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Abstract. In 2004 Csima, Hirschfeldt, Knight, and Soare [1] showed that a set A ≤T 0′

is nonlow2 if and only if A is prime bounding, i.e. for every complete atomic decidable

theory T , there is a prime model M computable in A. The authors presented nine seem-

ingly unrelated predicates of a set A, and showed that they are equivalent for ∆0
2 sets.

Some of these predicates, such as prime bounding, and others involving equivalence struc-

tures and abelian p-groups come from model theory, while others involving meeting dense

sets in trees and escaping a given function come from pure computability theory.

As predicates of A, the original nine properties are equivalent for ∆0
2 sets; however, they

are not equivalent in general. This article examines the (degree-theoretic) relationship

between the nine properties. We show that the nine properties fall into three classes, each

of which consists of several equivalent properties. We also investigate the relationship

between the three classes, by determining whether or not any of the predicates in one

class implies a predicate in another class.

§1. Introduction. Given two degree-invariant predicates of a set A there are
several ways in which one can study their relationship. One approach is to study
the degree-theoretic relationship between the predicates, but restrict the class of
degrees with the hope of being able to show that they are indeed equivalent when
restricted to the given class. This approach was taken by Csima, Hirschfeldt,
Knight, and Soare, [1] who show that nine seemingly unrelated degree-invariant
predicates of a set A are in fact equivalent when A ≤T 0′. A different approach
is to assume a weak base theory (such as RCA0), and check to see whether any
implications follow. This approach was taken by Hirschfeldt, Shore, and Slaman
[2], who show that several similar properties in [1] are not equivalent in the latter
context. Yet another approach, which we take, is to consider the degree-theoretic
relationship between the properties when A is allowed to range over all sets. In
other words, we ask: “if a degree in the computable hierarchy has one property,
does it have the other?”

1.1. The main theorem. Two properties examined in [2] we call the
strong tree property and the isolated path property. A set A has the
strong tree property if for any computable tree T with no terminal nodes,
and any uniform collection of ∆0

2 dense sets in T , {Si}i∈ω, there is a function
f(σ, y) ≤T A such that, for any node σ ∈ T , and any i ∈ ω, the function f
produces a path extending σ as well as each of the dense sets Si. The strong tree
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property was first introduced by Shinoda and Slaman [9] in the context of effec-
tive forcing constructions. The isolated path property comes from computable
model theory, and says that for every computable tree T with no terminal nodes
and isolated paths dense, the set A computes a function that, for any node
σ ∈ T , produces an isolated path in T extending σ. The isolated path property
is natural in the context of computable model theory. Computability theorists
build prime models by finding, for every formula ϕ(x̄) consistent with T , a prin-
cipal type containing ϕ, and since types can be identified with paths in Cantor
space, it follows that what is required to build a prime model is exactly the
isolated path property. Hence, the isolated path property is equivalent to the
prime bounding property, which says that for every complete atomic decidable
theory T , there is a prime model M computable in A. Though it is important
to recognize that the isolated path property is derived from the prime bounding
property, from our point of view it is unnecessary to constantly refer to both,
and so we will not discuss the prime bounding property much beyond giving its
formal definition in the next section.

Since the isolated nodes of a computable tree form a Π0
1 set, and the Π0

1 sets
belong to the class of ∆0

2 sets, it follows that the strong tree property implies the
isolated path property in any mathematical context. However, it is not obvious
whether or not the reverse implication is true. Csima, Hirschfeldt, Knight, and
Soare show that the reverse implication holds if the set A is ∆0

2, while Hirschfeldt,
Shore, and Slaman show that this is not the case if we consider nonomega mod-
els of RCA0. In particular, [2] shows that the isolated path property (which
they call the atomic model theorem) is Π1

1-conservative over RCA0+BΣ2. BΣ2,
or Σ2 bounding, is a bounding principle for Σ2 formulas; for the precise defi-
nition consult [2]. However, the authors also show that, over RCA0+BΣ2, the
strong tree property implies induction for all Σ2 formulas (IΣ2). Thus, one can
construct a model of RCA0+BΣ2 that has the isolated path property, but not
the strong tree property by starting with a model of RCA0+BΣ2 + ¬IΣ2 (such
models exist, and are clearly nonomega models) and adding to it the isolated
path property. Hence, the isolated path property cannot imply the strong tree
property in the context of reverse mathematics. Neither of these results answers
the degree-theoretic question of whether or not any degree that has the isolated
path property also has the strong tree property. Moreover, they do not even
provide us with a hypothesis, since in one case the answer is positive, while in
the other it is negative.

The main theorem of this paper is to show that from the point of view of
computability theory (i.e. degree-theoretically) the isolated path property does
in fact imply the strong tree property. One immediate consequence of this sur-
prising result is that the use of nonomega models in showing that the properties
differ reverse mathematically is necessary; in other words, the properties are
equivalent in every omega model of RCA0.

We now wish to informally introduce two more properties, which we will show
are equivalent to both the strong tree property and the isolated path property.
We call the first of two properties the weak tree property. This is the same
as the strong tree property, except that instead of a uniform collection of ∆0

2

dense sets, {Si}i∈ω, there is but a single dense subset of T , called S. Thus it
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is clear that the strong tree property implies the weak tree property. The weak
tree property implies the isolated path property, since the isolated nodes of a
computable tree form a Π0

1 set. The other property is called the escape property,
and says that for any given function g ≤T 0′, the set A can compute a function f
that escapes (i.e. is not dominated by) g. Via a theorem of Martin, [1] explains
why the escape property is important and why it is degree-theoretic in nature.

We conclude the introduction by first briefly introducing the remaining prop-
erties in [1], and then outlining the content of the rest of this paper.

1.2. The
monotone property. A set A is said to have the monotone property if it
can compute, for any infinite ∆0

2 set S, a function f(x, y) that is nondecreasing
in y, and satisfies f̂(x) = limy f(x, y) ∈ S. Monotone functions were originally
used by Khisamiev [3], [4], [5], to examine computability theoretic aspects of
p-groups. Khoussainov, Nies, and Shore [6], and Nies [8], studied the monotone
functions in the context of ℵ1-categorical theories; Hirschfeldt studied them in
the context of linear orderings; and [1] examines them in the context of both
group theory and equivalence relations.

1.3. Low2. The final property that we mention in the introduction says that
the set A is nonlow2; in other words, A′′ >T ∅′′. We will show that this property
is not implied by, nor does it imply any of the other properties.

1.4. The three classes. As was stated in the abstract, the overall aim of
this paper is to determine which of the implications between the nine properties
are true in general. In [1], Csima, Hirschfeldt, Knight, and Soare show that a
few of the implications are valid in general, because some of their proofs do not
require the hypothesis A ≤T 0′. This serves as our starting point and is outlined
in section 2.2. The overall goal of this article is to prove that the nine properties
in [1] fall into three equivalence classes under logical implication. The first
class consists of the strong tree, weak tree, isolated path, and escape properties;
we introduced these properties in section 1.1. The second class contains the
monotone property, as well as two other properties; one is related to p-groups
and the other deals with equivalence relations. The third class contains the
property nonlow2 (i.e. A′′ > 0′′). Furthermore, we go on to show that the third
class is independent from the first two, and that the first class implies, but is
not implied by the second. This settles all questions of the form “does every set
A with property Pi also have property Pj?”, 0 ≤ i, j ≤ 8.

§2. The properties. In this section we begin by giving precise definitions of
all of the properties (P0)–(P8) defined in [1], and conclude with a diagram of the
implications that they were able to show in general (i.e. without the assumption
that A ≤T 0′).

We use the notation of [1] and [10] throughout, except that we denote the set
to which the properties may or may not hold of by A instead of X, and we write
σ ∈ T instead of x ∈ T when T ⊆ 2<ω is a tree.

2.1. Definitions. The properties (P0)–(P8) are as follows:

(P0) The escape property. (∀g ≤T 0′) (∃f ≤T A) (∃∞x) [ g(x) ≤ f(x) ],
where “(∃∞)” denotes “there exist infinitely many.”
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(P1) Nonlow2. A is not low2 (namely, A′′ >T 0′′).
(P2) Prime bounding. A is prime bounding. That is to say, for every complete

atomic decidable theory T , there is a prime model A of T decidable in A.
(P3) The isolated path property. For every computable tree T ⊆ 2<ω with no

terminal nodes and with isolated paths dense,

(∃g ≤T A) (∀σ ∈ T ) [ gσ ∈ [Tσ] & gσ is isolated ].

(P4) The strong tree property. For every computable tree T ⊆ 2<ω with no
terminal nodes, and for every uniformly ∆0

2 sequence of subsets {Si}i∈ω

all dense in T , there exists an A-computable function g(σ, y) such that for
every σ ∈ T , gσ = λy [g(σ, y)] is a path extending σ and entering all Si,
namely in our notation,

(∃g ≤T A) (∀σ ∈ T ) (∀i)(∃z ∈ Si)[ σ ⊆ z ⊂ gσ & gσ ∈ [T ] ].

(P5) The weak tree property. For every computable tree T ⊆ 2<ω with no
terminal nodes, and for every ∆0

2 set S dense in T , there exists an A-
computable function g(σ, y) such that for every σ ∈ T , gσ = λy [g(σ, y)]
is a path extending σ and extending some z ∈ S above σ, namely in the
notation of CHKS,

(∃g ≤T A) (∀σ ∈ T ) (∃z ∈ S)[ σ ⊆ z ⊂ gσ & gσ ∈ [T ] ].

(P6) The monotone property. For any infinite ∆0
2 set S,

(∃g ≤T A) (∀x) (∀y) [ x ≤ gx(y) ≤ gx(y + 1) & ĝ(x) ∈ S ].

An equivalence structure is a structure of the form A = (A,E), where E is an
equivalence relation on A.

(P7) The equivalence structure property. For any ∆0
2 set S ⊆ ω − {0}, there is

an A-computable equivalence structure with one class of size n for each
n ∈ S, and no other classes.

A reduced Abelian p-group is determined, up to isomorphism, by its ulm
sequence. Here we restrict our attention to reduced Abelian p-groups G of length
ω, such that for all n ∈ ω, un(G) ≤ 1. Define S(G) = {n : un(G) 6= 0}.
(P8) The abelian p-group property. For any infinite ∆0

2 set S with 0 /∈ S,
there is an A-computable reduced Abelian p-group G, of length ω, and with
un(G) ≤ 1 for all n, such that S(G) = S.

It should be noted that our numbering is the same as [1], except for prop-
erty (P5), which we take to be the weak tree property, but [1] took to be the
omitting types property ([1] does not discuss the weak tree property). The
authors Csima, Hirschfeldt, Knight, and Soare showed that the omitting types
property is equivalent to the strong tree property (P4), and therefore any impli-
cation that applies to the strong tree property also applies to the omitting types
property.
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2.2. Known results. The following is shown in [1], and serves as our starting
point:

(P0) =⇒ (P4) =⇒ (P5) =⇒ (P3) ⇐⇒ (P2).(1)

(P0) =⇒ (P6) ⇐⇒ (P7) ⇐⇒ (P8)(2)

For simplicity, we shall no longer refer to properties (P2), (P7), and (P8),
since each is equivalent to one of the remaining properties.

2.3. Helper Properties. The following properties will be used in section
3 to prove the main theorem, which says that the properties (P0), (P2), (P3),
(P4), and (P5) are mutually equivalent. A consequence of the main theorem is
that this group is also equivalent to either of the following properties.

(OP5) The open weak tree property. For every computable tree T ⊆ 2<ω with
no terminal nodes, and for every ∆0

2 set S dense in T , there exists an A-
computable function g(σ, y) such that for every σ ∈ T , gσ = λy [g(σ, y)]
is a path extending σ and extending some z ∈ S (z need not extend σ),
namely,

(∃g ≤T A) (∀σ ∈ T ) (∃z ∈ S)[ σ ⊂ gσ & z ⊂ gσ & gσ ∈ [T ] ].

(Π0
1-P5) The open Π0

1 weak tree property. For every computable tree T ⊆ 2<ω

with no terminal nodes, and for every Π0
1 set S dense in T , there exists an

A-computable function g(σ, y) such that for every σ ∈ T , gσ = λy [g(σ, y)]
is a path extending σ and extending some z ∈ S, namely in our notation,

(∃g ≤T A) (∀σ ∈ T ) (∃z ∈ S)[ σ ⊂ gσ & z ⊂ gσ & gσ ∈ [T ] ].

2.4. The plan of the paper. In the next section we prove our main theo-
rem. It says, surprisingly, that properties in group 1 {(P0),(P4),(P5),(P3)} are
equivalent. Now, by (2), we know that (P0) implies (P6), and that (P6), (P7),
and (P8) are equivalent; so one immediate consequence of the main theorem is
that the properties of group 1 imply the properties of group 2 {(P6),(P7),(P8)}.
In section 4, we show that the reverse implication is not true by constructing
a set A which has the monotone property (P6), but does not have the escape
property (P0). In section 5, we consider the property (P1) (nonlow2), and show
that it is independent from any of the other properties. We then replace (P1)
by the stronger predicate which says that a set is not generalized low2, written
A /∈ GL2 (i.e. A′′ �T (A⊕∅′)′), and check to see whether any implications hold
of this new property. By the end of the paper we will have proved the following
set of implications.

[(P0) ⇐⇒ (P4) ⇐⇒ (P5) ⇐⇒ (P3) ⇐⇒ (P2)] =⇒

=⇒ [(P6) ⇐⇒ (P7) ⇐⇒ (P8)]

[(P1)]
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§3. The main theorem. The main theorem of this article is Theorem 3.9. It
says that the isolated path property implies the escape property. First, however,
we prove two theorems (3.1, 3.5) that will motivate the proof of the main theorem
and serve as necessary results in its proof. We begin with Theorem 3.1, which
says that the strong tree property implies the escape property.

Theorem 3.1. (P4) ⇐⇒ (P0) – i.e. the strong tree property implies the
escape property (note that the implication (P0) =⇒ (P4) is given by (1)).

First we need a definition.

Definition 3.2. An n-m dominating sequence is a string of the form
101n001m000. A dominating sequence is an n-m dominating sequence, for some
n,m ∈ ω.

An important property of n-m dominating sequences is that if σ ∈ 2<ω ends
in such a sequence (for some n,m ∈ ω), then any other dominating sequence
contained in σ must come before the n-m dominating sequence (i.e. dominating
sequences cannot overlap). The reason for this is that each consecutive run of
ones in a given dominating sequence is separated by one, two, and three zeros,
respectively.

The general outline of the proof is as follows. For a given g ≤T 0′, we define
a dense open set S ⊆ 2<ω, S ≤T 0′, which codes information about the values
{〈x, g(x)〉}x∈ω. We then define the sets Sk to be the set S, minus its nodes of
length at most k, and, applying the strong tree property to the {Sk}k∈ω, we get
a function, f ≤T A, that escapes g.

Proof of Theorem 3.1. Given any function g ≤T 0′, we define a uni-
form sequence of dense open sets Sk ⊆ 2<ω, k ∈ ω, Sk ≤T g, as follows:
for every σ ∈ 2<ω, put all τ ⊇ τσ in Sk where τσ = σ∧101n001m000 and
n = |σ|+ 10 + k, m = g(n) + 1. By construction it follows that the sets Sk are
each open and dense, and they are uniformly computable in 0′ (since g ≤T 0′).

The basic module of our construction is as follows. Fix a number k ∈ ω. If we
wanted to construct a partial function F that escaped g on a single input x, we
could do it using the weak tree property applied to the set Sk. The weak tree
property gives us a path, starting from the root ∅ of 2<ω that extends a node of
Sk. Call this path f . Now, we can go from f to F via the reduction procedure
that defines F (k) = m for all k ≤ n not yet in the domain of F whenever we
read an n,m dominating sequence in f .

Note that for f to extend a node of Sk it must contain an n, m dominating
sequence for some n,m ∈ ω. If σ is the smallest initial segment of f that lies in
Sk, then σ = σ∧0 101n001m000 ends in an n-m dominating sequence, and so any
other dominating sequence contained in σ must actually be contained in σ0 (by
the remark after the definition above). But, since the construction of Sk requires
n = |σ0|+10+k, it follows that σ0 cannot contain any k-l dominating sequences
for k ≥ n. Thus, when we read σ, n is not yet in the domain of F , so we will
define F (n) = m, where m = g(n) + 1, and hence F (n) > g(n) for some n ∈ ω,
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as required.

For the general case let f ∈ 2ω meet all Sk, k ∈ ω; we give a Turing reduc-
tion that produces a total function F that escapes g using f as an oracle. We
construct F from f inductively in stages. At stage 0 we let F = ∅. At stage
s + 1, we consider only the first s + 1 bits of f , call this string σ, and check to
see whether σ ends in an n-m dominating sequence (for some n,m ∈ ω). If not,
then go to stage s + 2. If so, then check to see if F (n) is defined at the current
stage; if F (n) is defined then proceed to stage s + 2, otherwise set F (k) = m for
all arguments k ≤ n on which F is undefined and go to stage s + 2.

Lemma 3.3. The function F described above is total and escapes the given
function g ≤T 0′.

Proof. Suppose that F does not escape g. Then F is dominated by g, and so
there is some number n such that (∀m ≥ n)[F (m) ≤ g(m)]. We shall construct
a number i > n such that F (i) > g(i), thus obtaining a contradiction. Let s be
the stage at which we defined F (n). Since the reduction procedure at stage s
considers only the first s bits of h, it follows, by the reduction procedure, that
at stage s we have dom(F ) ⊆ {0, ..., s}. Therefore, F (s + 1) is undefined at
stage s. However, we are under the assumption that f meets all Sk, and so f
meets Ss+1. Let σ be the smallest initial segment of f that meets Ss+1; then
σ = τ∧101i001j000 (this defines i), for some τ ∈ 2<ω, |τ |+ 11 + s = i > s, j =
g(i) + 1.

We claim that F (i) > g(i); by the reduction procedure and the construction of
S, it suffices to show that at stage k = |σ|, F (i) is still undefined (in which case
it will be defined and greater than g(i) at stage k + 1; this also shows that F is
indeed a total function). So suppose for contradiction that F (i) is defined at some
stage z < k. By the reduction procedure and the fact that dominating sequences
cannot overlap, this implies that τ has a substring of the form ρ∧101x001y000
for some x ≥ i, y ∈ ω. But i ≥ |τ | + 11, which is a contradiction. Hence,
F (i) > g(i). a

a
The following lemma is useful because it helps to simplify several of the fol-

lowing proofs.

Lemma 3.4. (OP5) ⇐⇒ (Π0
1-P5) – i.e. the open weak tree property (OP5)

is equivalent to the open Π0
1 weak tree property.

Proof. It is obvious that open weak tree implies open Π1
0 weak tree. For the

opposite implication, suppose that a set A has the open Π1
0 weak tree property,

and let S ⊆ 2<ω be a ∆2
0 dense set. Define a Π1

0 dense set P ⊆ 2<ω as follows.
A node σ belongs to P if and only if it extends τ , and has length equal to 〈τ, k〉
for some τ ∈ S, k > m(τ), where m is the modulus associated to some (fixed)
computable approximation of S (which exists by the limit lemma). Note that
P is dense since S is dense, and m is total. Now, suppose that g(σ, y) ≤T A
extends all σ ∈ 2<ω to meet P , then g must also extend all σ ∈ 2<ω to meet S
since (by construction) a path in 2<ω meets S if and only if it meets P . a
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The next theorem is the second key ingredient in the proof of the main theo-
rem.

Theorem 3.5. (OP5) ⇐⇒ (P3) – i.e. the open weak tree property is equiv-
alent to the isolated path property.

Proof. By the previous lemma, it suffices to show that (P3) implies (Π0
1-P5).

So assume that A satisfies (P3), let P ≤T 0′ be a dense open Π1
0 subset of 2<ω,

and h(σ, s) will denote a fixed computable Π1
0 approximation to P . For simplicity,

we take the computable tree in which we work to be the full binary tree 2<ω (the
general case is similar, and is discussed afterwards). We show that A computes a
function which extends all σ ∈ 2<ω to nodes in P . To achieve this, we construct
a computable tree, T , and a 1-1 computable function F : T → 2<ω such that
(∀σ, τ ∈ T )[σ ⊆ τ =⇒ F (σ) ⊆ F (τ)] – i.e. paths in our tree T correspond to
paths in 2<ω via F .

The idea of this proof is to construct a computable tree T , and a partial com-
putable 1-1 onto function F which labels the nodes of T with labels from the full
binary tree 2<ω, in such a way that paths in T correspond (via F ) to paths in
2<ω. We build T so that if τ ∈ T and F (τ) ∈ 2<ω is not in P , then τ eventually
splits. Also, if F−1(ρ̂) splits for some ρ̂ ∈ 2<ω, then we impose the condition
that the inverse image of every σ̂ ⊇ ρ̂ (under F ) must extend F−1(ρ̂) ∈ T . This
condition allows us to exploit the fact that P is dense in 2<ω to show that the
set of isolated paths in T are dense. Next, we use the fact that A has the isolated
path property to obtain g(σ, y) ≤T A which extends all σ ∈ T to isolated paths,
and finally, using both g and F , one easily constructs a corresponding function
for the dense Π1

0 set P ⊆ 2<ω.

First some definitions.

Definition 3.6. The ledge above a node σ ∈ 2<ω is the set of nodes
{σ, σ∧1, σ∧10, σ∧11}, as is depicted in Figure 1 below.

In our diagrams σ∧0 is to the right of σ, and σ∧1 is to the left of σ.

Definition 3.7. Given a (finite) tree, T , the ledge below a node σ(∈ T ) on T
is the unique node on T of the form σ′∧1n, where σ′ is the largest substring of
σ ending in a 1 (if such a string exists), and n is the largest integer such that
the resulting node is on the finite tree T . In Figure 2 (below), the node labeled
with a star is the ledge below the node labeled σ.



CLASSIFYING MODEL-THEORETIC PROPERTIES 9

Since the reader may find it unusual to refer to a single node as a ledge, the
author would now like to inform the reader that he thinks of the ledge below σ
to be the set of nodes extending σ′ which end in a 1 (hence it follows that the
ledge below σ, as defined above, corresponds uniquely to a set of nodes which
make up to actual ledge). The reason for this slightly ambiguous terminology is
that it simplifies the explanation of the construction of the computable tree T .
Also, a consequence of the construction of T is that if the ledge above ρ is on T ,
then for any τ ⊇ ρ on T , then the ledge below τ also extends ρ. This justifies
the use of the terms “ledge above”, and “ledge below”.

The following paragraph gives the intuition behind the construction using the
terminology that we have now developed. The construction guarantees that Ts is
finite for all s (hence the ledge below a node is always defined), and we build Ts+1

by extending the leaves of Ts. We have a fixed computable Π0
1 approximation to

the (dense) set P , which we denote as h. Hence, as s increases, a node may leave
our approximation to P , but once it leaves it can never return. We are trying to
build a tree T with isolated paths dense such that isolated paths in T correspond
to paths in 2<ω that extend elements of the dense set P . To accomplish this,
we associate to every node in T , an element of 2<ω via a (partial computable,
1-1, onto) function F : T → 2<ω, such that if f = ∪iτi, τi ∈ 2<ω, |τi| = i,
is an isolated path in T then F (f) = ∪if(τi) is a path in 2ω extending some
element of S. With this in mind, we construct the tree T by creating splittings
above nodes σ ∈ T once F (σ) leaves the set P , and we ensure that there is
a unique path extending σ so long as F (σ) appears to be in P . To create a
splitting above σ, we insert the ledge above some λ ⊇ σ into T for some current
leaf λ ∈ T . To ensure that there is a unique path in T extending σ we do not
create any splittings above σ in T ; we do this as follows. If λ is the unique leaf
of Ts extending σ, then to ensure that F is onto, we must define F (ρ) = F (λ)∧0,
F (τ) = F (λ)∧1, for some fresh nodes ρ, τ ∈ Ts+1. However, ρ and τ cannot be
comparable, since their images under F are incomparable, and so F would not
necessarily take paths in T to paths in 2<ω. We resolve this issue by setting
ρ = λ∧0, and taking τ to be a certain extension of the ledge below λ. This is
how ledges are used in the construction of T .

The basic module of the construction is as follows. We build a tree T and
function F as above such that for any isolated path f of T , F (f) is in the open
set defined by S. To do this we first fix a Π0

1 approximation of P , h(σ, s), as
described above. The idea is to build T and F in stages, keeping paths in T
isolated as long as their isolating nodes stay in the set P . At stage 0 we start
by letting T be the ledge above the root of 2<ω, and set F (10) = ∅, as shown in
Figure 3.
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At stage s + 1, if h(∅, s) = 1 we extend the leaves of Ts that end in 0 to leaves
of Ts+1 by adding another 0, and set the images of the new leaves under Fs+1

to be the images of the leaves they extend, concatenated by 0.
Figure 4 illustrates this portion of the construction of T at stage 1 under the

assumption that h(∅, 0) = 1. In this case we are acting as if ∅ ∈ P , and so we
proceed to build an isolated path extending F−1(∅) = 10 ∈ T .

We also include, for each of the leaves of Ts ending in 0, a splitting above the
ledge below these leaves. We define the images (under Fs+1) of these leaves that
end in 0 to be the image of the corresponding leaf, concatenated by 1.

Figure 5 depicts this portion of the construction of T at stage 1 under the
assumption that h(∅, 0) = 1. At this point of the construction we still believe
that ∅ ∈ P .

If, on the other hand, h(∅, s) = 0 at stage s, then ∅ is no longer in the set P
and so we create a splitting above the node F−1

s (∅) ∈ Ts by including the ledge
above the unique leaf extending F−1

s (∅) in Ts, λ. We define Fs+1 on the node
of the ledge that ends in 0 as follows: Fs+1(λ∧10) = Fs(λ)∧0 (this follows the
same pattern we used to label the ledge above ∅ at stage 0 of the construction).
We extend all other leaves as in the case h(∅, s) = 1.

Figure 6 shows what would happen at stage 2 of the construction (of T ) if
h(∅, 1) = 0. Thus, we have just learned via h that ∅ /∈ P , and so we now act
accordingly and create a splitting in T above the node labeled ∅.

Now for the general case. We construct F =
⋃

s Fs, Fs+1 ⊇ Fs, and
T =

⋃
s Ts, Ts+1 ⊇ Ts, in stages. At stage 0, we let T consist of the ledge

above ∅, and we define F (10) = ∅. At stage s + 1 we are given Ts and Fs. Let
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λ0, ..., λk be the leaves of Ts that end in 0, listed in length-lexicographic order
(any sequence of uniformly computable orders would suffice) of their images un-
der Fs. It will follow that Fs is defined on all λi. Let λ′0, ..., λ

′
k be the largest

substrings of the corresponding λi that end in 1, as in the definition of the ledge
below a node. Now, we divide stage s + 1 into k + 1-many substages as follows.
For every 0 ≤ i ≤ k, if h(Fs(λ′i), s) = 1 then enumerate λ∧i 0, τ∧i 0, τ∧i 1 into
Ts+1, where τi is the (current) ledge below λi; also set Fs+1(λ∧i 0) = Fs(λi)∧0
and Fs+1(τ∧i 0) = Fs(λi)∧1. On the other hand, if h(Fs(λ′i), s) = 0 then add
the ledge above λi to T and set Fs+1(λ∧i 10) = Fs(λi)∧0. Also, extend the ledge
below λi and define Fs+1 on the new leaves of Ts+1 that end in 0 as in the
case where h(Fs(λ′i), s) = 1. That is, enumerate τ∧i 0 and τ∧i 1 into Ts+1 and set
Fs+1(τ∧i 0) = Fs(λi)∧1. Do this in order, for every i = 0, . . . , k, and then go to
stage s+2. This ends the construction. Note that T is in fact computable, since
if a leaf of Ts is not extended along a given path at stage s+1, then it will never
be extended along that path at any future stage.

It is worth noting that throughout this proof we use lower case Greek charac-
ters (i.e. σ, τ, ρ, ... to represent nodes of T , and we use lower case Greek letters
with hats (i.e. σ̂, τ̂ , ρ̂, ...) to represent the nodes of 2<ω, thinking of this as the
space where S lives.

Lemma 3.8. T is a computable tree with no terminal nodes and isolated paths
dense. F is an onto, 1-1, partial computable function whose domain is the set
of nodes in T that end in 0, and has the following two special properties:

1. τ ⊆ σ =⇒ F (τ) ⊆ F (σ), for any τ, σ in the domain of F . This property
allows us to go from paths in T to paths in 2<ω.

2. If T contains the ledge above ρ then ρ is in the domain of F , and furthermore
any τ̂ ⊇ F (ρ)∧0 satisfies F−1(τ̂) ⊇ ρ (this is a partial converse to 1).

Proof. We provide an algorithm (via the construction of T ) for determining
which of the extensions of the leaves of Ts are in Ts+1; hence T is computable.
Similar reasoning shows that F is computable. To show that T has no terminal
nodes, first note that at stage s of the construction, we extend the leaves of Ts

that end in 0. Also, by induction one can show that every leaf of Ts ending in 1
is the ledge below some leaf λ ∈ T . Now, by the construction of Ts+1, it follows
that this ledge will be extended in Ts+1 (whether or not h(λ, s) = 1).

F is onto since at stage s + 1 the range of F contains all nodes of length s
(follows by induction). It is not difficult to show (by induction and the construc-
tion) that the domain of F is exactly the set of nodes in T that end in 0. Also,
F is 1-1 since F−1

s (σ∧0) is always incomparable to F−1
s (σ∧1), and F preserves

proper extensions (by the construction).
In the next two paragraphs we show that F has properties 1 and 2; this follows

from the construction, and the author urges any reader who is already convinced
of these facts not to spend too much time parsing them.

We prove that F satisfies property 1 by showing that Fs has property 1 for
all σ, τ in its domain (for all s ∈ ω); we do this by induction. The base case is
trivial. For the induction step, assume that Fs satisfies property 1 for all σ, τ in
its domain; we show that Fs+1 also has this property. Suppose that τ ⊆ σ, for
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some σ, τ in the domain of Fs+1. If both σ and τ are in the domain of Fs we
are done. So assume that σ is not in the domain of Fs (if τ is not in Ts then
it follows by the construction that any extension of τ cannot be in Ts, and so σ
is not in Ts as well). Then σ was added to Ts+1 at stage s + 1 and so it must
be a leaf that ends in 0 (by the construction). Now, τ ⊆ σ and so τ must be in
Ts, since τ is in the domain of Fs+1 and the construction does not define Fs+1

on two comparable nodes unless one of them is in the domain of Fs, since we
extend Fs to Fs+1 by defining it on the leaves of Ts+1 that end in 0 (so they are
mutually incomparable). But the construction defines the values of Fs+1 on the
leaves of Ts+1 (which end in 0) as extensions of the values of Fs on the leaves of
Ts. So let ρ be the leaf of Ts extended by σ. Then it follows (since τ ⊆ σ, and
τ ∈ Ts) that τ ⊆ ρ. But it follows by the induction hypothesis that F (τ) ⊆ F (ρ),
and by the construction F (ρ) ⊆ F (σ), hence F (τ) ⊆ F (σ).

F satisfies the first part of property 2, since we only construct ledges above
nodes which end in 0 (by the construction). We show that F satisfies the second
part of property 2 by induction on the length of τ̂ . First let ρ ∈ T be such that
the ledge above ρ is in T , then we must show that for any τ̂ ⊇ F (ρ)∧0 we have
that F−1(τ̂) ⊇ ρ. If τ̂ = F (ρ)∧0 then this follows since by the construction
of T we have that τ̂ = F (ρ∧10), and it is clear that ρ∧10 ⊇ ρ. Suppose the
claim is true for all τ̂ ⊇ F (ρ)∧0 of length up to k ≥ |F (ρ)|, and consider a
τ̂ ⊇ F (ρ)∧0 of length k + 1. We can write τ̂ = τ̂0

∧0 or τ̂ = τ̂0
∧1, for some τ̂0 of

length k such that τ̂0 ⊇ F (ρ)∧0. Now, since τ̂0 is of length k, by the induction
hypothesis we have that F−1(τ̂0) ⊇ ρ. If τ̂ = τ̂0

∧0 then by the construction
we have either F−1(τ̂) = F−1(τ̂0)∧0 (if the ledge above F−1(τ0) is not in T )
or F−1(τ̂) = F−1(τ̂0)∧10 (in the case where the ledge above F−1(τ̂0) is in T ).
However, in either case we have that F−1(τ̂) ⊇ ρ, since F−1(τ̂0) ⊇ ρ. If τ̂ = τ̂0

∧1
then by the construction F−1(τ̂) extends the ledge below F−1(τ̂0) at some stage
s (here we are using the fact that τ̂0 ⊇ F (ρ)∧0). But F−1(τ̂0) ⊇ ρ, and since the
ledge above ρ is in T it follows that the ledge below F−1(τ̂0) extends ρ.

To show that T has its isolated paths dense, let σ ∈ T . Now, either there is
a unique path extending σ, or else the path above σ splits at some point. By
construction, the only way that this can occur is if at some stage we included
the ledge above some σ0 ⊇ σ in T . Now, there is some ρ̂0 ⊇ F (σ0)∧0 in 2<ω that
lies in P (by density), and by property 2 we have that F−1(ρ̂0) ⊇ σ0 ⊇ σ. Now,
suppose that F−1(ρ̂0) splits at some σ1 ⊇ F−1(ρ̂0). Then F (σ1) ⊇ ρ̂0, and since
P is open and ρ̂0 ∈ S, we have F (σ1) ∈ P . Hence by the construction T has
a unique path, namely σ∧1 10∞ extending σ∧1 10. But the set P is open, and so
we have that ρ̂1 ⊇ F (σ1) ⊇ ρ̂0 ∈ S, hence ρ̂1 ∈ P . Hence, every node including
and above F−1(σ1)∧0 is in P , and therefore, by the construction of T , T has a
unique path extending the node σ∧1 10. Thus, the isolated paths in T are dense,
as claimed. a

Note that in the construction of T , we only created a splitting at a node
σ ∈ T when the inverse image of one of its initial segments under F left the
set P . Therefore, an isolated path in T means that there are only finitely many
initial segments whose images under F are not in P , hence there must be a node
on the path whose image is in P , and so the image of an isolated path in T under
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F produces a path in 2<ω that meets P . Thus, it follows that the isolated path
property implies the weak tree property.

It is not necessary to consider the general case when P is a dense subset of a
computable tree T ′ 6= 2<ω. This is a consequence of the next theorem (3.9), as
well as the known implications proven in [1], and outlined in the introduction.
However, it is worth noting that the proof of Theorem 3.9 uses the construction
we have just given for the case T ′ = 2<ω. In other words, our reasoning is sound.
This ends the proof of Theorem 3.6. a

Next we state the main theorem. We then state and prove two simple corol-
laries before giving the proof of the main theorem.

Theorem 3.9. (P3) implies (P0) – i.e. the isolated path property implies the
escape property.

Corollary 3.10. (P3) implies (P6) – i.e. the isolated path property implies
the monotone property.

Proof of corollary. By (2), we know that (P0) =⇒ (P6). Hence we have
that (P3) =⇒ (P0) =⇒ (P6), and so (P3) =⇒ (P6). a

Corollary 3.11. The properties (P0), (P4), (P5), (OP5), (Π0
1-P5), and

(P3) are mutually equivalent.

Proof of corollary. We know that

(P0) =⇒ (P4) =⇒ (P5) ⇐⇒ (OP5) ⇐⇒ (Π0
1 − P5) ⇐⇒ (P3)

and so by the theorem all of these properties are equivalent. a
Before diving into this proof, we make the following simple observation.

Remark 3.12. Given a function g, let Fk, k ∈ ω, be a uniform collection of
total functions such that for every k ∈ ω there exists a number xk with the prop-
erty that Fk(xk) > g(xk) and xk > k. Then the function F (x) = maxk≤x Fk(x)
escapes the function g.

Therefore, to prove Theorem 3.9 we shall give, for every function g ≤T 0′, a
uniform procedure for constructing total functions Fk as above.

As in the proof that the isolated path property implies the open Π0
1 weak tree

property, we use lower case Greek letters to denote the nodes of T , and lower
case Greek letters with hats to denote elements of the full binary tree, in which
the set S lives.

Proof of Theorem 3.9. The proof uses the methods of previous proofs.
Let g ≤T 0′ be the function that we are trying to escape using the isolated path
property, and recall the sets Sk ≤T g from the proof of Theorem 3.1 (note that
Sk is dense in 2<ω = T ′ for all k ∈ ω). Let S = S0 and P be the corresponding
Π0

1 set given in the proof of Lemma 3.4. Using P , build the computable tree T
as in the proof of Theorem 3.5.

Definition 3.13. An isolated node is one that does not immediately split.
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Claim 3.14. The number of isolated nodes extended by F−1(σ̂∧1) ∈ T is at
most that of F−1(σ̂).

Proof. The claim follows by the construction of T . Let σ = F−1(σ̂) ∈ Ts be
a leaf. Now, recall that by the construction of Ts+1, if F (ρ) = σ̂∧1, then ρ is
an extension of the ledge below σ. More precisely, ρ is of the form ρ = σ′∧1k0,
where k is a natural number and σ′ is the longest substring of σ that ends in a
1. From this observation it follows that ρ has at most as many zeros as σ. Now,
by the construction of T it follows that nodes of T ending in 1 split immediately,
and so the isolated nodes of T must end in a 0. The result now follows. a

Corollary 3.15. The number of isolated nodes extended by F−1(σ̂∧1n) ∈ T
is at most that of F−1(σ̂).

More generally, if we define iso(σ̂) to be the number of isolated nodes properly
extended by F−1(σ̂), and Z(σ̂) to be the number of zeros in σ̂, then

Claim 3.16. iso(σ̂) ≤ Z(σ̂) + 1

Proof. By induction. First suppose that |σ̂| = 0, i.e. σ̂ = ∅. By the
construction of the tree T in the proof of Theorem 3.5 we have that F (10) = σ̂
and 10 extends exactly one isolated node in T , namely the root of T . Therefore,
in this case we have that iso(σ̂) = 1 and Z(σ̂) = 0 and so the claim holds.
For the inductive step, suppose that the claim holds for all |σ̂| = k, and let
|ρ̂| = k + 1. Then ρ̂ = σ̂∧0 or ρ̂ = σ̂∧1, for some |σ| = k. The latter case is
trivial by Claim 3.14. For the former case, we know by the construction of T
that either F−1(ρ̂) = F−1(σ̂)∧0 or F−1(ρ̂) = F−1(σ̂)∧10 (in the first case we
didn’t add the ledge above σ, while in the second case we did). In either case
however, we have that iso(σ̂) ≤ Z(σ̂) + 1 = Z(ρ̂), since ρ̂ = σ̂∧0. a

Now, let f be an isolated path in T starting at 0 (which our set A can compute,
since it has the isolated path property). By Remark 3.12, it is sufficient to
construct a total function F that escapes g at a single x ∈ ω. Let σi be the first
i bits of f . We compute F from f inductively as follows. At stage 0 set F = ∅.
At stage s + 1 we consider σs. First we check to see if σs ends in an n − m
dominating sequence. If so, set F (k) = m for all k ≤ n not yet in the domain of
F . If not, then set F (k) = 0 for every k < iso(σs). From this it follows that F
is a total function, since f is an isolated path and so lims→∞iso(σs) = ∞.

Lemma 3.17. There is an x ∈ ω such that F (x) > g(x).

Proof. We know that isolated paths in T correspond to hitting P in 2<ω,
which, in turn, corresponds to hitting S in 2<ω. So some σk ⊆ f must be of the
form σ′∧k 101n001m000 (where n ≥ |σ′k| + 10), and by the reduction procedure
we know that when we read σ′k, we have not yet defined F (x) for values of x
larger than |σ′k|. Now, since iso(σ) ≤ Z(σ) + 1, we know that every time we
read a 0 we may expand the domain of F by 1, and we also know by a previous
remark (stated immediately after the definition of a dominating sequence), the
only dominating sequence we will read between σ′k and σk is σk itself. Therefore,
when we read σ′∧k 101n001m000 we have that the domain of F is contained in
{0, ..., |σ′k|+7}, which means that F is undefined at x = |σ′k|+10. Hence, by the
construction we will set F (x) = m = g(n) + 1. Therefore, F escapes g at x. a
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Finally, instead of using the single set S = S0 we work with the family of
dense sets {Sk}k∈ω. Now, we may use the reduction procedure described above
to obtain (uniformly) a collection of total functions Fk, which, by Lemma 3.17,
each escape g at a single point xk. Furthermore, by the definition of the sets
Sk and the reduction procedure for obtaining the corresponding functions Fk, it
follows that xk > k. Hence, by Remark 3.12, the function F (x) = maxk≤x Fk(x)
exists and escapes the function g. This ends the proof of Theorem 3.9. a

§4. Group 2 does not imply group 1. Since we now know that the prop-
erties in group 1 are equivalent, and CHKS showed that the properties in group
2 are equivalent, to show that group 2 does not imply group 1 it suffices to
construct a set A with the monotonic property (P6), but without the escape
property (P0).

Theorem 4.1. (P6) does not imply (P0) – i.e. the monotone property does
not imply the escape property.

Proof. We will construct a set A ≤T 0′′ with the monotone property, but
without the escape property. We will code the monotone property into A by
first thinking of A as a three-dimensional matrix via a fixed computable pairing
function that gives a bijection between ω and ω×ω. Thus, we think of the index
for the zth bit of A as being given by an ordered triple z = 〈i, x, n〉. Fix i, x ∈ ω.
We shall henceforth refer to the set {〈i, x, n〉|n ∈ ω} as the 〈i, x〉 − th row of A.
Thinking of A as an infinite binary string allows us to refer to the 〈i, x〉− th rows
of finite strings as well. If σ ∈ 2<ω, then the 〈i, x〉− th row of σ is the 〈i, x〉− th
row of σ0∞. Next we outline the basic idea of the construction of A.

We shall code the monotone property into A as follows. Let Si = W ∅′
i be the

ith Σ0
2 set. Then, if |Si| < ∞, there is no requirement to satisfy. However, if

|Si| = ∞, then for every x ∈ ω the 〈i, x〉 − th row of our set A shall contain
exactly n ones, for some n such that x ≤ n ∈ Si. Therefore, for any given i ∈ ω,
if ΨA is the A-computable function that on input 〈x, y〉 reads the first y bits of
the 〈i, x〉 − th row of A and outputs the number of ones if it is greater than x,
and otherwise outputs x, then it follows that if our coding strategy succeeds A
will have the monotonic property for the set Si via the reduction Ψ. Now, since
∆0

2 ⊂ Σ0
2 it follows that A has the monotone property. If a set A has exactly

n ∈ Si ones on its 〈i, x〉 − th row, we say that A extends x to meet Si at n, or,
more simply, A meets Si at n (for some x).

To ensure that A does not have the escape property, we need to construct a
function F ≤T 0′ that dominates ΦA

i for every i ∈ ω such that ΦA
i is total. We

will build a tree T = ∪sTs ⊆ 2<ω and a function F , both below 0′, in stages such
that if f is any path in T then F dominates Φf

i if ΦA
i is total. To do this, we use

0′ to force whether or not Φλj

i (s)↓ at stage s, for all leaves λj ∈ Ts. Hence, if we
define F (s) to be greater than the maximum of all Φλj

i (s) that converge, then
if A is a path in T we will have that F ≤T 0′ dominates all total functions ΦA

i .
Lastly, we show that there is a path A in T that satisfies our coding procedure
from the previous paragraph, and hence has the monotone property. Note that
A has the monotone property but does not have the escape property.

The positive and negative requirements that we must satisfy are as follows:
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P〈i,x〉: if S ∈ ∆0
2, |Si| = ∞, extend x to meet W ∅′

i = Si ∈ ∆0
2 by having

exactly n > x, n ∈ Si ones on the 〈i, x〉 − th row of A.

Nj : define F (j) so that it is greater than ΦA
k (j), for all k ≤ j (if ΦA

k (j) exists).

Throughout this proof we use lower case Greek letters to denote both elements
of 2<ω as well as the corresponding finite sets, whose characteristic functions are
equal to elements of 2<ω extended by the path of all zeros. Thus, when we write
ρ \ σ for some ρ, σ ∈ 2<ω, we mean the set difference between C and B, C \ B,
where C is the finite set whose characteristic function is the infinite string ρ∧0∞,
and B is the finite set with characteristic function σ∧0∞.

Constructing the tree T
The construction of T1 ≤T 0′ is divided into even and odd stages, as follows.

At stage s = 0, let T1 = ∅.
At every stage of the construction we may impose a (computable) set of re-

straints on nodes τ ∈ T which preserve the number of ones on a given row of
τ at all later stages. Furthermore, these restraints may overlap for different
rows. Hence, it is assumed when we say “search for a string ρ” we actually mean
“search for a string ρ that respects the restraints imposed by the construction
up to now”.

At odd stages 2s + 1 > 0 we act to satisfy the requirement Ns. We are given
T2s+1, and let λ0, . . . , λJ be the leaves of T2s+1. Using 0′, extend each λ∧j 0 to

λ′j so that for all i ≤ s, if Φ
λ′j
i (s) ↑ , then for all ρ ⊃ λj we have that Φρ

i (s) ↑ .

Also, let F (s) = maxi≤s,j≤J{Φλ′j
i (s) : Φ

λ′j
i (s)↓}.

At the even stages 2s > 0 of the construction of T we act to satisfy the
monotonicity requirements P〈i,x〉, 〈i, x〉 ≤ s. The basic idea of how we do this
is as follows.

We are given T2s; let λ0, . . . , λJ be the leaves of T2s. First we extend each
leaf λj , j ∈ {0, . . . , J} (acting subject to any previous restrictions) to a node
λ′j ∈ 2<ω that has at least s-many ones in its 〈i, x〉-th row for all 〈i, x〉 ≤ s.
Furthermore, we do not impose any further restraints on the extension λ′j . Now,
for every λ′j currently unrestricted for 〈i, x〉 and all n ≤ s that are greater than
or equal to the number of ones on the 〈i, x〉-th row of λ′j , we add a path ρn ⊇ λ′j
to T2s which has n-many ones in its 〈i, x〉-th row, and declare ρn to be restricted
for 〈i, x〉. Formally, this is written as follows.

Search for λ′j ⊃ λj (subject to any previous restraints) so that for every
i, x < s, λ′j has at least s ones on the row indexed by 〈i, x〉. If no such λ′j exists,
then set λ′j = λj . Next fix i, x, j with 〈i, x〉 ≤ s, and let B be the 〈i, x〉 − th row
of λ′j \ λj = {a0 < · · · < al}, and for every 0 ≤ k ≤ l let Bk = {ak < · · · < al}.
For every Bk, define ρk = λ′j \Bk. More explicitly, ρk can be defined as follows:
ρk(z) = λ′j(z) ∈ {0, 1} for all z < |λ′j | with z /∈ Bk, and ρk(z) = 0 for all z < |λ′j |
with z ∈ Bk. Furthermore, we make a promise that all leaves of Tt, t ≥ 2s + 1
extending ρk will have the same number of ones on row 〈i, x〉 as ρk — i.e. we
restrict our search space from now on when we use 0′ to make extensions of T .
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Repeating this procedure for all i, x, j with 〈i, x〉 ≤ s, we let the corresponding
ρk, and λ′j , be the leaves of T2s+1.

This ends the construction of T . Note that T has no terminal nodes, since the
only restraints imposed by the construction on nodes τ ∈ T are those which pre-
serve the number of ones on a current nonempty row of τ . Therefore, it follows
that for any node τ ∈ Ts, τ∧0 is always a valid extension of τ since it preserves
the number of ones on all rows of τ . Also, by the construction of the function F ,
it is easily verified that F ≤T 0′ and that F dominates every path of T (i.e. if A
is a path of T then F dominates all total functions of the form ΦA

i , for i ∈ ω).
Therefore, every path of T , including the path A ≤T 0′′ which we later construct
and has the monotone property, cannot have the escape property.

Constructing the set A.
Now, using 0′′ as an oracle, we shall construct a path f ∈ [T ], such that if A is

the set with characteristic function f , then A has the monotone property. Note
that constructing f is equivalent to constructing A.

We construct f = ∪sfs in stages. At stage s = 0, let f = ∅. At stage s + 1,
we are given fs, which we extend to a leaf of T2s+2. Consider the least 〈i, x〉 < s
such that there is an n ∈ Si greater than x, and x has not yet been extended
to meet Si (note that 0′′ can determine, for any given i, x ∈ ω, whether or not
there is an n ∈ Si such that n > x). Fix the least such n. If there is a leaf of
T2s+2 extending fs which extends x to meet Si at n, and is equal to some ρk

described above (for some fixed i, x, j such that 〈i, x〉 ≤ s) then let fs+1 be this
ρk. Otherwise, let fs+1 be equal to the λ′j extending fs (as denoted in the con-
struction above). This ends the construction of f ; note that by the construction
f is total, since T has no terminal nodes.

Verifying that A has the monotone property.
To show that f has the monotone property, let Si ∈ ∆0

2 be an infinite set (we
could also take Si ∈ Σ0

2 and the proof would work just as well) and x ∈ ω. We
will verify that there is indeed a stage s at which f extends x to meet Si at some
n ∈ Si. Suppose that s0 is large so that all P〈i′,x′〉, 〈i′, x′〉 < 〈i, x〉 have been
satisfied by stage s0, and let n be the smallest number in Si that is greater than
the number of ones on row 〈i, x〉 of fs0 .

Now, the construction of f says to keep extending to λ′j until we see a ρk that
extends x to meet Si at n. If we never see such a ρk, then, by the construction of
T , f has infinitely many ones on its row indexed by 〈i, x〉, since, at large enough
stages the construction of T adds a one to every nonempty row of the (finite)
paths through Ts, unless at some stage we make a promise to put only zeros on
this row. By the construction of T , the only way that such a promise is made is
if at some point we extend fs to some ρk. But extending fs to some ρk means
that we extended x to meet Si at n and therefore have satisfied P〈i,x〉. By the
construction of T , once we have done this, we promise to put no more ones on
row 〈i, x〉 of ft, for all t > s, and so f extends x to meet Si at n, as required.

On the other hand, if row 〈i, x〉 of f contains infinitely many ones, then, by
the construction of T , there must have been a smallest stage t ≥ s0 at which the
number of ones was greater than n. Then, by definition of the ρk, it follows that
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some ρk on Tt has exactly n ones on its 〈i, x〉− th row. Now, by the construction
of f , we will extend ft so that it passes through this ρk. Furthermore, the
construction of T makes a promise at this point which guarantees that any path
g ∈ [T ] extending ρk has exactly n ones on its 〈i, x〉 − th row. Therefore, f
extends x to meet Si at n, and has therefore satisfied P〈i,x〉. So f has the
monotone property. a

§5. Nonlow2. The first theorem in this section is an unpublished result of
Soare. It says that there exists a set A that is low2 and has the escape property.
This proves that none of the properties in group 1 imply property (P1). However,
we also know from section 4 that the properties in the first group imply the
properties in the second group, and therefore a consequence of the following
theorem is that none of the other properties imply (P1).

Theorem 5.1. There exists A such that

A′′ ≡T 0′′ & (∃f ≤T A)(∀g ≤T 0′)(∃∞x) [g(x) ≤ f(x)].

Namely, A has properties ¬(P1) and (P0). Hence, (P0) 6=⇒ (P1).

Proof. We use a 0′′ forcing construction of a sequence of finite strings
{hs : s ∈ ω} such that A =

⋃
s{hs} is low2 and satisfies (P0). Let σ0 = ∅,

and x−1 = 0.

Even stages : At stage s = 2e we extend hs to hs+1 to force whether ΦA
e is

total or not, by asking 0′′ whether

(∃σ ⊇ hs)(∃x)(∀τ ⊇ σ)[Φτ
e (x)↑ ].

If so, extend hs to σ, and if not, then at each subsequent stage t ≥ s extend
ht so that ΦA

e (x)↓ for one more x. Thus, the set A is low2 since 0′′ can compute
whether or not ΦA

e is total.
Odd stages : At stage s = 2〈e, z〉 + 1 we first compute a value xs > xs−2

large enough so that, viewing hs as a two-dimensional array via a computable
pairing function, the xs − th row of hs is currently empty. We then use
the oracle 0′′ to compute a number, N , which is an upper bound for the set
{Φ∅′u (t) : u, t ≤ xs, Φ∅

′
u (t) ↓ }. Then we extend hs to hs+1 such that the xs − th

row of hs+1 begins with a string of N ones, followed by a zero, and all rows of
hs+1 whose index is less than xs end in a zero. This ends the construction of A.

To verify that the construction works, we need to check that the set A is both
low2 and has the escape property. It is easy to see that A is low2 since at the
even stages s = 2e of the construction 0′′ forces whether or not ΦA

e is a total
function. A also has the escape property, since if u is an index so that Φu is the
Turing functional that, when given an oracle B and input x, computes ΦB

u (x)
by outputting the position of the first zero in the string x − th row of B, then
by the construction, ΦA

u is total, and dominates every 0′-computable function on
the infinite set {xs : s ∈ ω}.

a
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Note that we actually proved a uniform version of the escape property for A –
i.e. there is a single A-computable function f that escapes every 0′-computable
function.

Theorem 5.2. (P1) does not imply (P6) – i.e. there is a nonlow2 set that
does not have the monotone property.

Proof. The idea is to construct a perfect tree, T ⊆ 2<ω, and an infinite set
S ≤T 0′, such that none of the paths in T have the monotone property for S.
This proves the theorem because T has uncountably many paths, and since there
are only countably many low2 sets (since any low2 set must lie below 0′′), T has
a path that is nonlow2 and does not have the monotone property.

The proof that 0 does not have the monotone property.
Recall that we want to construct a set S ≤T 0′ with the property that for every

e ∈ ω, if Φe(x, y) is a total computable function that is nondecreasing in its sec-
ond variable, then there is an x ∈ ω such that either Φ̂e(x) = limy→∞ Φe(x, y) =
∞ or Φ̂e(x) /∈ S.

At stage s ≥ 0 we are given numbers x0, ..., xs−1 (uniformly computable in
0′) and a large number Ns (the Ns are uniformly computable) such that Ns −
Ns−1 > s + 1. First we define xs = Ns−1 (N−1 = 0). Now, using 0′ as an
oracle, we determine for which of the xi, 0 ≤ i ≤ s there is a y ∈ ω, such that
Φi(xi, y)↓> Ns, and for the ones that do not, evaluate the corresponding limits
zi = Φ̂i(xi), i ≥ 0 (if they exist). Now, there are at most s values zi, and
so by the pigeonhole principle, there is a number cs ∈ {Ns−1 + 1, ..., Ns} that
is not equal to any zi; put the least such cs into S at stage s. This ends the
construction.

Note that S is infinite because at every stage s in its construction, we add cs

to S and cs is larger than any element of S at the end of stage s − 1. Further-
more, if there were a computable function, Φe(x, y), that is nondecreasing in its
second variable and satisfies x ≤ Φ̂e(x) ∈ S, for all x ∈ ω, this would lead to a
contradiction as follows. At stage e of the construction we define xe, and from
then on, at stage s ≥ e we ask if there is a y ∈ ω such that Φe(xe, y) ↓> Ns.
Now, for all s we have Ns − Ns−1 > s + 1, and so lims→∞Ns = ∞, and since
Φ̂e(xe) = limy→∞ Φe(xe, y) exists, it must be the case that at some stage s ≥ e
we learn that there is no y ∈ ω for which Φe(xe, y) ↓> Ns. Furthermore, we
determine what Φ̂e(xe) is at stage s, and by the construction, we keep this value
out of the set S, which is a contradiction, since we assumed that for every x ∈ ω

we have Φ̂e(x) ∈ S. This ends the verification.

Recall that we will construct a perfect tree T , and an infinite set S ≤T 0′,
such that every path in T does not have the monotone property for the set S
(this is in fact the tree version of the proof that 0 does not have the monotone
property). To do this, we shall satisfy the condition that says if f is a path
of T = ∪i∈ωTi, and Φf

e (xe, y) is total and nondecreasing in its second variable
and comes to a limit, then Xe = limy Φf

e (xe, y) is not in the set S = ∪i∈ωSi.
Therefore no path of T has the monotone property. The construction of T and
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S follows.

Constructing T and S.
At stage s = 0 set T0 = {∅} and S0 = ∅.
At stage s + 1 we are given Ts; let λ1, ..., λk denote the leaves of Ts, set

xs = 1 + max{Ss}, and N = (s + 1)2s+1 + xs. Now, for each leaf λi and
every e ≤ s, 0′ can find a string ρ ⊃ λi that satisfies one of the following three
properties:

1. Φρ
e(xe, y)↓> N for some y ∈ ω.

2. For all f ∈ 2ω extending ρ either Φf
e (xe, ·) is total, nondecreasing in its

second variable, and reaches a limit that is ≤ N , or Φf
e (xe, ·) defines a

partial function (i.e. there is a y ∈ ω for which Φf
e (xe, y)↑ ).

3. Φρ
e(xe, ·) is not nondecreasing in its second variable.

The string ρ can be found using a 0′ oracle (for fixed i and e) by first using
0′ to search for a string ρ1 ⊃ λi such that Φρ1

e (xe, y) ↓> N for some y ∈ ω. If
there is such a ρ1, then set ρ = ρ1 and we are done since ρ1 satisfies condition 1.
Otherwise it follows that for every string ρ ⊃ λi and every y ∈ ω, if Φρ

e(xe, y)↓
then Φρ

e(xe, y) < N . Now, in the case where no ρ1 exists use 0′ to look for a
string ρ3 ⊃ λi such that there exist y1, y2 ∈ ω, y1 < y2, with the property that
Φρ3

e (xe, y1)↓> Φρ3
e (xe, y2)↓ . If such a ρ3 exists then we are done since ρ3 satisfies

condition 3. Otherwise it follows that for every string ρ ⊃ λi the (possibly
partial) function given by Φρ

e(xe, y) is nondecreasing in its second variable.
Now suppose that neither ρ1 nor ρ3 exist. Then it follows by earlier remarks

that if f ∈ 2ω, λi ⊂ f , we have that either Φf
e (xe, y) is total, nondecreasing,

bounded by N , and therefore has a limit that is less than or equal to N , or else
Φf

e (xe, y) is a partial function — i.e. there is a y ∈ ω for which Φf
e (xe, y) ↑ .

In other words, we have satisfied condition 2. In this case we ask 0′ to find a
string ρ2 ⊃ λi and y2 ∈ ω such that for all ρ ⊃ λi and all y ∈ ω such that
Φρ

e(xe, y)↓ we have Φρ
e(xe, y) ≤ Φρ2

e (xe, y2). First of all, since we are under the
assumption that neither ρ1 nor ρ3 exist, 0′ can determine if no such string ρ2

exists. In this case we set ρ2 = λi and note that any f ⊃ ρ2, f ∈ 2ω, cannot
be a total function. On the other hand, if ρ2 and y exist, then 0′ can compute
them since it knows whether or not there is a ρ2 such that Φρ2

e (xe, y2)↓= N . If
there exist such ρ2, y then it outputs these values. Otherwise, it asks for ρ2, y2

such that Φρ2
e (xe, y) ↓= N − 1, and so on. Note that if f ∈ 2ω extends ρ2,

then by construction of ρ2 and the fact that we are in case 2 above, we have
that either limy Φf

e (xe, y) = Φρ2
e (xe, y2) or else Φf

e (xe, y) is a partial function.
Hence, for any ρ2 ⊂ f ∈ 2ω, 0′ can compute limy Φf

e (xe, y) (if this limit exists)
by computing Φρ2

e (xe, y2).
Note that nowhere have we used any assumptions about λi other than λi ∈

2<ω; hence, for every 1 ≤ i ≤ k there is a node ρi ⊃ λi that satisfies one of the
conditions 1, 2, 3, above for every 0 ≤ e ≤ s. Such a ρi is obtained by iterated
extensions of λi. Add the nodes ρ∧i 0 and ρ∧i 1 to the tree Ts+1. This ends the
construction of T .

Note that in case 3 we have vacuously satisfied the e − th requirement for
nonmonotonicity – i.e. there is an xe such that ΦA

e (xe, ·) is not a total monotonic
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(i.e. nondecreasing) function. Also, if for a single e we are able to satisfy the first
condition at all stages s, we are happy because the limit limy→∞ ΦA

e (xe, y) = ∞,
and therefore we have satisfied the e− th requirement for nonmonotonicity.

The only case that causes us concern is the second. We add the nodes ρ∧i 0, ρ∧i 1
to T (for every i). By the construction of T it follows that Ts+1 has 2s+1-many
leaves, and (at stage s + 1) each leaf is currently trying to diagonalize against
s-many functionals. Therefore, by the pigeonhole principle, there is a number
cs ∈ {xs, . . . , N} that is not the limit of any Φλi

e (xe, y), for any 1 ≤ i ≤ k and
0 ≤ e ≤ s. Furthermore, 0′ can compute the least such number cs since 0′ can
tell which pairs 〈i, e〉 satisfy condition 2 above and also, for each of these pairs,
what is the only possible value of limy Φf

e (xe, ·), λi ⊂ f ∈ 2ω. Now, put the least
such cs into Ss+1. This ends the construction of S.

No path in T has the monotone property.
The verification is similar to that of the proof that 0 does not have the mono-

tone property. Note that, by the construction, we have |Ss| = s, and so S is
infinite. To show that none of the paths in T have the monotone property for
the set S, assume, for a contradiction, that there is a path f ∈ T that has the
monotone property for S, and by the same reasoning as before (i.e. at stage s
we put cs into S, which is not the limit of any Φρi

e (xe, ·) at stage s) this leads to
a contradiction by the way we constructed S and T . This ends the verification.

Now Theorem 5.2 follows by a simple cardinality argument. There are 2ω

many paths in T , and only countably many low2 sets. Hence, T contains a path
that is nonlow2. a

Corollary 5.3. (P1) does not imply any of the other properties.

Proof. Suppose not, then (P1) =⇒ (Pk), for some k 6= 1. But we have
shown that if k 6= 1 then (Pk) =⇒ (P6), and therefore we have that (P1) =⇒
(Pk) =⇒ (P6), which contradicts the theorem. a

§6. NonGL2. We have now settled all implications between the properties
(P0)–(P8), as well as the helper properties introduced in section 2.3. However,
in the general computable (i.e. degree-theoretic) context, it is not even clear
what the definition of low2 should be. There are three competing definitions:

1. A set A is low2 if A ≤T 0′ and A′′ = 0′′.
2. A set A is low2 if A′′ = 0′′.
3. A set A is low2 if A′′ = (A⊕ 0′)′.
The first definition was considered in [1], while the second definition is the one

we have been working with so far in this article. The third definition is more
general than the first two, and is referred to in the literature as generalized low2.

Definition 6.1. A is generalized low2 (written A ∈ GL2) if A satisfies 3.

One could criticize our proof of Theorem 5.2 by arguing that our definition of
low2 is too restrictive, since it implies that there are only countably many low2

sets. However, there are uncountably many generalized low2 sets, and so the
proof of Theorem 5.2 would not go through if we wanted to show the existence
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of a set A /∈ GL2 that does not have the monotone property. The next well-
known theorem (see [7] Corollary IV.3.4) shows that no such set exists.

Theorem 6.2. If A /∈ GL2, then A has the escape property.

Proof. Assume that A /∈ GL2, so that A′′ �T (A⊕ ∅′)′. It then follows that
the set A ⊕ ∅′ is not high above A, and by the relativized version of Martin’s
domination theorem (see [10] Theorem XI.1.3) it follows that the degree of A
escapes the degree to which A ⊕ ∅′ belongs. In other words, for every function
g ≤T A ⊕ ∅′ there is a function f ≤T A that escapes g. Now, let h ≤T 0′, it
follows that h ≤T A⊕∅′, since 0′ ≤T A⊕∅′, and therefore we have that there is
an f ≤T A which escapes h. Hence, for any function h ≤T 0′ there is a function
f ≤T A that escapes h. Thus, A has the escape property (P0). a

Corollary 6.3. If A /∈ GL2, then A has all properties (P0)–(P8).

Proof. If A /∈ GL2, then by Theorem 6.2, it follows that A satisfies (P0).
But we have shown that (P0) implies all the other properties except (P1). But
it is easy to verify that if B′′ = 0′′ (i.e. B doesn’t satisfy (P1)) then B is not
generalized low2. Hence, if B /∈ GL2 then B′′ 6= 0′′, and so B has property
(P1). a

Furthermore, note that since GL2 is a more general notion than low2 (i.e. low2

sets are also GL2) and we have shown that there is a low2 set A that has none of
the other properties (P0),(P2)–(P8), it follows that this set A is also an example
of a GL2 set with none of the properties (P0),(P2)–(P8). Hence, none of the
properties (P0),(P2)–(P8) implies A /∈ GL2.
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