CLASSIFYING MODEL-THEORETIC PROPERTIES

CHRIS J. CONIDIS

Abstract. In 2004 Csima, Hirschfeldt, Knight, and Soare [1] showed that a set A < 0’
is nonlows if and only if A is prime bounding, i.e. for every complete atomic decidable
theory T, there is a prime model M computable in A. The authors presented nine seem-
ingly unrelated predicates of a set A, and showed that they are equivalent for Ag sets.
Some of these predicates, such as prime bounding, and others involving equivalence struc-
tures and abelian p-groups come from model theory, while others involving meeting dense
sets in trees and escaping a given function come from pure computability theory.

As predicates of A, the original nine properties are equivalent for Ag sets; however, they
are not equivalent in general. This article examines the (degree-theoretic) relationship
between the nine properties. We show that the nine properties fall into three classes, each
of which consists of several equivalent properties. We also investigate the relationship
between the three classes, by determining whether or not any of the predicates in one
class implies a predicate in another class.

81. Introduction. Given two degree-invariant predicates of a set A there are
several ways in which one can study their relationship. One approach is to study
the degree-theoretic relationship between the predicates, but restrict the class of
degrees with the hope of being able to show that they are indeed equivalent when
restricted to the given class. This approach was taken by Csima, Hirschfeldt,
Knight, and Soare, [1] who show that nine seemingly unrelated degree-invariant
predicates of a set A are in fact equivalent when A <t 0’. A different approach
is to assume a weak base theory (such as RCAg), and check to see whether any
implications follow. This approach was taken by Hirschfeldt, Shore, and Slaman
[2], who show that several similar properties in [1] are not equivalent in the latter
context. Yet another approach, which we take, is to consider the degree-theoretic
relationship between the properties when A is allowed to range over all sets. In
other words, we ask: “if a degree in the computable hierarchy has one property,
does it have the other?”

1.1. The main theorem. Two properties examined in [2] we call the
strong tree property and the isolated path property. A set A has the
strong tree property if for any computable tree T with no terminal nodes,
and any uniform collection of AY dense sets in T, {S;}ic., there is a function
flo,y) <t A such that, for any node ¢ € T, and any ¢ € w, the function f
produces a path extending o as well as each of the dense sets S;. The strong tree

The author was partially supported by NSERC grant PGSM-302029-2004. Furthermore, he
would like to acknowledge the helpful input he received from his thesis advisors, Dr. Robert
Soare and Dr. Denis Hirschfeldt.

2 CHRIS J. CONIDIS

property was first introduced by Shinoda and Slaman [9] in the context of effec-
tive forcing constructions. The isolated path property comes from computable
model theory, and says that for every computable tree 7" with no terminal nodes
and isolated paths dense, the set A computes a function that, for any node
o € T, produces an isolated path in T extending o. The isolated path property
is natural in the context of computable model theory. Computability theorists
build prime models by finding, for every formula ¢(Z) consistent with 7', a prin-
cipal type containing ¢, and since types can be identified with paths in Cantor
space, it follows that what is required to build a prime model is exactly the
isolated path property. Hence, the isolated path property is equivalent to the
prime bounding property, which says that for every complete atomic decidable
theory T, there is a prime model M computable in A. Though it is important
to recognize that the isolated path property is derived from the prime bounding
property, from our point of view it is unnecessary to constantly refer to both,
and so we will not discuss the prime bounding property much beyond giving its
formal definition in the next section.

Since the isolated nodes of a computable tree form a I1{ set, and the I1{ sets
belong to the class of AJ sets, it follows that the strong tree property implies the
isolated path property in any mathematical context. However, it is not obvious
whether or not the reverse implication is true. Csima, Hirschfeldt, Knight, and
Soare show that the reverse implication holds if the set A is A9, while Hirschfeldt,
Shore, and Slaman show that this is not the case if we consider nonomega mod-
els of RCAg. In particular, [2] shows that the isolated path property (which
they call the atomic model theorem) is ITj-conservative over RCAq+BYX5. BY,,
or Yo bounding, is a bounding principle for ¥, formulas; for the precise defi-
nition consult [2]. However, the authors also show that, over RCAy+BX5, the
strong tree property implies induction for all ¥ formulas (IX3). Thus, one can
construct a model of RCA(+B3s that has the isolated path property, but not
the strong tree property by starting with a model of RCAp+BX5 + —I¥5 (such
models exist, and are clearly nonomega models) and adding to it the isolated
path property. Hence, the isolated path property cannot imply the strong tree
property in the context of reverse mathematics. Neither of these results answers
the degree-theoretic question of whether or not any degree that has the isolated
path property also has the strong tree property. Moreover, they do not even
provide us with a hypothesis, since in one case the answer is positive, while in
the other it is negative.

The main theorem of this paper is to show that from the point of view of
computability theory (i.e. degree-theoretically) the isolated path property does
in fact imply the strong tree property. One immediate consequence of this sur-
prising result is that the use of nonomega models in showing that the properties
differ reverse mathematically is necessary; in other words, the properties are
equivalent in every omega model of RCAjy.

We now wish to informally introduce two more properties, which we will show
are equivalent to both the strong tree property and the isolated path property.
We call the first of two properties the weak tree property. This is the same
as the strong tree property, except that instead of a uniform collection of AY
dense sets, {S;}icw, there is but a single dense subset of T, called S. Thus it

CLASSIFYING MODEL-THEORETIC PROPERTIES 3

is clear that the strong tree property implies the weak tree property. The weak
tree property implies the isolated path property, since the isolated nodes of a
computable tree form a I1{ set. The other property is called the escape property,
and says that for any given function g <t 0’, the set A can compute a function f
that escapes (i.e. is not dominated by) g. Via a theorem of Martin, [1] explains
why the escape property is important and why it is degree-theoretic in nature.

We conclude the introduction by first briefly introducing the remaining prop-
erties in [1], and then outlining the content of the rest of this paper.

1.2. The
monotone property. A set A is said to have the monotone property if it
can compute, for any infinite AJ set S, a function f(z,y) that is nondecreasing
in y, and satisfies f(z) = lim, f(z,y) € S. Monotone functions were originally
used by Khisamiev [3], [4], [5], to examine computability theoretic aspects of
p-groups. Khoussainov, Nies, and Shore [6], and Nies [8], studied the monotone
functions in the context of W;-categorical theories; Hirschfeldt studied them in
the context of linear orderings; and [1] examines them in the context of both
group theory and equivalence relations.

1.3. Lows. The final property that we mention in the introduction says that
the set A is nonlows; in other words, A" >7 (/"”. We will show that this property
is not implied by, nor does it imply any of the other properties.

1.4. The three classes. As was stated in the abstract, the overall aim of
this paper is to determine which of the implications between the nine properties
are true in general. In [1], Csima, Hirschfeldt, Knight, and Soare show that a
few of the implications are valid in general, because some of their proofs do not
require the hypothesis A <1 0’. This serves as our starting point and is outlined
in section 2.2. The overall goal of this article is to prove that the nine properties
in [1] fall into three equivalence classes under logical implication. The first
class consists of the strong tree, weak tree, isolated path, and escape properties;
we introduced these properties in section 1.1. The second class contains the
monotone property, as well as two other properties; one is related to p-groups
and the other deals with equivalence relations. The third class contains the
property nonlowsy (i.e. A” > 0”). Furthermore, we go on to show that the third
class is independent from the first two, and that the first class implies, but is
not implied by the second. This settles all questions of the form “does every set
A with property Pi also have property Pj?”7, 0 <4,j <8.

82. The properties. In this section we begin by giving precise definitions of
all of the properties (P0)—(P8) defined in [1], and conclude with a diagram of the
implications that they were able to show in general (i.e. without the assumption
that A ST O/).

We use the notation of [1] and [10] throughout, except that we denote the set
to which the properties may or may not hold of by A instead of X, and we write
o € T instead of x € T when T' C 2<% is a tree.

2.1. Definitions. The properties (P0)—(P8) are as follows:

(P0O) The escape property. (Vg <t 0') (3f <t A) (3°z)[g(x) < f(z)],
where “(3°°)” denotes “there exist infinitely many.”

4 CHRIS J. CONIDIS

(P1) Nonlows. A is not lows (namely, A” > 07).

(P2) Prime bounding. A is prime bounding. That is to say, for every complete
atomic decidable theory T, there is a prime model A of T' decidable in A.

(P3) The isolated path property. For every computable tree 7 C 2<% with no
terminal nodes and with isolated paths dense,

(g <t A) (Vo €T) g, € [T5] & go is isolated].

(P4) The strong tree property. For every computable tree 7 C 2<“ with no
terminal nodes, and for every uniformly AY sequence of subsets {S;}icw
all dense in 7, there exists an A-computable function g(o,y) such that for
every 0 € T, g» = Ay[g(o,y)] is a path extending o and entering all S,
namely in our notation,

(Fg<r A)(VoeT)(Vi)(Fz€ S8;))[c Cz2Cygr & g, €[T]].

(P5) The weak tree property. For every computable tree 7 C 2<% with no
terminal nodes, and for every AY set S dense in 7, there exists an A-
computable function g(o,y) such that for every o € T, g, = Ay [g(o,y)]
is a path extending ¢ and extending some z € S above o, namely in the
notation of CHKS,

(Fg<r A)(VoeT)3FzeS)[oCzCy, & g, €[T]].
(P6) The monotone property. For any infinite A9 set S,
(g <1 A) (Vo) (Vy) [2 < g2 (y) S gu(y+1) & G(a) € 5]

An equivalence structure is a structure of the form A = (A, E), where F is an
equivalence relation on A.

(P7) The equivalence structure property. For any AJ set S C w — {0}, there is
an A-computable equivalence structure with one class of size n for each
n € S, and no other classes.

A reduced Abelian p-group is determined, up to isomorphism, by its ulm
sequence. Here we restrict our attention to reduced Abelian p-groups G of length
w, such that for all n € w, u,(G) < 1. Define S(G) = {n : u,(G) # 0}.

(P8) The abelian p-group property. For any infinite A set S with 0 ¢ S,
there is an A-computable reduced Abelian p-group G, of length w, and with
un(G) <1 for all n, such that S(G) = S.

It should be noted that our numbering is the same as [1], except for prop-
erty (P5), which we take to be the weak tree property, but [1] took to be the
omitting types property ([1] does not discuss the weak tree property). The
authors Csima, Hirschfeldt, Knight, and Soare showed that the omitting types
property is equivalent to the strong tree property (P4), and therefore any impli-
cation that applies to the strong tree property also applies to the omitting types
property.

CLASSIFYING MODEL-THEORETIC PROPERTIES 5

2.2. Known results. The following is shown in [1], and serves as our starting

point:
(1) (P0) = (P4) = (P5) = (P3) < (P2).
(2) (P0) = (P6) <— (P7) < (P8)

For simplicity, we shall no longer refer to properties (P2), (P7), and (P8),
since each is equivalent to one of the remaining properties.

2.3. Helper Properties. The following properties will be used in section
3 to prove the main theorem, which says that the properties (P0), (P2), (P3),
(P4), and (P5) are mutually equivalent. A consequence of the main theorem is
that this group is also equivalent to either of the following properties.

(OP5) The open weak tree property. For every computable tree 7 C 2<% with
no terminal nodes, and for every A9 set S dense in 7, there exists an A-
computable function g(o,y) such that for every o € T, g, = Ay[g(0,y)]
is a path extending o and extending some z € S (z need not extend o),
namely,

Fg<rA)(VoeT)3BzeS)[cCg & 2Cg9, & g €[T]]

I19-P5) The open II9 weak tree property. For every computable tree 7 C 2<%
(1Y pen 1T} property y comp
with no terminal nodes, and for every IIY set S dense in 7, there exists an
A-computable function g(o,y) such that for every o € T, g, = Ay [g(0,y)]
is a path extending o and extending some z € S, namely in our notation,

Fg<rA)(VoeT)3FzeS)[cCg & 2Cg, & g, €[T]]

2.4. The plan of the paper. In the next section we prove our main theo-
rem. It says, surprisingly, that properties in group 1 {(P0),(P4),(P5),(P3)} are
equivalent. Now, by (2), we know that (PO) implies (P6), and that (P6), (P7),
and (P8) are equivalent; so one immediate consequence of the main theorem is
that the properties of group 1 imply the properties of group 2 {(P6),(P7),(P8)}.
In section 4, we show that the reverse implication is not true by constructing
a set A which has the monotone property (P6), but does not have the escape
property (P0). In section 5, we consider the property (P1) (nonlows), and show
that it is independent from any of the other properties. We then replace (P1)
by the stronger predicate which says that a set is not generalized low,, written
A ¢ GLy (ie. A” €7 (A®0')'), and check to see whether any implications hold
of this new property. By the end of the paper we will have proved the following
set of implications.

[(P0) «= (P4) <= (P5) <= (P3) «— (P2)] —
— [(P6) < (P7) < (PS8)]

[(P1)]

6 CHRIS J. CONIDIS

§3. The main theorem. The main theorem of this article is Theorem 3.9. It
says that the isolated path property implies the escape property. First, however,
we prove two theorems (3.1, 3.5) that will motivate the proof of the main theorem
and serve as necessary results in its proof. We begin with Theorem 3.1, which
says that the strong tree property implies the escape property.

THEOREM 3.1. (P4) <= (P0) — i.e. the strong tree property implies the
escape property (note that the implication (P0) = (P4) is given by (1)).

First we need a definition.

DEFINITION 3.2. An n-m dominating sequence is a string of the form
101™001™000. A dominating sequence is an n-m dominating sequence, for some
n,m € w.

An important property of n-m dominating sequences is that if o € 2<% ends
in such a sequence (for some n,m € w), then any other dominating sequence
contained in ¢ must come before the n-m dominating sequence (i.e. dominating
sequences cannot overlap). The reason for this is that each consecutive run of
ones in a given dominating sequence is separated by one, two, and three zeros,
respectively.

The general outline of the proof is as follows. For a given g <t 0’, we define
a dense open set S C 2<%, § <1 (0, which codes information about the values
{{z,9(2)) }pew- We then define the sets S to be the set S, minus its nodes of
length at most k, and, applying the strong tree property to the {Sk}re., we get
a function, f <t A, that escapes g.

PROOF OF THEOREM 3.1. Given any function g <t 0/, we define a uni-
form sequence of dense open sets S C 2<% k € w, Sy <t g, as follows:
for every o € 2<%, put all 7 D 7, in S} where 7, = ¢7101"001™000 and
n=|o|+ 10+ k, m = g(n) + 1. By construction it follows that the sets S}, are
each open and dense, and they are uniformly computable in 0 (since g <t 0').

The basic module of our construction is as follows. Fix a number k € w. If we
wanted to construct a partial function F' that escaped g on a single input x, we
could do it using the weak tree property applied to the set Si. The weak tree
property gives us a path, starting from the root @ of 2<% that extends a node of
Sk. Call this path f. Now, we can go from f to F' via the reduction procedure
that defines F'(k) = m for all k¥ < n not yet in the domain of F whenever we
read an n,m dominating sequence in f.

Note that for f to extend a node of Sj it must contain an n,m dominating
sequence for some n,m € w. If ¢ is the smallest initial segment of f that lies in
Sk, then o = ¢{*101™001™000 ends in an n-m dominating sequence, and so any
other dominating sequence contained in o must actually be contained in o((by
the remark after the definition above). But, since the construction of Sy requires
n = |og|+ 10+ k, it follows that oy cannot contain any k-l dominating sequences
for £ > n. Thus, when we read o, n is not yet in the domain of F', so we will
define F'(n) = m, where m = g(n) + 1, and hence F(n) > g(n) for some n € w,

CLASSIFYING MODEL-THEORETIC PROPERTIES 7

as required.

For the general case let f € 2¥ meet all S, k € w; we give a Turing reduc-
tion that produces a total function F' that escapes g using f as an oracle. We
construct F' from f inductively in stages. At stage 0 we let I = (). At stage
s+ 1, we consider only the first s + 1 bits of f, call this string o, and check to
see whether ¢ ends in an n-m dominating sequence (for some n,m € w). If not,
then go to stage s + 2. If so, then check to see if F(n) is defined at the current
stage; if F'(n) is defined then proceed to stage s + 2, otherwise set F(k) = m for
all arguments & < n on which F is undefined and go to stage s + 2.

LEMMA 3.3. The function F described above is total and escapes the given
function g <1 0'.

PROOF. Suppose that F' does not escape g. Then F' is dominated by g, and so
there is some number n such that (Vm > n)[F(m) < g(m)]. We shall construct
a number ¢ > n such that F'(i) > g(¢), thus obtaining a contradiction. Let s be
the stage at which we defined F'(n). Since the reduction procedure at stage s
considers only the first s bits of h, it follows, by the reduction procedure, that
at stage s we have dom(F) C {0,...,s}. Therefore, F(s 4+ 1) is undefined at
stage s. However, we are under the assumption that f meets all S, and so f
meets Ssy1. Let o be the smallest initial segment of f that meets Ssy1; then
o = 771010017000 (this defines i), for some 7 € 2<%, |7| + 11+ s=1i > s, j =
g(i) + 1.

We claim that F(i) > g(i); by the reduction procedure and the construction of
S, it suffices to show that at stage k = |o|, F(4) is still undefined (in which case
it will be defined and greater than g(i) at stage k + 1; this also shows that F' is
indeed a total function). So suppose for contradiction that F'(z) is defined at some
stage z < k. By the reduction procedure and the fact that dominating sequences
cannot overlap, this implies that T has a substring of the form p"101*001Y000
for some x > i,y € w. But ¢ > |r| + 11, which is a contradiction. Hence,
F(i) > g(i). =

_|

The following lemma is useful because it helps to simplify several of the fol-
lowing proofs.

LEMMA 3.4. (OP5) <= (1IY-P5) — i.e. the open weak tree property (OP5)
is equivalent to the open T19 weak tree property.

PROOF. It is obvious that open weak tree implies open I} weak tree. For the
opposite implication, suppose that a set A has the open IT} weak tree property,
and let S C 2<% be a A2 dense set. Define a I} dense set P C 2<% as follows.
A node o belongs to P if and only if it extends 7, and has length equal to (7, k)
for some 7 € S, k > m(7), where m is the modulus associated to some (fixed)
computable approximation of S (which exists by the limit lemma). Note that
P is dense since S is dense, and m is total. Now, suppose that g(o,y) <r A
extends all o € 2<% to meet P, then g must also extend all o € 2<% to meet S
since (by construction) a path in 2<% meets S if and only if it meets P. o

8 CHRIS J. CONIDIS

The next theorem is the second key ingredient in the proof of the main theo-
rem.

THEOREM 3.5. (OP5) <= (P3) —i.e. the open weak tree property is equiv-
alent to the isolated path property.

PROOF. By the previous lemma, it suffices to show that (P3) implies (TI9-P5).
So assume that A satisfies (P3), let P <t 0’ be a dense open II} subset of 2<%,
and h(o, s) will denote a fixed computable IT} approximation to P. For simplicity,
we take the computable tree in which we work to be the full binary tree 2<“ (the
general case is similar, and is discussed afterwards). We show that A computes a
function which extends all 0 € 2<% to nodes in P. To achieve this, we construct
a computable tree, T', and a 1-1 computable function F' : T — 2<% such that
(Vo,7 € T)[o C7 = F(0) C F(7)] — i.e. paths in our tree T correspond to
paths in 2<% via F.

The idea of this proof is to construct a computable tree T', and a partial com-
putable 1-1 onto function F' which labels the nodes of T" with labels from the full
binary tree 2<%, in such a way that paths in T correspond (via F') to paths in
2<¢. We build T so that if 7 € T and F(7) € 2<% is not in P, then 7 eventually
splits. Also, if F~1(p) splits for some p € 2<¥, then we impose the condition
that the inverse image of every & D p (under F') must extend F~1(p) € T. This
condition allows us to exploit the fact that P is dense in 2<“ to show that the
set of isolated paths in T" are dense. Next, we use the fact that A has the isolated
path property to obtain g(co,y) <t A which extends all o € T to isolated paths,
and finally, using both g and F', one easily constructs a corresponding function
for the dense I} set P C 2<%,

First some definitions.

DEFINITION 3.6. The ledge above a node o € 2<% is the set of nodes
{o,0"1,0"10,0"11}, as is depicted in Figure 1 below.

In our diagrams ¢”0 is to the right of o, and 0”1 is to the left of o.
Figure 1

1 G 0

DEFINITION 3.7. Given a (finite) tree, T, the ledge below a node o(€ T) on T
is the unique node on T of the form ¢/*1", where ¢’ is the largest substring of
o ending in a 1 (if such a string exists), and n is the largest integer such that
the resulting node is on the finite tree 7. In Figure 2 (below), the node labeled
with a star is the ledge below the node labeled o.

Figure 2
(¢

CLASSIFYING MODEL-THEORETIC PROPERTIES 9

Since the reader may find it unusual to refer to a single node as a ledge, the
author would now like to inform the reader that he thinks of the ledge below o
to be the set of nodes extending ¢’ which end in a 1 (hence it follows that the
ledge below o, as defined above, corresponds uniquely to a set of nodes which
make up to actual ledge). The reason for this slightly ambiguous terminology is
that it simplifies the explanation of the construction of the computable tree T
Also, a consequence of the construction of T is that if the ledge above p is on T',
then for any 7 O p on T, then the ledge below 7 also extends p. This justifies
the use of the terms “ledge above”, and “ledge below”.

The following paragraph gives the intuition behind the construction using the
terminology that we have now developed. The construction guarantees that T is
finite for all s (hence the ledge below a node is always defined), and we build T
by extending the leaves of Ty. We have a fixed computable 1 approximation to
the (dense) set P, which we denote as h. Hence, as s increases, a node may leave
our approximation to P, but once it leaves it can never return. We are trying to
build a tree T' with isolated paths dense such that isolated paths in T correspond
to paths in 2<¢ that extend elements of the dense set P. To accomplish this,
we associate to every node in T, an element of 2<% via a (partial computable,
1-1, onto) function F : T — 2<% such that if f = Ui, 7 € 2<%, || = 1,
is an isolated path in T then F(f) = U;f(r;) is a path in 2¢ extending some
element of S. With this in mind, we construct the tree T by creating splittings
above nodes o € T once F(o) leaves the set P, and we ensure that there is
a unique path extending o so long as F(o) appears to be in P. To create a
splitting above o, we insert the ledge above some A O ¢ into T for some current
leaf A € T'. To ensure that there is a unique path in 7" extending o we do not
create any splittings above o in T'; we do this as follows. If X is the unique leaf
of Ty extending o, then to ensure that F is onto, we must define F'(p) = F(\)"0,
F(1) = F(M)"1, for some fresh nodes p, 7 € Ts41. However, p and 7 cannot be
comparable, since their images under F are incomparable, and so F' would not
necessarily take paths in T to paths in 2<“. We resolve this issue by setting
p = M0, and taking 7 to be a certain extension of the ledge below A. This is
how ledges are used in the construction of 7.

The basic module of the construction is as follows. We build a tree T' and
function F as above such that for any isolated path f of T, F(f) is in the open
set defined by S. To do this we first fix a IIY approximation of P, h(c,s), as
described above. The idea is to build 7" and F in stages, keeping paths in T’
isolated as long as their isolating nodes stay in the set P. At stage 0 we start
by letting T be the ledge above the root of 2<“ and set F(10) = (), as shown in

Figure 3.
Figure 3

Y

10 CHRIS J. CONIDIS

At stage s+ 1, if h(0),s) = 1 we extend the leaves of T that end in 0 to leaves
of Ts41 by adding another 0, and set the images of the new leaves under Fi4q
to be the images of the leaves they extend, concatenated by O.

Figure 4 illustrates this portion of the construction of 7" at stage 1 under the
assumption that h(f,0) = 1. In this case we are acting as if) € P, and so we
proceed to build an isolated path extending F~1()) =10 € T.

g igure 4

Stage 1:
h(9,0)=1

We also include, for each of the leaves of T ending in 0, a splitting above the
ledge below these leaves. We define the images (under Fs11) of these leaves that
end in 0 to be the image of the corresponding leaf, concatenated by 1.

Figure 5 depicts this portion of the construction of T at stage 1 under the
assumption that h(0,0) = 1. At this point of the construction we still believe

that) € P.
Figure 5
(0]

Stage 1:
h(9,0)=1

If, on the other hand, h((),s) = 0 at stage s, then @ is no longer in the set P
and so we create a splitting above the node F;1(()) € Ty by including the ledge
above the unique leaf extending F;1(()) in T, A\. We define Fsy; on the node
of the ledge that ends in 0 as follows: Fjs;1(A"10) = F5(\)"0 (this follows the
same pattern we used to label the ledge above () at stage 0 of the construction).
We extend all other leaves as in the case h(0,s) = 1.

Figure 6 shows what would happen at stage 2 of the construction (of T') if
h(B,1) = 0. Thus, we have just learned via h that () ¢ P, and so we now act
accordingly and create a splitting in T above the node labeled (.

Figure 6

Stage 2:
h(#,0)=0

Now for the general case. We construct F' = |J,Fs, Fsy1 2 Fs, and
T = U,Ts, Tey1 2 T, in stages. At stage 0, we let T' consist of the ledge
above), and we define F'(10) = (). At stage s+ 1 we are given T; and Fs. Let

CLASSIFYING MODEL-THEORETIC PROPERTIES 11

Ao, ---, Ak be the leaves of T that end in 0, listed in length-lexicographic order
(any sequence of uniformly computable orders would suffice) of their images un-
der Fy. It will follow that F is defined on all A;. Let Aj, ..., A}, be the largest
substrings of the corresponding A; that end in 1, as in the definition of the ledge
below a node. Now, we divide stage s + 1 into k + 1-many substages as follows.
For every 0 < i < k, if h(Fs()\}),s) = 1 then enumerate A0, 70, 71 into
Tsy1, where 7; is the (current) ledge below A;; also set Fsi1(AM0) = F(A)"0
and Fy11(7°0) = Fs(X\)"1. On the other hand, if A(Fs(\;),s) = 0 then add
the ledge above A; to T and set Fis41(A}10) = F5(A;)"0. Also, extend the ledge
below A; and define F1; on the new leaves of T, that end in 0 as in the
case where h(Fs()\,),s) = 1. That is, enumerate 77°0 and 7,1 into Ts41 and set
Fy41(7)0) = Fs(X\;)"1. Do this in order, for every i = 0,... ,k, and then go to
stage s+ 2. This ends the construction. Note that T is in fact computable, since
if a leaf of T} is not extended along a given path at stage s+ 1, then it will never
be extended along that path at any future stage.

It is worth noting that throughout this proof we use lower case Greek charac-
ters (i.e. o,7,p, ... to represent nodes of T, and we use lower case Greek letters
with hats (i.e. &,7,p,...) to represent the nodes of 2<% thinking of this as the
space where S lives.

LEMMA 3.8. T s a computable tree with no terminal nodes and isolated paths
dense. F is an onto, 1-1, partial computable function whose domain is the set
of nodes in T that end in 0, and has the following two special properties:

1. 7Co = F(r) C F(0), for any 7,0 in the domain of F. This property
allows us to go from paths in T to paths in 2<%.

2. If T contains the ledge above p then p is in the domain of F', and furthermore
any 7 2 F(p)"0 satisfies F~1(7) D p (this is a partial converse to 1).

PROOF. We provide an algorithm (via the construction of T') for determining
which of the extensions of the leaves of T are in Ts1; hence T is computable.
Similar reasoning shows that F' is computable. To show that 7" has no terminal
nodes, first note that at stage s of the construction, we extend the leaves of T
that end in 0. Also, by induction one can show that every leaf of T ending in 1
is the ledge below some leaf A € T. Now, by the construction of T 1, it follows
that this ledge will be extended in Ts41 (whether or not h(A,s) = 1).

F' is onto since at stage s + 1 the range of F' contains all nodes of length s
(follows by induction). It is not difficult to show (by induction and the construc-
tion) that the domain of F' is exactly the set of nodes in T that end in 0. Also,
F is 1-1 since F;1(0"0) is always incomparable to F; (c”1), and F preserves
proper extensions (by the construction).

In the next two paragraphs we show that F' has properties 1 and 2; this follows
from the construction, and the author urges any reader who is already convinced
of these facts not to spend too much time parsing them.

We prove that F' satisfies property 1 by showing that F, has property 1 for
all o, 7 in its domain (for all s € w); we do this by induction. The base case is
trivial. For the induction step, assume that F; satisfies property 1 for all o, 7 in
its domain; we show that F,;1 also has this property. Suppose that 7 C o, for

12 CHRIS J. CONIDIS

some o, T in the domain of Fsyi. If both ¢ and 7 are in the domain of Fy we
are done. So assume that o is not in the domain of Fy (if 7 is not in Ty then
it follows by the construction that any extension of 7 cannot be in T}, and so o
is not in Ty as well). Then o was added to Ts41 at stage s + 1 and so it must
be a leaf that ends in 0 (by the construction). Now, 7 C ¢ and so 7 must be in
Ts, since 7 is in the domain of Fy;; and the construction does not define Fii4
on two comparable nodes unless one of them is in the domain of Fj, since we
extend Fy to Fsy1 by defining it on the leaves of T, that end in 0 (so they are
mutually incomparable). But the construction defines the values of Fyy1 on the
leaves of Ts4+1 (which end in 0) as extensions of the values of F§ on the leaves of
Ts. So let p be the leaf of T extended by o. Then it follows (since 7 C o, and
7 € Ts) that 7 C p. But it follows by the induction hypothesis that F'(r) C F(p),
and by the construction F(p) C F(o), hence F(r) C F(o).

F satisfies the first part of property 2, since we only construct ledges above
nodes which end in 0 (by the construction). We show that F satisfies the second
part of property 2 by induction on the length of 7. First let p € T' be such that
the ledge above p is in T, then we must show that for any 7 2 F'(p)"0 we have
that F~1(#) 2 p. If # = F(p)"0 then this follows since by the construction
of T we have that 7 = F(p”10), and it is clear that p*10 D p. Suppose the
claim is true for all 7 O F(p)"0 of length up to k > |F(p)|, and consider a
72 F(p)"0 of length k + 1. We can write 7 = 7,0 or 7 = 7”1, for some 7 of
length & such that 75 2 F(p)"0. Now, since 7y is of length k, by the induction
hypothesis we have that F~1(7) D p. If 7 = 750 then by the construction
we have either F~1(#) = F~1(7)"0 (if the ledge above F~1(7g) is not in T)
or F71(#) = F~1(#)"10 (in the case where the ledge above F~1(7) is in T)).
However, in either case we have that F~1(7) D p, since F~(7y) D p. If # = 7”1
then by the construction F'~!(#) extends the ledge below F~1(7) at some stage
s (here we are using the fact that 7y 2 F(p)"0). But F~1(#) 2 p, and since the
ledge above p is in T it follows that the ledge below F~1(7)) extends p.

To show that T has its isolated paths dense, let ¢ € T. Now, either there is
a unique path extending o, or else the path above o splits at some point. By
construction, the only way that this can occur is if at some stage we included
the ledge above some gy 2 o in T'. Now, there is some gy 2 F(00)"0 in 2<% that
lies in P (by density), and by property 2 we have that F~1(gy) 2 09 2 0. Now,
suppose that F'~1(go) splits at some o1 DO F~1(go). Then F(o1) D fo, and since
P is open and gg € S, we have F(o1) € P. Hence by the construction T has
a unique path, namely ¢7'10% extending ¢,'10. But the set P is open, and so
we have that g3 D F(o1) 2 go € S, hence g1 € P. Hence, every node including
and above F~1(¢1)"0 is in P, and therefore, by the construction of T', T has a
unique path extending the node ¢1'10. Thus, the isolated paths in T are dense,
as claimed. -

Note that in the construction of 7T, we only created a splitting at a node
o € T when the inverse image of one of its initial segments under F left the
set P. Therefore, an isolated path in 7" means that there are only finitely many
initial segments whose images under F' are not in P, hence there must be a node
on the path whose image is in P, and so the image of an isolated path in 7" under

CLASSIFYING MODEL-THEORETIC PROPERTIES 13

F produces a path in 2<% that meets P. Thus, it follows that the isolated path
property implies the weak tree property.

It is not necessary to consider the general case when P is a dense subset of a
computable tree 7" # 2<¢. This is a consequence of the next theorem (3.9), as
well as the known implications proven in [1], and outlined in the introduction.
However, it is worth noting that the proof of Theorem 3.9 uses the construction
we have just given for the case 7" = 2<“. In other words, our reasoning is sound.
This ends the proof of Theorem 3.6. -

Next we state the main theorem. We then state and prove two simple corol-
laries before giving the proof of the main theorem.

THEOREM 3.9. (P3) implies (P0) — i.e. the isolated path property implies the
escape property.

COROLLARY 3.10. (P3) implies (P6) — i.e. the isolated path property implies
the monotone property.

PROOF OF COROLLARY. By (2), we know that (P0) = (P6). Hence we have
that (P3) = (P0) = (P6), and so (P3) = (P6). —|

COROLLARY 3.11. The properties (P0), (P4), (P5), (OP5), (19-P5), and
(P3) are mutually equivalent.

PROOF OF COROLLARY. We know that
(P0) = (P4) = (P5) <= (OP5) < (II} — P5) < (P3)
and so by the theorem all of these properties are equivalent. o

Before diving into this proof, we make the following simple observation.

REMARK 3.12. Given a function g, let Fy, k € w, be a uniform collection of
total functions such that for every k € w there exists a number xy, with the prop-
erty that Fy(xi) > g(zk) and x, > k. Then the function F(x) = maxy<, Fi(z)
escapes the function g.

Therefore, to prove Theorem 3.9 we shall give, for every function g <t 0/, a
uniform procedure for constructing total functions Fj as above.

As in the proof that the isolated path property implies the open 11 weak tree
property, we use lower case Greek letters to denote the nodes of T', and lower
case Greek letters with hats to denote elements of the full binary tree, in which
the set S lives.

PrOOF OF THEOREM 3.9. The proof uses the methods of previous proofs.
Let g <1 0’ be the function that we are trying to escape using the isolated path
property, and recall the sets Sy <t ¢ from the proof of Theorem 3.1 (note that
Sk is dense in 2<% = T" for all k € w). Let S = Sy and P be the corresponding
I19 set given in the proof of Lemma 3.4. Using P, build the computable tree T
as in the proof of Theorem 3.5.

DEFINITION 3.13. An isolated node is one that does not immediately split.

14 CHRIS J. CONIDIS

CLAIM 3.14. The number of isolated nodes extended by F~1(6"1) € T is at
most that of F~1(5).

PROOF. The claim follows by the construction of T. Let o = F~1(5) € Ty be
a leaf. Now, recall that by the construction of Ty, 1, if F(p) = 61, then p is
an extension of the ledge below . More precisely, p is of the form p = o/ 1*0,
where k is a natural number and ¢’ is the longest substring of o that ends in a
1. From this observation it follows that p has at most as many zeros as o. Now,
by the construction of T it follows that nodes of T" ending in 1 split immediately,
and so the isolated nodes of 7' must end in a 0. The result now follows. !

COROLLARY 3.15. The number of isolated nodes extended by F~1(6"1") € T
is at most that of F~1(5).

More generally, if we define iso(6) to be the number of isolated nodes properly
extended by F~1(5), and Z(6) to be the number of zeros in &, then

CrLAam 3.16. iso(6) < Z(6)+1

PrOOF. By induction. First suppose that |6] = 0, i.e. & = 0. By the
construction of the tree T in the proof of Theorem 3.5 we have that F/(10) = &
and 10 extends exactly one isolated node in 7', namely the root of T'. Therefore,
in this case we have that iso(6) = 1 and Z(6) = 0 and so the claim holds.
For the inductive step, suppose that the claim holds for all |6| = k, and let
|p| = k+ 1. Then p = 670 or p = 6”1, for some |o| = k. The latter case is
trivial by Claim 3.14. For the former case, we know by the construction of T’
that either F~1(p) = F~1(6)"0 or F~1(p) = F~1(5)"10 (in the first case we
didn’t add the ledge above o, while in the second case we did). In either case
however, we have that iso(6) < Z(6) + 1 = Z(p), since p = 6"0. =

Now, let f be an isolated path in T starting at 0 (which our set A can compute,
since it has the isolated path property). By Remark 3.12, it is sufficient to
construct a total function F' that escapes g at a single x € w. Let o; be the first
¢ bits of f. We compute F from f inductively as follows. At stage 0 set F' = ().
At stage s + 1 we consider os. First we check to see if o, ends in an n — m
dominating sequence. If so, set F'(k) = m for all £k < n not yet in the domain of
F. If not, then set F(k) = 0 for every k < iso(os). From this it follows that F'
is a total function, since f is an isolated path and so lims_,iso(os) = oo.

LEMMA 3.17. There is an x € w such that F(x) > g(x).

PROOF. We know that isolated paths in T correspond to hitting P in 2<%,
which, in turn, corresponds to hitting S in 2<%. So some o C f must be of the
form ¢7101"001™000 (where n > |o}| + 10), and by the reduction procedure
we know that when we read o}, we have not yet defined F(z) for values of
larger than |o}|. Now, since iso(o) < Z(o) + 1, we know that every time we
read a 0 we may expand the domain of F' by 1, and we also know by a previous
remark (stated immediately after the definition of a dominating sequence), the
only dominating sequence we will read between o}, and oy, is oy, itself. Therefore,
when we read 07/°101"001™000 we have that the domain of F is contained in
{0, ..., |o},| + 7}, which means that F' is undefined at « = |o},|+ 10. Hence, by the
construction we will set F(z) = m = g(n) + 1. Therefore, F' escapes g at z.

CLASSIFYING MODEL-THEORETIC PROPERTIES 15

Finally, instead of using the single set S = Sy we work with the family of
dense sets {Sk}rew. Now, we may use the reduction procedure described above
to obtain (uniformly) a collection of total functions Fj, which, by Lemma 3.17,
each escape g at a single point zx. Furthermore, by the definition of the sets
Sk and the reduction procedure for obtaining the corresponding functions Fy, it
follows that z;, > k. Hence, by Remark 3.12, the function F(x) = maxy<, Fi(z)
exists and escapes the function g. This ends the proof of Theorem 3.9. o

84. Group 2 does not imply group 1. Since we now know that the prop-
erties in group 1 are equivalent, and CHKS showed that the properties in group
2 are equivalent, to show that group 2 does not imply group 1 it suffices to
construct a set A with the monotonic property (P6), but without the escape
property (P0).

THEOREM 4.1. (P6) does not imply (P0) — i.e. the monotone property does
not imply the escape property.

PROOF. We will construct a set A <t 0" with the monotone property, but
without the escape property. We will code the monotone property into A by
first thinking of A as a three-dimensional matrix via a fixed computable pairing
function that gives a bijection between w and w x w. Thus, we think of the index
for the 2*" bit of A as being given by an ordered triple z = (i, 2, n). Fix i,z € w.
We shall henceforth refer to the set {(i,z,n)|n € w} as the (i, z) — th row of A.
Thinking of A as an infinite binary string allows us to refer to the (i, z) —th rows
of finite strings as well. If o € 2<“| then the (i,x) — th row of o is the (i, z) —th
row of 00°°. Next we outline the basic idea of the construction of A.

We shall code the monotone property into A as follows. Let .S; = W?/ be the
it" ¥9 set. Then, if |S;| < oo, there is no requirement to satisfy. However, if
|Si| = oo, then for every x € w the (i,x) — th row of our set A shall contain
exactly n ones, for some n such that x < n € 5;. Therefore, for any given i € w,
if ¥4 is the A-computable function that on input (x,%) reads the first y bits of
the (i,x2) — th row of A and outputs the number of ones if it is greater than x,
and otherwise outputs z, then it follows that if our coding strategy succeeds A
will have the monotonic property for the set .S; via the reduction ¥. Now, since
AY ¢ 2y it follows that A has the monotone property. If a set A has exactly
n € S; ones on its (i,z) — th row, we say that A extends x to meet S; at n, or,
more simply, A meets S; at n (for some x).

To ensure that A does not have the escape property, we need to construct a
function F' <7 0’ that dominates ®#* for every i € w such that ®# is total. We
will build a tree T' = UsTy € 2<% and a function F, both below 0/, in stages such
that if f is any path in T then F' dominates @f if &2 is total. To do this, we use

0’ to force whether or not CD?J (s)] at stage s, for all leaves A\; € T;. Hence, if we

define F'(s) to be greater than the maximum of all @?j(s) that converge, then
if Ais a path in T we will have that F <1 0’ dominates all total functions @f‘.
Lastly, we show that there is a path A in T that satisfies our coding procedure
from the previous paragraph, and hence has the monotone property. Note that
A has the monotone property but does not have the escape property.

The positive and negative requirements that we must satisfy are as follows:

16 CHRIS J. CONIDIS

Py if S € A, |S;| = oo, extend x to meet WP = 5; € AY by having
exactly n >z, n € S; ones on the (i, z) — th row of A.

N;: define F(j) so that it is greater than ®:1(5), for all k < j (if ®;1() exists).

Throughout this proof we use lower case Greek letters to denote both elements
of 2<% as well as the corresponding finite sets, whose characteristic functions are
equal to elements of 2<“ extended by the path of all zeros. Thus, when we write
p\ o for some p,o € 2<¥ we mean the set difference between C and B, C'\ B,
where C'is the finite set whose characteristic function is the infinite string p”0°°,
and B is the finite set with characteristic function o”0°°.

Constructing the tree T

The construction of 77 <t 0’ is divided into even and odd stages, as follows.
At stage s =0, let T = (.

At every stage of the construction we may impose a (computable) set of re-
straints on nodes 7 € T which preserve the number of ones on a given row of
7 at all later stages. Furthermore, these restraints may overlap for different
rows. Hence, it is assumed when we say “search for a string p” we actually mean
“search for a string p that respects the restraints imposed by the construction
up to now”.

At odd stages 2s +1 > 0 we act to satisfy the requirement Ng. We are given
Tos11, and let Ag, ..., As be the leaves of Toey1. Using 0/, extend each)\JAO to

A so that for all i < s, if @;\j(s) T, then for all p D \; we have that ®7(s) 1.

Also, let F(s) = max;<, j</{®,"(s) : ®,7(s) | }.

At the even stages 2s > 0 of the construction of 7' we act to satisfy the
monotonicity requirements Py ,y, (i,2) < s. The basic idea of how we do this
is as follows.

We are given Ta,; let Ag,..., s be the leaves of Th,;. First we extend each
leaf ;, j € {0,...,J} (acting subject to any previous restrictions) to a node
A € 2<% that has at least s-many ones in its (i,r)-th row for all (i,z) < s.
Furthermore, we do not impose any further restraints on the extension)\;«. Now,
for every)\; currently unrestricted for (i,x) and all n < s that are greater than
or equal to the number of ones on the (i, z)-th row of A}, we add a path p, 2 \}
to Tas which has n-many ones in its (7, z)-th row, and declare p,, to be restricted
for (i,x). Formally, this is written as follows.

Search for)\;» D A, (subject to any previous restraints) so that for every
1, < S,)\; has at least s ones on the row indexed by (i, z). If no such)\;» exists,
then set A = \;. Next fix i,x,j with (i,z) <'s, and let B be the (i, z) — th row
of Nj\ \j = {a® <--- < al}, and for every 0 < k <1let B* = {a" < --- < d'}.
For every B*, define pj, = N \ B¥. More explicitly, pj can be defined as follows:
pr(z) = Nj(2) € {0,1} for all 2 < |N}| with z ¢ B¥ and pi(z) = 0 for all z < |AS]
with z € B*. Furthermore, we make a promise that all leaves of T}, t > 2s + 1
extending p, will have the same number of ones on row (i,z) as pp — i.e. we
restrict our search space from now on when we use 0’ to make extensions of T

CLASSIFYING MODEL-THEORETIC PROPERTIES 17

Repeating this procedure for all 4,2, j with (i, 2) < s, we let the corresponding
pr, and A, be the leaves of Ths 1.

This ends the construction of T. Note that 7" has no terminal nodes, since the
only restraints imposed by the construction on nodes 7 € T are those which pre-
serve the number of ones on a current nonempty row of 7. Therefore, it follows
that for any node 7 € Ty, 70 is always a valid extension of T since it preserves
the number of ones on all rows of 7. Also, by the construction of the function F,
it is easily verified that F <t 0’ and that F' dominates every path of T (i.e. if A
is a path of T' then F' dominates all total functions of the form <I);4, for i € w).
Therefore, every path of T, including the path A <t 0” which we later construct
and has the monotone property, cannot have the escape property.

Constructing the set A.

Now, using 0" as an oracle, we shall construct a path f € [T], such that if A is
the set with characteristic function f, then A has the monotone property. Note
that constructing f is equivalent to constructing A.

We construct f = U, f, in stages. At stage s =0, let f = (). At stage s+ 1,
we are given fs, which we extend to a leaf of Th,1o. Consider the least (i,z) < s
such that there is an n € S; greater than z, and x has not yet been extended
to meet S; (note that 0” can determine, for any given i,z € w, whether or not
there is an n € S; such that n > x). Fix the least such n. If there is a leaf of
Tohs1o extending fs which extends x to meet S; at n, and is equal to some py
described above (for some fixed 4, z, j such that (i,z) < s) then let fs;1 be this
pr. Otherwise, let fsy1 be equal to the)\;- extending fs (as denoted in the con-
struction above). This ends the construction of f; note that by the construction
f is total, since T has no terminal nodes.

Verifying that A has the monotone property.

To show that f has the monotone property, let S; € A9 be an infinite set (we
could also take S; € X9 and the proof would work just as well) and = € w. We
will verify that there is indeed a stage s at which f extends x to meet .S; at some
n € S;. Suppose that sq is large so that all Py .y, (i’,2") < (i,z) have been
satisfied by stage sg, and let n be the smallest number in S; that is greater than
the number of ones on row (i, z) of fs,.

Now, the construction of f says to keep extending to)\;- until we see a py that
extends x to meet S; at n. If we never see such a pg, then, by the construction of
T, f has infinitely many ones on its row indexed by (i, z), since, at large enough
stages the construction of T adds a one to every nonempty row of the (finite)
paths through T, unless at some stage we make a promise to put only zeros on
this row. By the construction of T', the only way that such a promise is made is
if at some point we extend fs to some py. But extending fs to some p; means
that we extended x to meet S; at n and therefore have satisfied P;). By the
construction of T', once we have done this, we promise to put no more ones on
row (i,x) of f;, for all ¢t > s, and so f extends = to meet S; at n, as required.

On the other hand, if row (i,z) of f contains infinitely many ones, then, by
the construction of 7', there must have been a smallest stage ¢t > sy at which the
number of ones was greater than n. Then, by definition of the pg, it follows that

18 CHRIS J. CONIDIS

some py, on T; has exactly n ones on its (i,2) —th row. Now, by the construction
of f, we will extend f; so that it passes through this pg. Furthermore, the
construction of 7" makes a promise at this point which guarantees that any path
g € [T] extending py has exactly n ones on its (i,2) — th row. Therefore, f
extends z to meet S; at n, and has therefore satisfied P ,). So f has the
monotone property. .

85. Nonlow;. The first theorem in this section is an unpublished result of
Soare. It says that there exists a set A that is lowy and has the escape property.
This proves that none of the properties in group 1 imply property (P1). However,
we also know from section 4 that the properties in the first group imply the
properties in the second group, and therefore a consequence of the following
theorem is that none of the other properties imply (P1).

THEOREM b5.1. There exists A such that
A" =p 0" & (3f <r A)(Vg <7 0)(372) [g(z) < f(2)].
Namely, A has properties =(P1) and (P0). Hence, (P0) =~ (P1).

PRrROOF. We use a 0’ forcing construction of a sequence of finite strings
{hs : s € w} such that A = |J,{hs} is lows and satisfies (P0). Let op = 0,
and x_1 = 0.

FEven stages : At stage s = 2e we extend hg to hgqq1 to force whether q)f is
total or not, by asking 0" whether

(3o 2 hs)(3x)(V7 2 0)[PL(z) T].

If so, extend hg to o, and if not, then at each subsequent stage t > s extend
h¢ so that ®4(z) | for one more x. Thus, the set A is lows since 0” can compute
whether or not ®2 is total.

Odd stages : At stage s = 2{(e,z) + 1 we first compute a value z, > zs_2
large enough so that, viewing hs as a two-dimensional array via a computable
pairing function, the xy — th row of hg is currently empty. We then use
the oracle 0” to compute a number, N, which is an upper bound for the set
(Y (t) : u,t < a5, ®Y(t) | }. Then we extend hy to h,yq such that the z, — th
row of hsy1 begins with a string of N ones, followed by a zero, and all rows of
hs+1 whose index is less than zs end in a zero. This ends the construction of A.

To verify that the construction works, we need to check that the set A is both
low, and has the escape property. It is easy to see that A is lows since at the
even stages s = 2e of the construction 0" forces whether or not ®2 is a total
function. A also has the escape property, since if v is an index so that ®,, is the
Turing functional that, when given an oracle B and input x, computes ®Z(x)
by outputting the position of the first zero in the string x — th row of B, then
by the construction, ®2 is total, and dominates every 0’-computable function on
the infinite set {z; : s € w}.

_|

CLASSIFYING MODEL-THEORETIC PROPERTIES 19

Note that we actually proved a uniform version of the escape property for A —
i.e. there is a single A-computable function f that escapes every 0’-computable
function.

THEOREM 5.2. (P1) does not imply (P6) — i.e. there is a nonlows set that
does not have the monotone property.

PROOF. The idea is to construct a perfect tree, T' C 2<%, and an infinite set
S <t 0, such that none of the paths in T" have the monotone property for S.
This proves the theorem because T has uncountably many paths, and since there
are only countably many lows sets (since any lows set must lie below 0”), T has
a path that is nonlows and does not have the monotone property.

The proof that 0 does not have the monotone property.

Recall that we want to construct a set S <t 0’ with the property that for every
e € w, if D.(xz,y) is a total computable function that is nondecreasing in its sec-
ond variable, then there is an € w such that either é\e(x) =limy_o Pe(z,y) =
o or (x) ¢ S.

At stage s > 0 we are given numbers x, ..., zs—1 (uniformly computable in
0') and a large number N (the Ny are uniformly computable) such that N —
Ng—1 > s+ 1. First we define x5 = Ny_; (N_; = 0). Now, using 0’ as an
oracle, we determine for which of the x;, 0 < i < s there is a y € w, such that
®;(z;,y) | > N, and for the ones that do not, evaluate the corresponding limits
z; = @/{;i(xi), i > 0 (if they exist). Now, there are at most s values z;, and
so by the pigeonhole principle, there is a number ¢; € {Ns_1 + 1,..., Ng} that
is not equal to any z;; put the least such ¢, into S at stage s. This ends the
construction.

Note that S is infinite because at every stage s in its construction, we add c;
to S and ¢, is larger than any element of S at the end of stage s — 1. Further-
more, if there were a computable function, ®.(x,y), that is nondecreasing in its
second variable and satisfies z < @(a:) € S, for all € w, this would lead to a
contradiction as follows. At stage e of the construction we define x., and from
then on, at stage s > e we ask if there is a y € w such that ®.(z.,y) | > N;.
Now, for all s we have N; — N;_1 > s+ 1, and so lims_,o, Ns = 00, and since
&)\e(:ce) = lim,_, o Pc(ze,y) exists, it must be the case that at some stage s > e
we learn that there is no y € w for which ®.(z.,y) | > N,. Furthermore, we
determine what @(ze) is at stage s, and by the construction, we keep this value
out of the set S, which is a contradiction, since we assumed that for every = € w
we have @(x) € S. This ends the verification.

Recall that we will construct a perfect tree T, and an infinite set S <t (',
such that every path in T does not have the monotone property for the set S
(this is in fact the tree version of the proof that 0 does not have the monotone
property). To do this, we shall satisfy the condition that says if f is a path
of T = Ujel,T;, and @5 (ze,y) is total and nondecreasing in its second variable
and comes to a limit, then X, = lim, ®7(z.,y) is not in the set S = U;e,,S;.
Therefore no path of 7" has the monotone property. The construction of T" and

20 CHRIS J. CONIDIS

S follows.

Constructing 7" and S.

At stage s = 0 set Tp = {0} and Sy = 0.

At stage s + 1 we are given Ts; let Ay, ..., Ay denote the leaves of Ty, set
rs = 1+ max{Ss}, and N = (s + 1)2°F! + z,. Now, for each leaf)\; and
every e < s, 0’ can find a string p D \; that satisfies one of the following three
properties:

1. ®2(z.,y)] > N for some y € w.

2. For all f € 2¢ extending p either ®/(x,,-) is total, nondecreasing in its
second variable, and reaches a limit that is < N, or ®/(z.,-) defines a
partial function (i.e. there is a y € w for which ®/(z.,y)1).

3. ®?(x.,-) is not nondecreasing in its second variable.

The string p can be found using a 0’ oracle (for fixed i and e) by first using
0’ to search for a string p; D A; such that ®2*(x.,y) | > N for some y € w. If
there is such a p;, then set p = p; and we are done since p; satisfies condition 1.
Otherwise it follows that for every string p O A; and every y € w, if ®2(x.,y) |
then ®£(z.,y) < N. Now, in the case where no p; exists use 0’ to look for a
string ps D A; such that there exist y1,y2 € w, y1 < yo2, with the property that
D03 (e, y1) | > ®L3(xe, y2) | . If such a p3 exists then we are done since p3 satisfies
condition 3. Otherwise it follows that for every string p D \; the (possibly
partial) function given by ®2(z.,y) is nondecreasing in its second variable.

Now suppose that neither p; nor ps exist. Then it follows by earlier remarks
that if f € 2, \; C f, we have that either ®(z.,y) is total, nondecreasing,
bounded by N, and therefore has a limit that is less than or equal to N, or else
®7(x.,y) is a partial function — i.e. there is a y € w for which ®J(z.,y) 1.
In other words, we have satisfied condition 2. In this case we ask 0’ to find a
string po D A; and y3 € w such that for all p D \; and all y € w such that
DP(ze,y) | we have ®2(x,,y) < D22 (z,,y2). First of all, since we are under the
assumption that neither p; nor p3 exist, 0’ can determine if no such string po
exists. In this case we set po = \; and note that any f D po, f € 2“, cannot
be a total function. On the other hand, if py and y exist, then 0’ can compute
them since it knows whether or not there is a ps such that ®22(x.,y2) | = N. If
there exist such po,y then it outputs these values. Otherwise, it asks for ps,yo
such that ®£2(z.,y) |= N — 1, and so on. Note that if f € 2% extends po,
then by construction of py and the fact that we are in case 2 above, we have
that either lim, ®7(z.,y) = ®°2(xe,y2) or else ®f(z.,y) is a partial function.
Hence, for any ps C f € 2%, 0/ can compute lim, ®/ (x.,y) (if this limit exists)
by computing ®22(z., y2).

Note that nowhere have we used any assumptions about \; other than \; €
2<%: hence, for every 1 < i < k there is a node p; D \; that satisfies one of the
conditions 1, 2, 3, above for every 0 < e < s. Such a p; is obtained by iterated
extensions of \;. Add the nodes p/*0 and p'1 to the tree Tsy;. This ends the
construction of T

Note that in case 3 we have vacuously satisfied the e — th requirement for
nonmonotonicity — i.e. there is an z. such that ®2(x., -) is not a total monotonic

CLASSIFYING MODEL-THEORETIC PROPERTIES 21

(i.e. nondecreasing) function. Also, if for a single e we are able to satisfy the first
condition at all stages s, we are happy because the limit lim,_, O (2., y) = 00,
and therefore we have satisfied the e — th requirement for nonmonotonicity.

The only case that causes us concern is the second. We add the nodes p/0, p/*1
to T (for every 4). By the construction of T it follows that T, has 25T1-many
leaves, and (at stage s + 1) each leaf is currently trying to diagonalize against
s-many functionals. Therefore, by the pigeonhole principle, there is a number
cs € {xs,..., N} that is not the limit of any ®i(z.,y), for any 1 < i < k and
0 < e < s. Furthermore, 0’ can compute the least such number ¢, since 0’ can
tell which pairs (i, e) satisfy condition 2 above and also, for each of these pairs,
what is the only possible value of lim, ®{(z.,), A C f € 2*. Now, put the least
such ¢g into Ss41. This ends the construction of S.

No path in T has the monotone property.

The verification is similar to that of the proof that 0 does not have the mono-
tone property. Note that, by the construction, we have |Ss| = s, and so S is
infinite. To show that none of the paths in 7" have the monotone property for
the set S, assume, for a contradiction, that there is a path f € T that has the
monotone property for S, and by the same reasoning as before (i.e. at stage s
we put ¢, into S, which is not the limit of any ®#i(x.,-) at stage s) this leads to
a contradiction by the way we constructed S and T'. This ends the verification.

Now Theorem 5.2 follows by a simple cardinality argument. There are 2¢
many paths in 7', and only countably many lows sets. Hence, T' contains a path
that is nonlows. =

COROLLARY 5.3. (P1) does not imply any of the other properties.

PROOF. Suppose not, then (P1) = (Pk), for some k # 1. But we have
shown that if k& # 1 then (Pk) = (P6), and therefore we have that (P1) =
(Pk) = (P6), which contradicts the theorem. =

86. NonGL>;. We have now settled all implications between the properties
(P0)—(P8), as well as the helper properties introduced in section 2.3. However,
in the general computable (i.e. degree-theoretic) context, it is not even clear
what the definition of lows should be. There are three competing definitions:

1. A set Aislowg if A <p 0’ and A” =0".

2. A set A is lowy if A =0".

3. Aset Aislowy if A" = (A 0').

The first definition was considered in [1], while the second definition is the one
we have been working with so far in this article. The third definition is more
general than the first two, and is referred to in the literature as generalized lows.

DEFINITION 6.1. A is generalized lows (written A € GL,) if A satisfies 3.

One could criticize our proof of Theorem 5.2 by arguing that our definition of
lows is too restrictive, since it implies that there are only countably many lows
sets. However, there are uncountably many generalized lows sets, and so the
proof of Theorem 5.2 would not go through if we wanted to show the existence

22 CHRIS J. CONIDIS

of a set A ¢ GLo that does not have the monotone property. The next well-
known theorem (see [7] Corollary IV.3.4) shows that no such set exists.

THEOREM 6.2. If A ¢ GLo, then A has the escape property.

PROOF. Assume that A ¢ GLo, so that A” £7 (A@® @')". It then follows that
the set A @ ()’ is not high above A, and by the relativized version of Martin’s
domination theorem (see [10] Theorem XI.1.3) it follows that the degree of A
escapes the degree to which A @ ()’ belongs. In other words, for every function
g <1 A@ (Y there is a function f <t A that escapes g. Now, let h <t (', it
follows that h <17 A@® @', since 0’ <7 A® (', and therefore we have that there is
an f <t A which escapes h. Hence, for any function h <t 0’ there is a function
f <t A that escapes h. Thus, A has the escape property (P0). =

COROLLARY 6.3. If A ¢ GLo, then A has all properties (P0)—(P8).

PrOOF. If A ¢ GLo, then by Theorem 6.2, it follows that A satisfies (P0).
But we have shown that (P0) implies all the other properties except (P1). But
it is easy to verify that if B” = 0” (i.e. B doesn’t satisfy (P1)) then B is not
generalized lows. Hence, if B ¢ GLs then B” # 0", and so B has property
(P1). .

Furthermore, note that since GL5 is a more general notion than lows (i.e. lows
sets are also GL3) and we have shown that there is a lowy set A that has none of
the other properties (P0),(P2)—(P8), it follows that this set A is also an example
of a GLg set with none of the properties (P0),(P2)-(P8). Hence, none of the
properties (P0),(P2)—(P8) implies A ¢ GLo.

REFERENCES

[1] B.F. CsiMA, D.R. HIRSCHFELDT, J.F. KNIGHT, and R.I. SOARE, Bounding prime models,
The Journal of Symbolic Logic, vol. 69 (2004), pp. 1117-1142.

[2] D.R. HIRSCHFELDT, R.A. SHORE, and T.A. SLAMAN, The atomic model theorem, To
appear.

[3] N.G. KHISAMIEV, A constructibility criterion for the direct product of cyclic p-groups,
Izv. Akad. Nauk Kaz., (1981), pp. 51-55.

[4] , Theory of abelian groups with constructive models, Siberian Math. J., vol. 27
(1986), pp. 572-585.

(5] , Constructive abelian groups, Handbook of recursive mathematics (Yu.L. Er-
shov, S.S. Goncharov, A. Nerode, and J.B. Remmel, editors), Stud. Logic Found. Math., vol.
138-139, Elsevier Science, Amsterdam, 1998.

(6] B. KHoUssAINOV, A. NIEs, and R.A. SHORE, Computable models of theories with few
models, Notre Dame Journal of Formal Logic, vol. 38 (1997), pp. 165-178.

[7] M. LERMAN, Degrees of unsolvability, Springer-Verlag, Berlin, 1983.

[8] A. NIES, A new spectrum of recursive models, Notre Dame Journal of Formal Logic,
vol. 40 (1999), pp. 307-314.

[9] J. SHINODA and T.A. SLAMAN, Recursive in a generic real, The Journal of Symbolic
Logic, vol. 65 (2000), pp. 164-172.

[10] R.I. SOARE, Recursively enumerable sets and degrees: A study of computable
functions and computably generated sets, Springer-Verlag, Heidelberg, 1987.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CHICAGO
CHICAGO, IL 60637, USA

