : |σ| < k}. We denote the plain
and prefix-free Kolmogorov complexity of a string σ ∈ 2<ω by C(σ) and K(σ),
respectively. For more information on plain and prefix-free Kolmogorov complexity
see [6].

A set X ⊆ 2ω is a Π0
1-class if there is a computable tree T ⊆ 2<ω such that X is

the set of paths through T .

2.2. Packing dimension. In this section we define the notion of classical packing
dimension. For more information on classical packing dimension see [4].

For every k ∈ ω let Ak be the collection of prefix-free sets A ⊆ 2<ω such that
A<k = ∅. For every X ⊆ 2ω we now define

Ak(X) =

{
A ∈ Ak : X ⊆

⋃
α∈A

Cα

}
,

Bk(X) = {A ∈ Ak : (∀α ∈ A)[Cα ∩X 6= ∅]}.
Ak(X) is the set of all covers of X, while Bk denotes the set of all packings of

X. For more information on covers and packings, see [4].
If X ⊆ 2ω, s ∈ [0,∞), and k ∈ ω, then we define the quantity

P s
k (X) = sup

B∈Bk(X)

∑
β∈B

2−s|β|

which is decreasing in k, and so the limit

P s
∞(X) = limk→∞ P s

k (X)
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exists, though it may be infinite. We now define the s-dimensional packing (outer)
cylinder measure of X:

P s(X) = inf

{ ∞∑
i=0

P s
∞(Xi) : X ⊆

∞⋃
i=0

Xi

}
.

Definition 2.1. The packing dimension of X ⊆ 2ω is dimP(X) = inf{s ∈ [0,∞) :
P s(X) = 0}.

Throughout this article we use a well-known characterization of packing dimen-
sion as a modified box dimension, which we define next.

2.3. Modified box dimension. For every X ⊆ 2ω, and n ∈ ω, let

Nn(X) = |{σ ∈ 2n : (∃f ∈ X)σ ⊆ f}|.
Now, the upper box dimension of X is given by

dimB(X) = lim supn→∞
log(Nn(X))

n
.

Though we will not mention it again, it is worth noting that X also has a
lower box dimension dimB(X), which is obtained by replacing lim sup by lim inf
in the definition of upper box dimension. If dimB(X) = dimB(X), then the box
dimension of X dimB(X) is defined and equal to this number. As we will see in
section 4, upper box dimensions are easy to compute, but poorly behaved. A more
well-behaved notion is the modified upper box dimension of X

dimMB(X) = inf

{
sup

i
dimB(Xi) : X ⊆

∞⋃
i=0

Xi

}
;

moreover, it is equal to the packing dimension of X. In fact, the following theorem
is well-known (for a proof see [4]).

Theorem 2.2. For all X ⊆ 2ω, 0 ≤ dimH(X) ≤ dimMB(X) = dimP(X) ≤
dimB(X) ≤ 1.

From now on we will make no distinction between the modified upper box di-
mension of X and the (classical) packing dimension of X.

2.4. Packing dimension and s-gales. In this section we define the effective pack-
ing dimension of a set X ⊆ 2ω. For a more complete guide to effective dimension
theory which includes the definition of effective Hausdorff dimension, consult [1, 7].

Definition 2.3. Fix a number s ∈ [0,∞). An s-supergale is a function d : 2<ω →
R≥0 that satisfies, for all σ ∈ 2<ω, the following condition

d(σ) ≥ 2−s[d(σ0) + d(σ1)].

Replacing ≥ with = in the definition above gives the definition for an s-gale.
1-gales are called martingales, and 1-supergales are called supermartingales. An
s-gale or s-supergale is Σ0

1 if it may be computably approximated from below by a
uniform sequence of rational numbers.

Intuitively, s-gales are thought of as strategies for betting on the bits of some
binary sequence f ∈ 2ω (in order). In particular, if σ ∈ 2<ω is an initial segment of
f , then d(σ) is the capital that one would have after placing |σ|-many bets. The
parameter s is thought of as “fairness factor” because as s decreases it becomes
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more difficult to increase one’s capital. Next we define what it means for s-gales
and s-supergales to succeed strongly on a sequence f ∈ 2ω.

Definition 2.4. Let d be an s-gale or an s-supergale, for some s ∈ [0,∞). We say
that d succeeds strongly on f ∈ 2ω if

lim infn→∞ d(f�n) = ∞.

The strong success set of d is the set

S∞str[d] = {f ∈ 2ω : d succeeds strongly on f}.

The following surprising result of Lutz gives a characterization of classical pack-
ing dimension in terms of s-gales.

Theorem 2.5 (Lutz). For any X ⊆ 2ω,

dimP(X) = inf
{

s :
there is an s− gale d
such that X ⊆ S∞str[d]

}
.

Now, by effectivizing the notions of s-gales and s-supergales, we obtain the
following definition of effective packing dimension.

Definition 2.6. The effective packing dimension of X ⊆ 2ω is

cDim(X) = inf
{

s :
there is a Σ0

1 s−gale d
such that X ⊆ S∞str[d]

}
.

For all f ∈ 2ω define Dim(f) = cDim({f}).

The following are two well-known and useful theorems about effective packing
dimension. The first characterizes effective packing dimension of points in Cantor
space in terms of the prefix-free Kolmogorov complexity of their initial segments.
The second says that the effective packing dimension of a set X ⊆ 2ω is the supre-
mum of the dimensions of its individual points. In other words, effective packing
dimension is absolutely stable.

Theorem 2.7. For all f ∈ 2ω,

cDim(f) = lim supn→∞
K(f�n)

n
.

Theorem 2.8. For all X ⊆ 2ω,

cDim(X) = sup
f∈X

Dim(f).

The next section is devoted to proving the main theorem of this article, which
says that there is a Π0

1-class X such that dimP(X) = 0 and cDim(X) = 1.

3. No correspondence principle for effective packing dimension of
Π0

1-classes

Theorem 3.1. There exists a (countable) Π0
1-class X such that dimP(X) =

dimMB(X)=0 and cDim(X) = 1.

Proof. We construct a computable tree T = ∪sTs, Ts ⊂ Ts+1, in stages such that
X is the set of paths through T . Furthermore, Ts+1 is obtained from Ts by ex-
tending the leaves of Ts. Also, every path of T will be computable, except for
one distinguished path t = ∪iτi ∈ X (t ∈ 2ω, τi ∈ 2<ω, τi ⊂ τi+1), such that
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K(τi) ≥ (1 − 2−i)| τi|. From these facts it follows that X is countable, and there-
fore has a classical packing dimension of 0. However, since t ∈ X has effective
packing dimension 1, it follows from Theorems 2.7 and 2.8 that the same must hold
of X. All that is left to do is build T and show that it has these properties. Though
it does not necessarily follow from the construction below, we wish to note that the
following construction can be modified so that t ∈ 2ω is in fact a left-c.e. real.

The construction of T

Stage 0: Put the nodes ∅, 0, 1, into T0, and set τ0
0 = 0.

Stage s + 1: Let τ = τ s
r for the largest r ≤ s for which τ s

r is currently defined.
We begin by enumerating all σ ∈ Ts into Ts+1. If λ ∈ Ts is the length-

lexicographically least leaf of Ts extending τ , we computably determine a number
n such that there exists a node ρ ∈ Cλ

n such that K(ρ) ≥ (1− 2−r−1)|ρ|. Note that
n can be determined effectively since, by the definition of plain Kolmogorov com-
plexity C, and a simple counting argument it follows that for any λ ∈ 2<ω, n ∈ N,
if M = max{C(σ) : σ ∈ Cλ

n} then M ≥ n. Now, for any ρ′ ∈ Cλ
n we have

(1−2−r−1)|ρ′| ≤ (1−2−r−1)(n+r) ≤ (1−2−r−1)(M +r) = M +r−2−r−1(M +r).

Therefore, if n ≤ M is chosen large enough so that r − 2−r−1(M + r) < 0 (recall
that r is a known quantity and so the inequality can be effectively solved for n),
then we have that

M ≥ M + r − 2−r−1(M + r) ≥ (1− 2−r−1)|ρ′|.
Hence, by definition of M , there is a string ρ ∈ Cτ

n such that C(ρ) ≥ (1−2−r−1)|ρ|.
But we also have that K(ρ) ≥ C(ρ), and so K(ρ) ≥ (1 − 2−r−1)|ρ|. Once n has
been effectively determined, then for all σ ∈ Cλ

n, put σ into Ts+1. Define τ s+1
r+1 to

be the least length-lexicographic proper extension σ ⊃ τ = τr on Ts+1 such that
Ks(σ) ≥ (1− 2−r−1)|σ|, where Ks is a (fixed) computable approximation to K.

Next, let j > 0 be the smallest number such that Ks(τ s
j ) 6= Ks+1(τ s

j ), and set
τ s+1
i to be undefined for all i ≥ j, while setting τ s+1

i = τ s
i for all i < j. If such a j

does not exist, do nothing. Finally, put all nodes of the form λ′0 into Ts+1, where
λ′ ranges over the leaves of Ts not equal to λ. This ends the construction of T .

Lemma 3.2. For every i, τi = lims τ s
i exists. Furthermore, τi ∈ T , and τi−1 ⊂ τi

for every i ≥ 1.

Proof. The proof is by induction. Note that τ s
0 = 0 for all stages of the construction,

and so the base case holds. For the induction step, let s0 be the last stage such that
τ s0
j−1 is undefined or 0 if no such stage exists, and suppose (as part of the inductive

hypothesis) that at all stages s > s0 τ s
j−1 = τ s+1

j−1 . Thus, for all s > s0 it makes
sense to write τj−1 = lims τ s

j−1 instead of τ s
j−1.

First note that (by the construction of T ) τ s0
j is undefined, and furthermore, if

s > s0 is a stage at which τ s
j is defined, then it must properly extend τj−1 and it

must also be a node of Ts. Hence, if τj = lims τ s
j exists (as we will show in the next

paragraph) then τj ⊃ τj−1 and τj ∈ T .
Now, by the construction of Ts+1, there is a σ ∈ Ts+1 properly extending τj−1

such that K(σ) ≥ (1 − 2−j)|σ|. Let ρ be the length-lexicographically least such
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σ, and let s1 > s0 be a stage by which Ks(ρ) has settled. There are two cases to
consider. First, if τ s2

j is undefined at some stage s2 > s1, then (by the construction
of T ) τ s2+1

j will be defined and set equal to ρ, and will remain equal to ρ ⊃ τj−1

at all later stages. Otherwise, τj is defined at all stages s ≥ s1, and the limit of
τj must exist since (by the construction of T ) if τ s1

j 6= τ s2
j for some s2 > s1, then

there is a stage s, s1 < s < s2, such that τ s
j is undefined. Note that in both cases

we have shown that there is a final stage s such that τ s
j is undefined, and for every

s′ > s we have that τ s′

j = τ s′+1
j . This proves the lemma. �

Proposition 3.3. Let t = ∪iτi ∈ 2ω, then t ∈ X and t has effective packing dimension
1.

Proof. The fact that t ∈ X is trivial, by the definition of X and the previous
lemma. Note that t has effective packing dimension 1 since for all i we have that
K(τi) ≥ (1 − 2−i)| τi|. Otherwise, if K(τi) < (1 − 2−i)| τi|, then there must be a
least stage t0 such that for all stages t > t0, Kt(τi) < (1− 2−i)| τi|. However, this
implies that τi 6= lims→∞ τ s

i , since the construction guarantees that at all stages
t > t0 we have that τ s

i 6= τi, which is a contradiction. �

Proposition 3.4. Every f ∈ X other than t is computable.

Proof. Let f be a path in X that is not equal to t. Then there is a number i such
that f + τi. It now follows that if s is large enough so that τi has settled by stage
s and λ is the unique leaf of Ts such that λ ⊆ f , then by the construction we have
that f = λ0∞. �

This ends the proof of the theorem. �

4. Upper box dimensions of Π0
1-classes

This section contains two theorems that deal with the upper box dimensions of
Π0

1-classes. The first theorem says that if X is a Π0
1-class, then cDim(X)≤ dimB(X).

The second theorem says that there is a countable Π0
1-class X that has effective

packing dimension 0 and upper box dimension 1. An already known corollary of
this result (see [4]) is that there are countable subsets of [0, 1] that have nonzero
upper box dimension (recall that upper box dimension is a classical notion). This
illustrates one way in which the notion of upper box dimension is mathematically
badly behaved.

Theorem 4.1. For every Π0
1-class X, cDim(X)≤ dimB(X).

Proof. Let X ∈ Π0
1, and let s > dimB(X). It suffices to show that s ≥ cDim(X).

To show that s ≥ cDim(X), we will show that for all f ∈ X, cDim(f)≤ s.
Fix an f ∈ X, and let rn = log(Nn(X)). Since s > dimB(X), there are cofinitely

many n such that ns > rn. Let W be the set of all such n, and for n ∈ W let F (n)
be the first n bits of f . To prove the theorem we show that lim supn∈W

K(F (n))
n <

s. This suffices by theorems 2.7 and 2.8, and the fact that lim supn∈ω
K(F (n))

n =
lim supn∈W

K(F (n))
n , since W ⊆ ω is a cofinite set.

Now, since X is a Π0
1-class, and can therefore be computably approximated, for

any n ∈ W we can give a prefix-free description of F (n) by giving descriptions for
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n, rn, and a string of length rn that indicates the position of f in the lexicographic
listing of Nn(X). Therefore,

K(F (n)) ≤ K(n) + K(rn) + rn ≤ 2 log(n) + 2 log(ns) + ns, since rn < ns,

and so lim supn∈W
K(F (n))

n ≤ s. �

Theorem 4.2. There is a countable Π0
1-class X such that cDim(X) = 0 and

dimB(X) = 1.

Proof. We will construct a computable tree T in stages T = ∪sTs, Ts ⊂ Ts+1, such
that every path of T is computable and lim supn

log(Nn(X))
n = 1, where X is the

set of paths in T . The fact that every element of X is computable ensures that
X is countable, and by theorems 2.7 and 2.8 also ensures that the corresponding
Π0

1-class X ⊆ 2ω has effective packing dimension 0.

The construction of T

Stage 0: Enumerate σ into T0, for all σ ∈ {∅, 0, 1}.

Stage s + 1: First, enumerate Ts into Ts+1. Then, for every leaf λ ∈ Ts that is
not of the form 0n, enumerate λ0 into Ts+1. On the other hand, for the unique leaf
λ of Ts of the form 0n for some n ∈ ω, enumerate σ into Ts+1 for all σ ∈ Cλ

n, where
n ≥ 1 is chosen large so that n

n+|λ| ≥ 1− 2−s−1. This ends the construction.
To see that T is indeed computable, note that for all σ ∈ 2<ω, if σ /∈ T|σ|, then

σ /∈ T .

Proposition 4.3. dimB(X) = 1.

Proof. At stage s of the construction we produce a number m(= n + |λ|) such that
log(Nm(X))

m ≥ 1 − 2−s. This implies that lim supn∈ω
log(Nn(X))

n = 1, and so X has
upper box dimension 1. �

Proposition 4.4. Every element of X is computable.

Proof. Let f ∈ X. If f = 0∞ then f is computable, so assume that f 6= 0∞. Then
there is a least n ∈ ω such that f(n) = 1. Let σ ∈ 2<ω represent the first n bits of
f . Let s be the smallest stage such that σ ∈ Ts (such an s exists since f ∈ X) and
let σ′ ⊇ σ be the unique leaf of Ts that is extended by f . Then, by the construction
of T it follows that f = σ′0∞, and hence f is computable. �

This ends the proof of the theorem. �
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