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Abstract. Friedman, Simpson, and Smith [7, 8] showed that, over RCA0, the
statements “Every ring has a maximal ideal” and “Every ring has a prime ideal”
are equivalent to ACA0 and WKL0, respectively. More recently, Downey, Lempp,
and Mileti [5] have shown that, over RCA0, the statement “Every ring that is not
a field contains a nontrivial ideal” is equivalent to WKL0.

In this article we explore the reverse mathematical strength of the classic theo-
rems from commutative algebra which say that every Artinian ring is Noetherian,
and every Artinian ring is of finite length. In particular we show that, over RCA0,
the former implies WKL0 and is implied by ACA0, while over RCA0+BΣ2, the
latter is equivalent to ACA0.

1. Introduction

In the modern algebraic literature, effective field theory dates back to the work
of van der Waerden [23], who examined the existence of splitting algorithms for
polynomial rings over fields. A quarter of a century later, the subject was formally
introduced by Frölich and Shepherdson [9], who gave the standard formal definitions,
and further developed the basic ideas of van der Waerden. Soon after the devel-
opment of computable field theory, mathematicians began to develop the theory of
computable rings.

Definition 1.1. A computable ring (with identity) is a computable subset R ⊆ N,
together with computable binary operations + and · on R, and elements 0, 1 ∈ R,
such that (R, 0, 1, +, ·) is a ring (with identity 1 ∈ R).

Two of the most natural and important questions that were asked by computable
ring theorists are the following [22]. Let R be a computable commutative ring with
identity.

(1) Given a1, a2, . . . , an ∈ R, is the finitely generated ideal 〈a1, a2, . . . , an〉 of R
computable?

(2) Given any a1, a2, . . . , an ∈ R, is the finitely generated ideal 〈a1, a2, . . . , an〉
uniformly computable in its generators?

It is not difficult to show that (1) and (2) hold for any computable presentation
of the ring of integers Z. Furthermore, Kronecker [15] showed that every finitely
generated ideal of Z[X1, X2, . . . , Xn] is computable. Many algorithms for this sort
of problem have been studied and implemented using Gröbner bases.

Let F be a field, and let F [X1, X2, . . . , Xn] denote the ring of polynomials in n
variables, with coefficients in F . We have the following related results of Hilbert
and Hermann.

Theorem 1.2 (Hilbert Basis Theorem). Every ideal of F [X1, X2, . . . , Xn] is finitely
generated.
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Corollary 1.3 (Hermann, 1926 [11, 22]). If k is a computable field, then the ideal
membership problem for F [X1, . . . , Xn] is decidable, uniformly in the generators.

The Hilbert Basis Theorem is the main motivation for the study of Noetherian
rings. We now define what it means for a ring to be Noetherian, and give an
equivalent characterization. Then we state the Generalized Hilbert Basis Theorem
for Noetherian rings. From now on R will always denote a commutative ring with
identity.

Definition 1.4. R is Noetherian if every increasing chain of ideals I0 ⊆ I1 ⊆
I2 ⊆ · · · ⊆ IN ⊆ · · · in R eventually stabilizes. In other words, there exists a
number N0 ∈ N, such that for all N ≥ N0 we have that IN0 = IN . More generally,
an R-module M is Noetherian if every increasing sequence of R-submodules of M
eventually stabilizes.

Theorem 1.5. R is Noetherian if and only if every ideal of R is finitely generated.

Theorem 1.6 (Generalized Hilbert Basis Theorem). If R is Noetherian, then
R[X1, . . . , Xn] is Noetherian.

Baur [3] showed that every ideal in a Noetherian ring is computable, but not
always uniformly computable with respect to generators. Furthermore, Hingston
[12] proved an effective analog of the primary decomposition theorem for Noetherian
rings. With the thought of solving the uniform version of the ideal membership
problem in mind, we now turn our attention to the following definition from classical
algebra.

Definition 1.7. R is Artinian if every decreasing chain of ideals I0 ⊇ I1 ⊇ I2 ⊇
· · · ⊇ IN ⊇ · · · in R eventually stabilizes. In other words, there exists a number
N0 ∈ N, such that for all N ≥ N0 we have that IN0 = IN . More generally, an R-
module M is Artinian if every decreasing sequence of R-submodules of M eventually
stabilizes.

In terms of the ideal membership problem discussed above, the following is known
regarding Artinian rings.

Theorem 1.8 (Baur [3], 1974). Every computable Artinian ring R has an ideal
membership algorithm that is uniform in the generators.

The following classic theorem of algebra relates the fundamental algebraic notions
of Artinian and Noetherian rings, and is the main focus of our study.

Theorem 1.9 (Akizuki [1], Hopkins [13]). If R is Artinian, then R is Noetherian.

We hope that by this point we have convinced the reader of the natural and
significant role that Noetherian and Artinian rings have played in the development
of effective ring theory. The main goal of this article is to determine, from the point
of view of computability theory, the strength of Theorem 1.9. To achieve this goal,
we shall classify the computability strength required to go from an infinite strictly
increasing chain of ideals in R, to an infinite strictly decreasing chain of ideals in R.
More specifically, we shall prove our first main theorem, which we now state. A set
is of PA degree if it can compute a complete and consistent extension of the theory
of Peano Arithmetic (a more formal definition is given in the next section).

Theorem (Theorem 4.1). There exists a computable integral domain R, such that
R contains an infinite uniformly computable strictly increasing chain of ideals, and
such that every infinite strictly decreasing chain of ideals in R is of PA degree.
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The following theorem (1.11) is actually a corollary of the proof of Theorem
1.9. In Section 6, we prove that its computability strength is at least that of the
halting set ∅′. First, however, we give a definition which we use to state the theorem.
Classically, this definition is not standard because (by Theorem 1.11) it is equivalent
to saying that R is Artinian.

Definition 1.10. R is strongly Noetherian if R has finite length (as an R-module).
In other words, R is strongly Noetherian if and only if there is a number N ∈ N,
such that the length of any strictly increasing chain of ideals in R is bounded by N .

Theorem 1.11 (Akizuki [1], Hopkins [13]). If R is Artinian, then R is strongly
Noetherian.

A key ingredient in the classification of the computability strength of Theorem
1.11 is the following, which we prove in Section 6.

Theorem (Theorem 6.1). There exists a computable ring R such that for every
n ∈ N, R contains a strictly increasing chain of ideals of length n, and such that
every infinite strictly decreasing chain of ideals in R computes the halting set ∅′.

Determining the computability strength of a given theorem is frequently equiva-
lent to determining that theorem’s reverse mathematical strength. Therefore, once
we have determined the effective content of Theorems 1.9 and 1.11, we will translate
our results into the language of reverse mathematics. We now state these results.
The necessary definitions are given in the next section.

Theorem 1.12 (RCA0). Theorem 1.9 implies WKL0, and is implied by ACA0.

Theorem 1.13 (RCA0+BΣ2). Theorem 1.11 is equivalent to ACA0.

2. Background

In this section we give the reader general background information about com-
putability theory and reverse mathematics. Throughout the rest of this article the
term ring shall mean commutative ring with identity. We assume that the reader is
familiar with the basic definitions and theorems of ring theory. For a reference on
commutative algebra and ring theory, please consult any of the following standard
texts [2, 6, 16, 17].

2.1. Computability Theory. For a general reference on computability theory, we
refer the reader to Soare [21]. We call a function f : Nn → N or a set A ⊆ N
computable if there is a computer program that outputs the value f(x) ∈ N on
input x ∈ Nn. A set A ⊆ N is computably enumerable (c.e.) if it is the range of a
computable function f : N → N.

Given a set A ⊆ N, let A(x) denote its characteristic function. For any sets
A, B ⊆ N, we say that A is computable relative to B, and write A ≤T B, if there
is a computer program that, when given access to the (possibly noncomputable)
function B(x), outputs A(x) on input x ∈ N. The resulting equivalence classes
(under relative computation) are called Turing degrees. Given a set A ⊆ N, we let
A′ denote the halting set relative to A.

The sort of question that we most often consider in this article asks for the sets of
natural numbers that can compute an infinite strictly decreasing chain of ideals in
rings with an infinite uniform computable strictly increasing chain of ideals. Related
questions have been studied in the past. For example, if one asks for the sets that can
compute a maximal ideal in a computable ring, or a finitely generated nontrivial
ideal in a computable ring that is not a field, then the answer is (the sets that
compute) ∅′.
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Theorem 2.1 (Friedman, Simpson, Smith [7, 8]). (1) Suppose that R is a com-
putable ring. Then there exists a maximal ideal M of R such that M ≤T ∅′.

(2) There exists a computable local ring R such that the unique maximal ideal
M of R satisfies M ≡T ∅′.

Theorem 2.2 (Downey, Lempp, Mileti [5]). (1) Suppose that R is a computable
ring that is not a field. Then there is a nontrivial finitely generated ideal I
of R such that I ≤T ∅′.

(2) There exists a computable ring R that is not a field such that every nontrivial
finitely generated ideal I of R satisfies ∅′ ≤T I.

2.2. Weak König’s Lemma. One combinatorial principle which we use in this
article is known as Weak König’s Lemma. We now state several definitions and
theorems that are related to Weak König’s Lemma.

Definition 2.3. By 2<N, we mean the set of finite sequences of 0’s and 1’s, partially
ordered by the substring relation ⊆.

Definition 2.4. (1) A tree is a subset T of 2<N, such that for all σ ∈ T , if
τ ∈ 2<N and τ ⊆ σ, then τ ∈ T . In other words, a tree is a subset of 2<N

that is closed downwards under ⊆.
(2) An infinite path or branch of a tree T is a function f : N → {0, 1} such that

for every n ∈ N we have that

〈f(0), f(1), · · · , f(n)〉 ∈ T.

We now state Weak König’s Lemma.

Proposition 2.5 (Weak König’s Lemma). Every infinite tree has an infinite path.

Weak König’s Lemma is not computably true, in the following sense.

Proposition 2.6. There is a computable tree T with no computable infinite path.

The following definition is intended to characterize the degrees that compute
solutions to Weak König’s Lemma.

Definition 2.7. [[19]] Given A, B ⊆ N, we say that A is PA over B if every B-
computable infinite tree has an A-computable infinite path. We say that a set A is
of PA degree if A is PA over ∅.

A degree is PA over ∅ if and only if it can compute a complete and consistent
extension of the theory of Peano Arithmetic [19].

A classic theorem of Jockusch and Soare says that there exist solutions to Weak
König’s Lemma that are not very far away from being computable, in the following
sense.

Theorem 2.8 (Low Basis Theorem – Jockush, Soare [14]). For any set B, there is
a set A that is PA over B, and such that A′ ≡T B′.

The following theorems relate PA degrees to the complexity of ideals in compuable
rings.

Theorem 2.9 (Friedman, Simpson, Smith [7, 8]). (1) Let R be a computable
ring, and A ⊂ N be of PA degree. Then there is a prime ideal P ⊂ R
that is computable relative to A.

(2) There exists a computable ring R such that every prime ideal P of R is of
PA degree.

Theorem 2.10 (Downey, Lempp, Mileti [5]). There exists a computable ring R that
is not a field and such that every nontrivial ideal I of R is of PA degree.
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We now give an equivalent definition of PA degrees, which is more convenient for
our purposes.

Proposition 2.11 ([19]). The following are equivalent.

(1) D ⊂ N is of PA degree.
(2) For any two disjoint c.e. sets A, B ⊆ N, there is a set C, computable relative

to D, such that A ⊆ C and C ∩B = ∅. We call C a separator for A and B.

Furthermore, there are disjoint c.e. sets A, B such that if a set D can compute a
separator for A and B, then C computes a separator for any given pair of disjoint
c.e. sets.

Hence, whenever we wish to construct a set D ⊆ N of PA degree, we will fix
disjoint c.e. sets A, B as in the previous proposition, and construct D so that it
computes a separator for A and B.

2.3. Reverse Mathematics. The standard reference in reverse mathematics is
Simpson [20]. In the context of reverse mathematics we shall work over the weak
base system RCA0 (Recursive Comprehension Axiom), which consists of the dis-
cretely ordered semiring axioms for N, as well as comprehension for ∆0

1 formulas,
and induction for Σ0

1 formulas (IΣ1). More generally and more formally, for any
fixed k ∈ N, IΣk is the scheme which says that for any Σ0

k formula ϕ the following
holds:

(IΣk) (ϕ(0) ∧ (∀n)[ϕ(n) → ϕ(n + 1)]) → (∀n)ϕ(n)

In addition to IΣk, we also use a bounding principle called BΣk. For every number
k ∈ N, BΣk says that for any given Σ0

k formula ϕ(x), and any n ∈ N, we have the
following:

(BΣk) (∀i < n)(∃x)ϕ(x) → (∃u)(∀i < n)(∃x < u)ϕ(x)

It is a well-known fact that BΣ2 is equivalent to the infinite pigeonhole principle
(see [10], Theorem I.2.23). The infinite pigeonhole principle says that if there exists
a number n ∈ N, and a function f : N → {0, 1, 2, . . . , n− 1} = n, then there exists
a number u < n and infinitely (i.e. unboundedly) many x ∈ N such that f(x) = u.
It is also well-known that for every k ∈ N, BΣk lies strictly between IΣk and IΣk−1

[10, 18].
Proofs that can be carried out effectively (i.e. computably) can often be done in

RCA0; indeed, the computable sets form a model of RCA0. The standard proofs the
following propositions can be carried out effectively, except for that of Proposition
2.14, in which case a slightly modified version of the standard proof (which we give
below) is valid in RCA0. It follows that each of the following propositions from
elementary algebra (which we use throughout this article) hold in RCA0. Let R be
a ring, and V be a vector space over the field F .

Proposition 2.12 (RCA0). Let I be an ideal of the ring R. Then, if ϕ : R → R/I is

the canonical quotient homomorphism, and Ĵ is an ideal of R/I, then ϕ−1(Ĵ) ⊆ R
exists, and is an ideal of R containing I.

Proposition 2.13 (RCA0). An ideal P ⊂ R is prime if and only if R/P is an
integral domain.

Proposition 2.14 (RCA0). Every maximal ideal of R is prime.

Proof. Suppose that M ⊂ R is a maximal ideal, and consider the quotient R/M =
R0. Suppose, for a contradiction, that M is not prime, and hence R0 is not an
integral domain. Then there exist nonzero elements a, b ∈ R0 such that ab = 0. From



6 CHRIS J. CONIDIS

this it follows that the (computably definable) annihilator of a, A, is a nontrivial
ideal 0 ⊂ A ⊂ R0, from which it follows that there is an ideal M ⊂ M ′ ⊂ R, which
contradicts the fact that M is maximal. �

Proposition 2.15 (RCA0). If P is a prime ideal of R, and A, B are ideals of R
such that AB ⊆ P , then either A ⊆ P , or B ⊆ P .

Proposition 2.16 (RCA0). If I, J are ideals of R such that I + J = R, then
IJ = I ∩ J .

Proposition 2.17 (RCA0). If M is a Noetherian R-module, then any submodule of
M is Noetherian (as an R-module), as is any quotient of M .

Proposition 2.18 (RCA0). If M is an Artinian R-module, then any submodule of
M is Artinian (as an R-module), as is any quotient of M .

Proposition 2.19 (RCA0). A sequence of vectors v0, v1, . . . , vn ∈ V is linearly in-
dependent (with respect to F ) if and only if v0 6= 0, and for every 0 ≤ k < n, vk+1

is not in the F -span of v0, v1, . . . , vk.

Proposition 2.20 (RCA0). If V has an F -basis consisting of n elements, then all
F -bases of V contain exactly n elements.

If we add to RCA0 the formal statement that says for every set X the set X ′ exists,
we obtain the system ACA0 (Arithmetical Comprehension Axiom). The arithmetic
subsets of the natural numbers form a model of ACA0. Note that ACA0 is strictly
stronger than RCA0, since ACA0 implies the existence of ∅′, a noncomputable set.
Proofs that only require arithmetical constructions and verifications are usually
valid in ACA0. For every n ∈ N, ACA0 implies Σ0

n-induction. Also, for every n ∈ N,
Σ0

n-induction implies bounded Σ0
n-comprehension (bounded Σ0

n-comprehension says
that every nonempty Σ0

n subset of N has a least element).
By Proposition 2.6 above, it follows that Weak König’s Lemma is not provable

in RCA0. If we add the formal statement of Weak König’s Lemma to the system
RCA0, we obtain the system WKL0, which is strictly stronger than RCA0, and strictly
weaker than ACA0. Through a careful analysis of the theorems above, we have the
following.

Theorem 2.21 (Friedman, Simpson, Smith [7, 8]). (1) Over RCA0, ACA0 is
equivalent to the statement “Every ring contains a maximal ideal.”

(2) Over RCA0, WKL0 is equivalent to the statement “Every ring contains a
prime ideal.”

Theorem 2.22 (Downey, Lempp, Mileti [5]). Over RCA0, WKL0 is equivalent to
the statement “Every ring that is not a field contains a nontrivial ideal.”

As an aside we now state a recent result on the reverse mathematics of vector
spaces. In our analysis of the reverse mathematics of rings, we shall also prove some
facts about the reverse mathematics of vector spaces.

Theorem 2.23 (Downey, Hirschfeldt, Kach, Lempp, Montalbán, Mileti [4]). Over
RCA0, WKL0 is equivalent to the statement “Every vector space of dimension greater
than 1 contains a nontrivial proper subspace.”

2.4. The Plan of the Paper. In Section 3 we prove that, over RCA0+IΣ2, several
properties about Artinian rings follow from WKL0. In Section 4, we construct a
computable ring R containing a uniformly computable infinite strictly increasing
chain of ideals, and such that every infinite strictly decreasing chain of ideals in R
contains a member of PA degree. We then use the existence of R to show that, over
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RCA0, the properties of Section 3 all imply (and hence are equivalent to) WKL0, as
does Theorem 1.9.

In Section 5 we show that, over RCA0, Theorem 1.11 is implied by ACA0. From
this it also follows that ACA0 proves Theorem 1.9. Hence, by the end of Section 5, we
will have shown that Theorem 1.9 implies WKL0 and is implied by ACA0. In Section
6 we construct a computable ring R, with arbitrarily large finite strictly increasing
chains of computable ideals, and such that every infinite strictly decreasing chain
of ideals in R computes the halting set ∅′. We then use the existence of R to
show that the statement “Every Artinian ring is strongly Noetherian” implies ACA0

over RCA0+BΣ2. Thus, by the end of this article we will have shown that, over
RCA0+BΣ2, Theorem 1.11 is equivalent to ACA0.

3. WKL0 Upper Bound

The following definitions are standard.

Definition 3.1. The nilradical of R, N ⊂ R, is the set of all nilpotent elements of
R. It is not difficult to show that N is an ideal of R.

Definition 3.2. The Jacobson radical of R, J ⊂ R, is the intersection of all maximal
ideals M ⊂ R. Notice that J is an ideal of R.

Definition 3.3. A subset S ⊆ R is t-nilpotent if for any sequence of elements
x0, x1, . . . , xn, . . . ∈ S, there exists N ∈ N such that

∏N
k=0 xk = 0.

This section is devoted to proving half of the following theorem.

Theorem 3.4 (RCA0+IΣ2). The following are equivalent.

1. WKL0.
2. If R is Artinian and an integral domain, then R is a field.
3. If R is Artinian, then every prime ideal of R is maximal.
4. If R is Artinian, then the Jacobson radical J ⊂ R and nilradical N ⊂ R

exist and are equal.
5. If R is Artinian and J exists, then J ⊂ R is t-nilpotent.
6. If R is Artinian and N exists, then R/N is Noetherian.

Proof. We shall show that 2–6 are true in WKL0+IΣ2. However, the axiom IΣ2 is
only used to conclude that 1 implies 6. The reverse implications (i.e. 2–6 imply 1)
all hold in RCA0, and are all proven in Section 4.4.

We reason in WKL0+BΣ2. Let R be an Artinian ring. Before we proceed with
the proof of Theorem 3.4, we prove a useful lemma, which we shall use repeatedly.

Lemma 3.5. For any infinite sequence of elements x0, x1, x2, . . . in R, we have that,
for some n ∈ N, xn is an R-linear combination of the set {xn+1, xn+2, xn+3, . . .}.

Proof. Suppose, for a contradiction, that there exists a sequence of elements
x0, x1, x2, . . . in R such that, for every n ∈ N, xn is not an R-linear combination of
the set {xn+1, xn+2, xn+3, . . .}. We shall use this assumption and the power of WKL0

to construct an infinite strictly descending chain of ideals in R, contradicting the
fact that R is Artinian. First, we construct a tree T ⊂ 2<N such that the paths
through T code infinite strictly descending chains of ideals. The construction is as
follows.

Let T ⊆ 2<N be the set of all σ ∈ 2<N such that

(1) For all n ∈ N, σ(〈n, xn+1〉) = 1 if |σ| > 〈n, xn+1〉.
(2) For all n ∈ N, σ(〈n, xn〉) = 0 if |σ| > 〈n, xn〉.
(3) For all n ∈ N, if |σ| > 〈n + 1, b〉 and σ(〈n + 1, b〉) = 1, then σ(〈n, b〉) = 1.
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(4) For all n ∈ N, b, c ∈ R, if σ(〈n, b〉) = σ(〈n, c〉) = 1 and b +R c < |σ|, then
σ(〈n, b +R c〉) = 1.

(5) For every natural number n, and elements , r, b ∈ R, if σ(〈n, b〉) = 1, r < |σ|,
and r ·R b < |σ|, then σ(〈n, r ·R b〉) = 1.

The subtree T ⊆ 2<N exists by ∆0
1-comprehension. If f ∈ 2N is an infinite path

through T , then the sets Jn = {m ∈ N : f(〈n, m〉) = 1} code an infinite descending
chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · . (1) says that for every n ∈ N, xn+1 ∈ Jn; (2)
says that for every n ∈ N, xn /∈ Jn (note that this implies 1R /∈ Jn); (3) says that
Jn+1 ⊆ Jn (and so by (1) and (2) we have that Jn+1 ⊂ Jn); (4) says that if b, c ∈ Jn,
then b +R c ∈ Jn; (5) says that if b ∈ Jn, and r ∈ R, then r ·R b ∈ Jn. From these
facts, it follows that the sets Jn, n ∈ N, form an infinite decreasing chain of ideals.
All that is left to prove is that f exists, and, since we are assuming Weak König’s
Lemma, it suffices to show that T is infinite.

Classically, we know that T is infinite since, by hypothesis, we know that the
ideals 〈x0, x1, x2, . . .〉 ⊃ 〈x1, x2, . . .〉 ⊃ 〈x2, x3, . . .〉 ⊃ · · · form an infinite strictly
descending chain in R. The same is true in WKL0. Let m ∈ N. By bounded Σ0

1-
comprehension and the fact that for every n ∈ N, xn is not an R-linear combination
of the set {xn+1, xn+2, xn+3, . . .}, we can form the string σ ∈ 2<N, |σ| = m, such
that

(∀〈n, i〉 < |σ|)[σ(〈n, i〉) = 1 ↔ (∃N > n, ∃rn+1, . . . , rN ∈ R)[i =
N∑

k=n+1

rk ·R xk]].

By construction of σ and T , it follows that σ ∈ T . Hence T is infinite and so f
exists. This completes the proof of the lemma. �

Corollary 3.6. Let V be a vector space over the field F . Then, if V contains an
infinite sequence of vectors, v0, v1, v2, . . ., such that for every n ∈ N, vn+1 is not a
F -linear combination of {v0, v1, v2 . . . , vn}, then V contains an infinite sequence of
subspaces V0 ⊃ V1 ⊃ V2 ⊃ · · · .

Proof. The proof is similar to that of Lemma 3.5, and uses the fact that, over RCA0

the set {v0, v1, . . . , vn} is linearly independent if and only if {0} ⊂ V 0
0 ⊂ V 1

0 ⊂
V 2

0 ⊂ · · · ⊂ V n
0 , where V j

i denotes the span of the vectors {vi, vi+1, . . . , vj}, for any
0 ≤ i ≤ j ≤ n. �

Now we show that, among other things, 1 → 2.

3.1. 1→2. Suppose that

(∃a ∈ R)(∀k ∈ N)(∀r ∈ R)[rak+1 6= ak].

Then we can construct the infinite sequence of elements a, a2, a3, . . . which contra-
dicts Lemma 3.5. Therefore, we must have that

(1) (∀a ∈ R)(∃k ∈ N)(∃r ∈ R)[rak+1 = ak].

We assume (1) throughout the rest of this section.
To show that 1 → 2, suppose that R is an integral domain and fix a ∈ R, a 6= 0.

We shall show that a is invertible. By (1) above, we have that

(∃k ∈ N)(∃r ∈ R)[rak+1 = ak],

from which it follows that ak(ra− 1) = 0. Now, since R is an integral domain and
a 6= 0, we have that ak 6= 0, and so we must have that ra− 1 = 0, or ra = 1. Hence,
a ∈ R is invertible. We now turn our attention to showing that 1 → 3.
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3.2. 1→3. In general, it is difficult to prove statements about maximal ideals in
WKL0, because, as is shown in [20], the existence of maximal ideals is equivalent
to ACA0. However, it is usually possible to prove statements about prime ideals in
WKL0, since WKL0 can prove that every ring has a prime ideal. With this in mind,
we prove the following lemma which says that 1 → 3.

Lemma 3.7. Every prime ideal P ⊂ R is maximal.

Proof. Let P ⊂ R be a prime ideal. We aim to show that P is also maximal. In
other words, we shall show that for any x /∈ P , we have that 1 ∈ 〈x, P 〉.

Suppose that x /∈ P . Then, by (1), we know that there exist k ∈ N, r ∈ R such
that

xk(1− rx) = 0.

Now, since P is prime, and 0 ∈ P , (by ∆0
0-induction on k) it follows that either

x ∈ P , or 1 − rx ∈ P . By hypothesis we know that x /∈ P , hence 1 − rx ∈ P .
Therefore, there is some p ∈ P such that 1−rx = p. Now, it follows that p+rx = 1,
and hence 1 ∈ 〈x, P 〉, as required. �

3.3. 1→4. We now show that 1 → 4.

Lemma 3.8. The nilradical N ⊂ R exists.

Proof. We use ∆0
1-comprehension to construct N . It is clear that the set of nilpo-

tent elements in R is Σ0
1-definable; we shall show that the complement is also Σ0

1-
definable. We claim that the set

N c = {x ∈ R : (∃n ∈ N, r ∈ R)[(xn = r · xn+1) ∧ (xn 6= 0)]}
defines the complement of N . Since we know that (1) holds, it is clear that if
x /∈ N c then x ∈ N . Thus, it suffices to show that no element of N c is nilpotent.
To prove this, let x ∈ N c. Since x ∈ N c, there exists a number n ∈ N such that
xn = rxn+1 6= 0. Now, by ∆0

0-induction, it follows that for all m ≥ n we have
0 6= xn = rm−nxm and so xm 6= 0. Hence x is not nilpotent. This completes the
proof. �

Lemma 3.9. The intersection of all prime ideals P ⊂ R is equal to the nilradical
of R.

Proof. It is clear that if x ∈ R is nilpotent, then x must be contained in every prime
ideal P ⊂ R. Therefore, it suffices to show that, for every x ∈ R, if x is not nilpotent
then there is a prime ideal P ⊂ R with x /∈ P . The construction of such a prime
ideal P ⊂ R is similar to the construction in [20] (Lemma IV.6.2), which shows that
in WKL0 every countable commutative ring with identity contains a prime ideal.

Let {ai : i ∈ N} be an enumeration of the elements of R, and fix x ∈ R such that
for all n ∈ N, xn 6= 0. Then, using primitive recursion, define a sequence of codes
for finite sets Xσ ⊆ R, σ ∈ 2<N, beginning with X∅ = {0R} as follows. Let σ ∈ 2<N

be given, and suppose that Xσ has been defined. Let

|σ| = 4 · 〈i, j,m〉+ k, 0 ≤ k < 4.

Case 1: k = 0. If ai · aj ∈ Xσ, put Xσ0 = Xσ ∪ {ai} and Xσ1 = Xσ ∪ {aj}.
Otherwise, put Xσ0 = Xσ and Xσ1 = ∅.

Case 2: k = 1. Put Xσ0 = ∅. If ai, aj ∈ Xσ, put Xσ1 = Xσ∪{ai +aj}. Otherwise,
put Xσ1 = Xσ.

Case 3: k = 2. Put Xσ0 = ∅. If ai, aj ∈ Xσ, put Xσ1 = Xσ ∪ {ai · aj}. Otherwise,
put Xσ1 = Xσ.

Case 4: k = 3. Put Xσ0 = ∅. If xm ∈ Xσ, put Xσ1 = ∅. Otherwise, put Xσ1 = Xσ.
Let S ⊆ 2<N be the set of all σ such that Xσ 6= ∅. Clearly, S is a tree.
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We claim that, for each m,n ∈ N, there exists σ ∈ S of length n such that
xm /∈ 〈Xσ〉. For n = 0, this claim is trivial since by hypothesis we have that, for all
m ∈ N, xm 6= 0. If n ≡ 1, 2, 3 mod 4 and the claim holds for n then it also holds for
n + 1. Suppose that n ≡ 0 mod 4 and the claim holds for n. We shall show that it
also holds for n + 1. Let σ ∈ S be of length n such that xm /∈ 〈Xσ〉, for all m ∈ N,
and let n = 4〈i, j,m〉. If ai · aj /∈ Xσ, then the claim trivially holds for n + 1. On
the other hand, if ai · aj ∈ Xσ, then we make a subclaim that Xσ0 = Xσ ∪ {ai} and
Xσ1 = Xσ ∪ {aj} do not both generate elements xm0 , xm1 ∈ R. If they did, then we
would have

xm0 = c + rai and xm1 = d + saj,

where r, s ∈ R and c, d are finite linear combinations of elements of Xσ with coeffi-
cients from R. Then,

xm0+m1 = cd + csaj + drai + rsaiaj,

and so xm0+m1 ∈ 〈Xσ〉, a contradiction. This proves the subclaim, and hence our
claim holds for n + 1. The claim now follows for all n ∈ N by Π0

1-induction on n.
We have that S ⊂ 2<N is infinite. Hence, by Weak König’s Lemma, S has an

infinite path, f ∈ [S]. Now, using f and bounded Σ0
1-comprehension, we construct

the desired prime ideal P ⊂ R such that x /∈ P .
Without loss of generality, assume that a0 = 0 and a1 = x. We construct a tree

T ⊆ 2<N such that every infinite path through T codes a prime ideal P ⊂ R such
that x /∈ P . Let T be the set of all τ ∈ 2<N such that

(1) 0 < |τ | implies τ(0) = 1.
(2) 1 < |τ | implies τ(1) = 0.
(3) If i, j, k < |τ |, τ(i) = τ(j) = 1, and ai +R aj = ak then τ(k) = 1.
(4) If i, j, k < |τ |, τ(i) = 1, and ai ·R aj = ak then τ(k) = 1.
(5) If i, j, k < |τ |, τ(i) = τ(j) = 0, and ai ·R aj = ak then τ(k) = 0.

Condition (1) says that every subset of R coded by a path through T contains
0 ∈ R. Condition (2) says that every subset of R coded by a path through T does
not contain x ∈ R. Condition (3) says that every subset of R coded by a path
through T is closed under +R. Condition (4) says that every subset of R coded by
a path through T is closed under multiplication by elements from R. Condition (5)
says that the complement of every subset coded by a path through T is closed under
·R. When taken together, conditions (1)-(5) above imply that every path through
T codes a prime ideal not containing x ∈ R. Formally (i.e. in WKL0), the proof is
as follows.

By construction, it follows that T ⊂ 2<N is closed downwards, and thus T is a tree.
We claim that T is also infinite. To see why T is infinite, let m ∈ N be given, and by
bounded Σ0

1 comprehension let Y be the set of all i < m such that (∃n)[ai ∈ XF (n)],
where F (n) = 〈f(0), f(1), · · · , f(n − 1)〉 ∈ 2<N. Now, define τ ∈ 2<N, |τ | = m, by
setting τ(i) = 0, if i ∈ Y , and τ(i) = 1, if i /∈ Y . Then we have that τ ∈ T and
|τ | = m. Hence, T is infinite. Therefore, applying weak König’s Lemma to T yields
an infinite path g ∈ [T ], and letting P = {ai ∈ R : i ∈ N, g(i) = 1} constructs
the desired prime ideal P ⊂ R such that x /∈ P . This completes the proof of the
corollary. �

By Lemmas 3.8 and 3.9, we know that the intersection of all prime ideals in R
exists and is equal to N , the nilradical of R. Also, by Lemma 3.7, we know that
N = J , where J is the Jacobson radical of R. Thus, we have that 1 → 4. We now
show that 1 → 5.
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3.4. 1→5. Suppose that x0, x1, x2, . . . , xn, . . . ∈ N is an infinite sequence of (not
necessarily distinct) nilpotent elements in R such that, for every n ∈ N, yn =∏n

i=0 xi 6= 0. Then we claim that for every n ∈ N and r ∈ R, ryn+1 6= yn. Suppose,
for a contradiction, that there exists an element r ∈ R such that ryn+1 = yn.
By definition of yn+1, we have that yn+1 = xn+1yn. Hence, it follows that yn(1 −
rxn+1) = 0. But xn+1 ∈ N is nilpotent, and therefore 1 − rxn+1 is a unit (with
inverse

∑∞
k=0(rxn+1)

k). Thus, yn = 0, a contradiction. Thus, we have constructed a
sequence of elements of R, y0, y1, y2, . . ., such that for every n ∈ N, yn is not an R-
linear combination of {yn+1, yn+2, yn+3, . . .}, contradicting Lemma 3.5. This proves
that N ⊂ R is in fact t-nilpotent, and hence 1 → 5.

3.5. 1→6. We now turn our attention to proving that 1 → 6. Since RCA0 proves
that if R is an Artinian ring, then any quotient of R is also Artinian, we can assume
that J = {0}. Let I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · be an infinite strictly increasing
chain of ideals in R. We aim to show that there is an infinite strictly decreasing
chain of ideals R ⊇ J0 ⊃ J1 ⊃ J2 ⊃ · · · .

3.5.1. Constructing an infinite strictly decreasing chain of ideals in R. We wish to
use WKL0 to construct a set X such that, for every n ∈ N the set Xn = {k ∈
N : 〈n, k〉 ∈ X} is a prime (and hence maximal) ideal that does not contain some
element x ∈ (∩n−1

i=0 Xi) \ J . There are two cases to consider. The first case says that
for any n ∈ N, and any sequence of maximal ideals M0, M1, · · · , Mn ⊂ R, there is a
maximal ideal M ⊂ R such that M ∩M0 ∩M1 ∩ · · · ∩Mn ⊂ M0 ∩M1 ∩ · · · ∩Mn,
and the second case says that there exists some number n ∈ N, and a sequence of
maximal ideals M0, M1, M2, · · ·Mn, such that M0∩M1∩ · · ·∩Mn = 0 (by definition
of J , it follows that the negation of case 2 is case 1).

Case 1. Suppose that we are in the first case, and let x0, x1, x2, . . . be an enumer-
ation of elements of R\{0}. Via an argument similar to the proof of Lemma 3.9, we
can construct a sequence of prime (and hence maximal) ideals M0, M1, M2, . . . such
that, for every k ∈ N, xk /∈ Mk. Then, via ∆0

1-comprehension and the fact that we
are in case 1, we can construct an infinite sequence of numbers c0 < c1 < c2 < · · ·
such that for every k ∈ N, we have that ∩k

i=0Mci
⊃ ∩k+1

i=0 Mci
. It follows that

Mc0 ⊃ Mc0 ∩Mc1 ⊃ Mc0 ∩Mc1 ∩Mc2 ⊃ · · · is an infinite strictly decreasing sequence
of ideals in R. This ends the proof of case 1.

Observe that in the previous paragraph we did not use the hypothesis that the
chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · ⊆ R exists. This observation is used in
Section 5 to show that ACA0 proves the existence of finitely many maximal ideals
whose intersection is the Jacobson radical of R (i.e. we are in case 2).

Case 2. Let R = M0, and M1, M2, · · · , MT be maximal ideals such that
∩T

i=0Mi = J = 0. Using bounded Σ0
1-comprehension, we can assume, without loss of

generality, that M0, M1, M2, . . . ,MT are distinct ideals. Now, since M1, M2, . . . ,MT

are distinct maximal ideals, we have that for every i = 0, 1, 2, · · · , T − 1, M0 ∩
M1 ∩ · · · ∩ Mi + Mi+1 = R, and hence it follows that M1 ∩ M2 ∩ · · · ∩ Mi =
M1M2 · · ·Mi. For every i = 0, 1, 2, . . . T − 1, define Vi to be the R/Mi+1-vector
space M0M1 · · ·Mi/M0M1 · · ·Mi+1.

Recall that I0 ⊂ I1 ⊂ I2 ⊂ · · · is an infinite strictly increasing chain of ideals
in R. Using bounded Σ0

2-comprehension (which is equivalent to Σ0
2-induction), find

the greatest number n < T such that the set

{m ∈ N : (Im+1 \ Im) ∩M0M1M2 · · ·Mn 6= 0}
is not finite (note that n = 0 satisfies this condition, since M0 = R). By definition
of n, there is a number m0 ∈ N such that for all m ≥ m0 we have (Im+1 \ Im) ∩
M0M1M2 · · ·MnMn+1 = ∅. Without loss of generality (i.e. by passing to an infinite



12 CHRIS J. CONIDIS

subsequence of {Im}m∈N), assume that m0 = 0. By ∆0
1-comprehension, we can

construct an infinite sequence of numbers, a0 < a1 < a2 < · · · < am < · · · , such
that for every m ∈ N there exists an element 0 6= xm+1 ∈ (Iam+1\Iam)∩M0M1 · · ·Mn.
Without loss of generality (i.e. by passing to an infinite subsequence of {Im}m∈N),
assume that for every m ∈ N, am = m. Now, for every m ≥ 0, let vm ∈ Vn be the
image of xm ∈ M0M1 · · ·Mn under the canonical quotient map ϕ : M0M1 · · ·Mn →
Vn.

We claim that for every number m ≥ 0, vm ∈ Vn is not in the subspace generated
by {v0, v1, . . . , vm−1}. For suppose that we had vm =

∑m−1
k=0 rkvk. It follows that vm−∑m−1

k=0 rkvk = 0 ∈ Vn, and thus xm−
∑m−1

k=0 rkxk ∈ (Im\Im−1)∩M0M1 · · ·MnMn+1, a
contradiction. Therefore, we have that for every number n ∈ N, vn is not an R/Mn+1-
linear combination of {v0, v1, . . . , vn−1}, and so, by Corollary 3.6, V contains an

infinite strictly decreasing sequence of subspaces V ⊇ Ĵ0 ⊃ Ĵ1 ⊃ Ĵ2 ⊃ · · · ⊃ Ĵm ⊃
· · · .

Now, if for every m ∈ N we let Jm = ϕ−1(Ĵm), then we have that R ⊇ J0 ⊃ J1 ⊃
J2 ⊃ · · · is an infinite strictly decreasing chain of ideals in R. Thus, we have shown
that 1 → 6. �

4. WKL0 Lower Bound

The main goal of this section is to prove that, over RCA0, each of the properties
2–6 in Theorem 3.4 implies WKL0, as does Theorem 1.9. Achieving this goal consists
mostly of proving the following theorem.

Theorem 4.1. There is an integral domain R containing an infinite uniformly
computable increasing sequence of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ IN ⊂ · · · , and such
that every infinite decreasing sequence of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · in R contains
some Jn of PA degree.

Proof. The proof consists of four parts. First, we describe the basic idea behind the
proof, and give the basic module of the construction of R. Next, we construct the
ring R. Afterwards, we show that R contains a uniformly computable increasing
chain of ideals, and finally, we verify that every infinite decreasing sequence of ideals
in R contains an element that is of PA degree.

Let R0 = Q[X〈N,k〉 : 〈N, k〉 ∈ N]. The ring R shall be of the form R0[Y], for
a set of (dependent) variables Y which we shall define in Section 4.2. Before we
give the full construction of R, which is rather technical, we describe its first step in
complete detail. By thoroughly examining the first step of the construction of R, we
shall give the reader the motivation and main ideas behind the entire construction.

Let R and S be rings such that R ⊂ S. Then, if I is either a subset of R, or a
sequence of elements in R, the notation 〈I〉R denotes the ideal generated by I in the
ring R.

We start by extending R0 to a computable ring R1, with the following properties.

(1) There is a uniformly computable, strictly increasing sequence of ideals I0 ⊂
I1 ⊂ I2 ⊂ · · · ⊂ IN ⊂ · · · in R1.

(2) Every ideal J ⊂ R1 that is not of PA degree satisfies

J ∩R0 = 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 , for some N ∈ N ∪ {∞}.
The motivation behind property 1 is obvious. To motivate property 2, let J0 ⊃

J1 ⊃ J2 ⊃ · · · be an infinite strictly decreasing chain of ideals in R1 such that the
sequence of ideals J0 ∩ R0 ⊃ J1 ∩ R0 ⊃ J2 ∩ R0 ⊃ · · · is also strictly decreasing.
We claim that property 2 implies that at least one of the JN ∩R0, N ∈ N, is of PA
degree. To see why this is the case, suppose that R1 satisfies 2, and note that either
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J2 ∩R0 is of PA degree, or else we have that J2 ∩R0 = 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 ,
for some N ∈ N. In the former case we are done, so suppose that we are in the
latter case. Then it follows that one of the ideals J3 ∩R0, J4 ∩R0, . . . , JN+3 ∩R0 is
not equal to 〈X〈N ′,k〉 : N ′ ≤ M, k ∈ N〉R0 , for any M ∈ N, and hence (by property
2) must be of PA degree.

If we could show that every infinite strictly decreasing chain of ideals in R1

contains a member of PA degree, then we could set R = R1 and we would
be done. However, the best that we can show for now is that for every infi-
nite strictly decreasing chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · in R1, if the chain
J0 ∩ R0 ⊃ J1 ∩ R0 ⊃ J2 ∩ R0 ⊃ · · · is also strictly decreasing then it contains a
member of PA degree. To overcome this current shortcoming, we shall make in-
finitely many (uniformly computable) ring extensions R0 ⊂ R1 ⊂ R2 ⊂ · · · , and
set R = ∪s∈NRs. Furthermore, we shall be careful in maintaining the fact that R
satisfies property 1.

4.1. Constructing the ring R1 ⊃ R0. First, we need some definitions. Fix disjoint
c.e. sets A and B such that any set C with A ⊆ C and C ∩B = ∅ is of PA degree,
and let α, β : N → N be computable 1-1 functions with range A and B, respectively.
Also, for any quotient of polynomials, q ∈ Q(X〈N,k〉 : 〈N, k〉 ∈ N), let M(q) be
the value of the largest pair 〈N, k〉 ∈ N such that X〈N,k〉 appears in q, and for any
polynomial p ∈ R0, let N(p) be the least number N ∈ N such that p can be written
in the form p = C + p′ with C ∈ Q and p′ ∈ 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 .

To construct R1 from R0, let

Y−1 = {Y〈N,N ′,k,l〉 : N, N ′, k, l ∈ N, l < β(k), N ′ ≤ N}, and

Z = {Z〈p,i〉 : 0 6= p ∈ R0, α(i) > M(p)}
be sets of formal symbols. Now set Y0 = Z ∪ Y−1, and define R1 = R0[Y0]/ ∼=,
where ∼= is an equivalence relation that is defined in the next paragraph. Note that,
for every r ∈ R1, we can write r in the form

r =
n∑

k=0

fkYk,

where f, fk ∈ R0 and Yk is a product of elements from Y0, 0 ≤ k ≤ n. We call such
an expression a code for r ∈ R1.

Let ϕ0 : R1 → Q(X〈N,k〉 : 〈N, k〉 ∈ N) be the unique (computable) homomorphism
of rings that fixes R0, and such that

ϕ0(Y〈N,N ′,k,l〉) =
X〈N ′,l〉

X〈N,β(k)〉
, and

ϕ0(Z〈p,i〉) =
X〈N(p),α(i)〉

p
.

Note that ϕ0 is injective on the set Y0. For any two elements r, s ∈ R1, we define
r ∼= s, and write r = s, if ϕ0(r) = ϕ0(s). It follows that R1 is a computable ring.
We shall sometimes identify the elements of Y0 with their images under ϕ0. In
particular, we shall refer to the numerators and denominators of these elements.

The idea behind the definitions of ϕ0(Z〈p,i〉) and ϕ0(Y〈N,N ′,k,l〉) above is as follows.
Suppose that some element r1 ∈ R1 is contained in an ideal J ⊆ R1 not of PA
degree. Then, since J is an ideal, we have that there is also some r0 ∈ R0 in J
(r0 ∈ R0 is such that ϕ(r0) is equal to the numerator of ϕ0(r1)). Now, since Z ⊂ R1,
then for N = N(r0) ∈ N and large enough i ∈ N we have that X〈N,α(i)〉 ∈ J .
Now, since J is not of PA degree, J must also contain infinitely many elements
of the form X〈N,β(j)〉, j ∈ N. Otherwise, the set {k ∈ N : X〈N,k〉 ∈ J} ≤T J
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would be a separator for ran(α) and ran(β) on some cofinal interval of N. Now,
since Y−1 ⊂ R1, it follows that every element of the form X〈N ′,k〉, N ′ ≤ N, k ∈ N,
is contained in J , and so J ⊇ 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 . Hence, we have
shown that if J ⊆ R1 is an ideal that is not of PA degree, then J must contain
〈X〈N ′,k〉, N ′ ≤ N, k ∈ N〉R0 for every number N = N(r0) such that r0 ∈ R0 is
the numerator of some ϕ0(r1), r1 ∈ R1. It follows that J ∩ R0 = IN ∩ R0, where
N ∈ N ∪ {∞} is such that N = sup{N(p) : p ∈ R0 ∩ J} and I∞ = ∪M∈NIM . Note
that I∞ is a maximal ideal of R1.

Now, let J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jn ⊃ · · · be an infinite strictly decreasing chain of
ideals in R1 such that the chain of ideals J0 ∩R0 ⊃ J1 ∩R0 ⊃ J2 ∩R0 ⊃ · · · is also
strictly decreasing. Then, by the results in the previous paragraph, we have that J2

must either be of PA degree, or equal to some IN , N ∈ N. If J2 is of PA degree,
then we have property 2. Otherwise, J2 = IN for some N ∈ N. Since the chain of
ideals J0∩R0 ⊃ J1∩R0 ⊃ J2∩R0 ⊃ · · · is strictly decreasing, then one of the ideals
J3 ∩R0, J4 ∩R0, . . . , JN+3 is of PA degree. Therefore, R1 satisfies property 2.

Proving that R1 satisfies property 1 is no simpler than proving the following
lemma, whose proof we defer to later.

Lemma 4.2. Fix N ∈ N. Then for every z ∈ R, if z ∈ IN and z = g +
∑m

j=0 gjZj

is a code for z, then the numerators of g, gjYj, j = 0, 1, . . . ,m, belong to the ideal
〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0.

For every N ∈ N, let IN ⊂ R1 be the set of elements r ∈ R1 such that r
can be written as r =

∑n
k=0 fkYk and such that the numerator of f, fkYk is in

〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 for every 0 ≤ k ≤ n. Briefly speaking, Lemma 4.2
says that if r ∈ IN , then every expression for r, r =

∑n
k=0 fkYk, is such that the

numerators of f, fkYk, 0 ≤ k ≤ n, belong to 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 . We
now verify that Lemma 4.2 implies that the ideals I0 ⊂ I1 ⊂ · · · IN ⊂ · · · form a
uniformly computable infinite strictly increasing chain in R1. First, to determine
whether or not a given r ∈ R, r =

∑n
k=0 fkYk, is in IN one simply checks to see if the

numerators of f, fkYk belong to 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 , for every 0 ≤ k ≤ n.
Hence the chain is uniformly computable. Secondly, to verify that the chain is
strictly increasing, note that by Lemma 4.2, for every N ≥ 1, X〈N,0〉 ∈ IN , but
X〈N,0〉 /∈ IN−1.

A brief intuition as to why Lemma 4.2 is true is as follows. For every y0 ∈ Y0,
we have chosen the element ϕ0(y0) carefully so that if its numerator is of the form
X〈N,k〉, then for every monomial m occurring its denominator, we have that m is
either constant (in the case y0 = Z〈p,i〉, for some p ∈ R0 with a nontrivial constant
term), or else m contains an occurrence of some X〈N ′,k′〉 with N ′ ≥ N . This makes
it impossible for y0r ∈ IN ′ , N < N ′, unless r ∈ IN ′ . Hence, R1IN = IN .

4.2. Constructing the ring R. Having now seen the first step in the construction
and verification of the ring R, we are ready to proceed with the full construction.
Recall that the reason why we cannot simply set R = R1 is that we cannot prove
an analogous version of property 2 for ideals in the ring R1 (property 2 talks about
descending chains of ideals in R1 restricted to R0). We shall spend the rest of this
section constructing the ring R ⊃ R1 without such a deficiency.

The key fact that allowed us to show R1 satisfies property 2 is that if J ⊂ R1 is
an ideal that is not of PA degree, then J ∩ R0 = IN = 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉.
Furthermore, to show this, we used the fact that Y0 ∈ R1. We would like to prove
a similar statement about ideals of the form J ∩ R1, but, in order to do so, we
must extend R1 to a new ring R2 (in the same way we extended R0 to R1), and so
on. Therefore, to construct the ring R, we shall make countably many extensions
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R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · · (and set R = ∪s∈NRs), so that the subring
Rn ⊂ Rn+1 satisfies property 2 in the same way that R0 ⊂ R1 satisfies property 2.
Moreover, our extensions shall be done carefully, so that in the end R also satisfies
property 1.

We are now in good shape to construct the ring R = ∪s∈NRs. But, before
we do, we need some definitions. Let N∗ be the set of all finite sequences of
natural numbers, and for any σ = 〈σ(0), σ(1), . . . , σ(n − 1)〉 ∈ N∗ let β(σ) =
〈β(σ(0)), β(σ(1)), . . . , β(σ(n− 1))〉. Let |σ| denote the length of σ, and write σ− for
the sequence 〈σ(0), σ(1), · · · , σ(|σ| − 2)〉. We say that σ ∈ N∗ is strictly increasing
if, for every 0 ≤ i < |σ| − 1, we have that σ(i) < σ(i + 1). Let N< be the set of
strictly increasing elements of N∗. Furthermore, for σ ∈ N∗, N ∈ N, let σ > N if
min{σ(i) : i < |σ|} > N (similarly define σ ≥ N). Also, for any σ, τ ∈ N∗ such that
|τ | = |σ|, define X〈τ,σ〉 to be the monomial

∏n−1
i=0 X〈τ(i),σ(i)〉 ∈ R0. If τ = σ = ∅, then

set X〈τ,σ〉 = 1.
Now, fix s ≥ 0, and define

Ys = {Y〈N ′,l,τ,σ〉} ∪ {Z〈p,i,τ,σ〉},

where 〈N ′, l, τ, σ〉 ranges over all 4-tuples such that:

(1) N ′, l ∈ N, τ, σ ∈ N∗, β(σ) ∈ N<.
(2) |τ | = |σ| ≤ s + 1.
(3) N ′ ≤ τ .
(4) l < β(σ).

and 〈p, i, τ, σ〉 ranges over all 4-tuples such that:

(1) 0 6= p ∈ R0, i ∈ N, τ, σ ∈ N∗, β(σ) ∈ N<.
(2) |τ | = |σ| ≤ s + 1.
(3) M(p) < α(i) < β(σ).
(4) N(p) ≤ τ .

We set Rs+1 = R0[Ys]/ ∼=, where ∼= is an equivalence relation on Rs+1 that is
defined in the next paragraph. By definition of ∼=, we will have that Rs is a subring
of Rs+1.

Let ϕs : Rs+1 → Q(X〈N,k〉 : 〈N, k〉 ∈ N) be the unique (computable) homomor-
phism of rings that fixes R0, and such that

ϕs(Y〈N ′,l,τ,σ〉) =
X〈N ′,l〉

X〈τ,β(σ)〉
, and

ϕs(Z〈p,i,τ,σ〉) =
X〈N(p),α(i)〉

pX〈τ,β(σ)〉
.

Note that although we have redefined Y0 and ϕ0, the new definitions are equivalent
to the old ones. Also, note that ϕs ⊂ ϕs+1. For any two elements r, s ∈ Rs+1,
we let r ∼= s, and write r = s, if ϕs(r) = ϕs(s). Hence, Rs+1 is a computable
integral domain, since Q(X〈N,k〉 : 〈N, k〉 ∈ N) is a computable integral domain. In
practice we shall sometimes identify the elements of Ys with their images under ϕs.
In particular, we shall refer to the numerators and denominators of these elements.
By a code for an element r ∈ R, we shall mean an expression (i.e. sum) of the form

S = f +
n∑

k=0

fkYk,

such that r = S, f, fk ∈ R0, and Yk is a product of elements from Y = ∪∞s=0Ys,
for all 0 ≤ k ≤ n. We now verify that R satisfies the criteria of Theorem 4.1. Let
ϕ : R → Q(X〈N,k〉 : 〈N, k〉 ∈ N) be defined as ϕ = ∪s∈Nϕs, and let Y = ∪s∈NYs.
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4.3. Verifying that R has the desired properties. In this section we complete
the proof of Theorem 4.1 by verifying that R satisfies the following two properties.

(1) R contains a uniformly computable, infinite strictly increasing chain of ideals.
(2) Every infinite strictly decreasing chain of ideals in R contains a member that

is of PA degree.

To show that R satisfies property 1, we exhibit an infinite uniformly computable
increasing sequence of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ IN ⊂ · · · in R.

For every N ∈ N, let IN ⊂ R be the set of elements r ∈ R such that r has a
code of the form r =

∑n
k=0 fkYk and such that the numerator of f , and of fkYk,

k = 0, 1, 2, . . . , n, is in 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 , for every 0 ≤ k ≤ n. Also,
define I∞ = ∪s∈NIs. By construction, it is clear that IN ⊂ R is an ideal for every
N ∈ N. Also, by the construction of Ys, s ∈ N, we have the following proposition.

Proposition 4.3. Fix s ∈ N. If y ∈ Ys, then y ∈ I∞. Also, if the numerator of y
is not in IN ∩R0, then neither is the denominator of y.

We now prove Lemma 4.2, which says that for every z ∈ R, if z ∈ IN and
z = g +

∑m
j=0 gjZj is a code for z, then the numerators of g, gjZj, j = 0, 1, . . . ,m,

belong to the ideal 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 . It was shown earlier that a
consequence of this lemma is that the ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · IN ⊂ · · · form a
uniformly computable infinite strictly increasing chain in R, and hence R satisfies
property 1.

The inspiration for the proof of Lemma 4.2 is derived from that of Theorem 3.2 in
[5]. In this proof, Downey, Lempp, and Mileti show that certain elements xk, k ∈ N,
of a ring R are not invertible. To do this, the authors examine the largest index of
a variable occurring in an expression for 1

xk
∈ R.

Proof of Lemma 4.2. Let z, g, gj, Zj, g
′
j, j = 0, 1, . . . ,m, be as in the statement of the

lemma, and such that g, gj ∈ 〈X〈N ′,k〉 : N ′ ≤ N, k ∈ N〉R0 for all j = 0, 1, 2, . . . ,m.
Furthermore, suppose for a contradiction that we can write

(∗) z = g +
m∑

j=0

gjZj = f +
n∑

i=0

fiYi = y,

for some f, fi ∈ Q[X〈N ′,k′〉 : 〈N ′, k′〉 ∈ N], such that one of the elements
f, f ′0, f

′
1, . . . , f

′
n (f ′i denotes the numerator of fiYi) is not in the ideal 〈X〈N ′,k′〉 :

N ′ ≤ N, k′ ∈ N〉R0 . We shall henceforth refer to the sum f +
∑n

i=0 fiYi by y, and
the sum g +

∑m
j=0 gjZj by z; these sums are different codes for the same element of

R.
Without loss of generality, we assume the following.

(1) By adding some z′ ∈ IN to both sides of (∗) above, assume that f ′i is not in
P = 〈X〈N ′,k′〉 : N ′ ≤ N, k′ ∈ N〉 for every 0 ≤ i ≤ n. Hence, by Proposition
4.3, none of the denominators of the Yi, 0 ≤ i ≤ n, are in P either.

(2) Assume that the denominator d ∈ R0 of some Z〈p,i,τ,σ〉 is not contained in P .
One can always express such a d ∈ R0 as a (unique) sum d = d1+d2, d1, d2 ∈
R0, such that d1 ∈ P and every monomial occurring in d2 is not in P . Now,
upon multiplying both sides of (∗) by d, and then adding −d1R∗ to both
sides of (∗), where R∗ represents the right-hand side of (∗), we can rewrite
(∗) as another equation of the same form but such that d does not occur in
the denominator of any Z〈p,i,τ,σ〉. By repeating this argument, we can assume
(without loss of generality) that the denominator of every Z〈p,i,τ,σ〉 occurring
in the left-hand side of (∗) is contained in P .
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(3) By computably rewriting the codes y and z with different coefficients fi,
assume that for no 0 ≤ j ≤ m, 0 ≤ i ≤ n, does the term X〈N ′,k′〉 appear in
f ′i , g

′
j if it divides the denominator of Yi, Zj, respectively. Furthermore, since

the c.e. sets A and B are disjoint, it follows that if some g′j is divisible by
X〈N,α(i)〉, for some N, i ∈ N, then after rewriting the sum in this fashion, g′j
is divisible by X〈N,α(i′)〉, for some i′ ∈ N such that α(i′) ≥ α(i).

(4) By computably rewriting the codes y and z, assume that there do not exist
sets I ⊆ {0, 1, 2, . . . , n}, J ⊆ {0, 1, 2, . . . ,m} such that

∑
i∈I

fiYi = 0 or
∑
j∈J

gjZj = 0.

Let C, D ∈ R0 be the least common multiple for the denominators of the fractions
Y0, Y1, . . . , Yn and Z0, Z1, . . . , Zm, respectively. Then we have that D(Cy) = C(Dz),
where C, D,Cy, Dz ∈ R0. Note that since P = 〈X〈N ′,k′〉 : N ′ ≤ N, k′ ∈ N〉R0 is a
prime ideal (in the ring R0), and none of the denominators of the Yi are in P , then
C /∈ P .

We have now made the necessary preliminary observations. The rest of the proof
is as follows. First, by examining a variable of large index, we show that none of
the factors in the monomials Zj, j = 0, 1, . . . ,m, are of the form Z〈p,i,τ,σ〉 ∈ Y, for
some p ∈ R0. Then, via a similar argument, we show that none of the factors in
the monomials Zj, j = 0, 1, . . . ,m, are of the form Y〈N ′,l,τ,σ〉 ∈ Y, for some N ′ ≤ N .
Finally, we consider the case where none of the numerators of Zj, j = 0, 1, . . . ,m,
are in P , and derive a contradiction.

First, we claim that for all monomials Zj occurring in the sum
∑m

j=0 gjZj = z, Zj

is not divisible by any variable of the form Z〈p,i,τ,σ〉 ∈ Y. Suppose otherwise, and
let 0 ≤ j0 ≤ m be such that Zj is divisible by some Z〈p0,i0,τ0,σ0〉 with N(p0) ≤ N and
α(i0) maximal. First notice that by (1), no variable of the form X〈N0,α(i0)〉, N0 =
N(p), i0 ∈ N, appears in f ′i , for any 0 ≤ i ≤ n. It now follows from (4) that
X〈N0,α(i0)〉 appears in the denominator of some Zj1 , 0 ≤ j1 ≤ m. Now, by (2) and
the construction of Y = ∪s∈NYs, it follows that Zj1 is divisible by some Z〈p1,i1,τ1,σ1〉,
for some p1 ∈ R0 such that N(p1) ≤ N and with X〈N0,α(i0)〉 occurring in p1. Now,
by the comment in (3) above and the construction of Z〈p,i,τ,σ〉 ∈ Y, it follows that
g′j1 is divisible by some X〈N,α(i′)〉 such that α(i′) > α(i0), which is a contradiction
since α(i0) was chosen to be maximal.

Now, suppose that there is a 0 ≤ j0 ≤ m such that Zj0 is divisible by some
variable of the form Y〈N ′

0,l0,τ0,σ0〉, such that N ′
0 ≤ N and l0 ∈ N is minimal. Then, by

similar reasoning as in the previous paragraph, we can derive a contradiction in this
case also, as follows. Notice that, by (1), no variable of the form X〈N ′

0,l0〉 appears in
f ′i , for any 0 ≤ i ≤ n. It now follows from (3) and (4) that X〈N ′

0,l0〉 appears in the
denominator of some Zj1 , 0 ≤ j0 6= j1 ≤ m. However, by the previous paragraph
we know that Zj1 is not divisible by any element of the form Z〈p,i,τ,σ〉, and hence, by
construction of R and Y = ∪s∈NYs, and by a similar argument as in the comment in
(3) above, it follows that the only way that X〈N ′

0,l0〉 can appear in the denominator
of Zj1 is if some X〈N ′

1,l1〉 appears in the numerator of Zj1 , for some l1 < l0, and this
is a contradiction since we chose l0 to be minimal.

We have now reduced ourselves to the case which says that, for every j =
0, 1, 2 . . . , m, the numerator of Zj is not in P . In this case, however, we can derive a
contradiction as follows. Since none of numerators of Zj, j = 0, 1, . . . ,m, are in P , by
Proposition 4.3, it follows that neither are the denominators of Zj, j = 0, 1, . . . ,m.
However, this contradicts (2) above, and so it follows that (∗) must be an equality
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of the form

A =
B

C
⇔ CA = B, C 6= 0,

where A, B, C are elements of R0, A is in P , and B, C are not in P , a contradiction.
�

Corollary 4.4. The ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ IN ⊂ · · · form a strictly increasing,
uniformly computable chain of ideals in the ring R.

Now that we have constructed the computable ring R and the infinite uniformly
computable increasing chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ IN ⊂ · · · ⊂ R, we prove
a lemma which will help us to show that every infinite decreasing chain of ideals in
R contains an element that is of PA degree. This is analogous to the verification
that R1 satisfies property 2.

Lemma 4.5. If an ideal J0 ⊆ R is not of PA degree, then one of the following holds:

(1) J0 = 0.
(2) J0 = IN , for some N ∈ N.
(3) J0 = I∞ = ∪∞N=0IN .
(4) J0 = R.

Proof. Assume that J0 6= 0. We shall show that J0 satisfies one of (2)–(4) above.
First, we show that if J0 * I∞, then J0 = R. Then we show that if J0 ⊆ I∞, then
either J0 = I∞, or else J0 = IN for some N ∈ N.

Assume that J0 * I∞, and let F ∈ J0 \ I∞. Then, since F ∈ J0 \ I∞, F must
have a nontrivial constant term and hence 0 6= F . Also, since J0 is an ideal, without
loss of generality we can assume that 0 6= F ∈ J0 ∩ R0. Now, since Z ⊂ R and Z
contains elements of the form Z〈F,i〉, i > M(F ), it follows that J0 contains elements
of the form X〈N(F ),α(i)〉 = F · Z〈F,i〉, for (cofinitely many) i ∈ N, i > M(F ). Since
J0 is not of PA degree, this means that J0 must also contain elements of the form
X〈N,β(j)〉 for infinitely many j ∈ N. Now, since Y0 ⊂ R, we have that J0 contains
the ideal 〈X〈N ′,k〉 : N ′ ≤ N(F ), k ∈ N〉R0 , and from this it follows that J0 contains
the constant term of F , which is nonzero by assumption. Thus, we have shown that
if J0 * I∞, then J0 = R.

We now show that if J0 ⊆ I∞, then either J0 = I∞ or J0 = IN for some N ∈ N. To
do this, we prove that if 0 6= F ∈ J0 ∩R0 and N = N(F0), then IN ⊆ J0. From this
it follows that J0 = IN , where N ∈ N ∪ {∞}, N = sup{N(F0) : 0 6= F = F0

F1
∈ J0}.

Let 0 6= F ∈ J0 ∩R0. Now, since Z ⊂ R we have that J0 contains elements of the
form X〈N,α(i)〉 for N = N(F ) and cofinitely many i ∈ N. Now, since J0 is not of PA
degree we must have that J0 contains elements of the form X〈N,β(j)〉 for N = N(F )
and infinitely many j ∈ N. Now, by construction of Y = ∪s∈NYs, if an ideal J0

contains X〈N,β(j)〉 for infinitely many j ∈ N, then we have that YJ0 ⊇ IN . Hence
we have that IN(F ) ⊆ J0. This completes the proof of the lemma. �

We now show that R cannot contain a descending chain of ideals R ⊇ J0 ⊃ J1 ⊃
J2 ⊃ · · · ⊃ Jn ⊃ · · · unless some JN , N ∈ N is of PA degree. Let R ⊇ J0 ⊃
J1 ⊃ J2 ⊃ · · · ⊃ Jn ⊃ · · · be an infinite strictly descending chain of ideals in R.
By Lemma 4.5, we know that for every n ∈ N, either Jn is of PA degree, or else
Jn, n ∈ N, is equal to one of {0},R, I∞, IN , N ∈ N. Now, since I∞ is a maximal
ideal, then we have that either J2 is of PA degree, or J2 ⊂ I∞. Hence, if J2 is not of
PA degree, then there exists a number M ∈ N such that J2 = IM . Now, since the
chain R ⊇ J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jn ⊃ · · · is infinite and strictly decreasing, there
must exist a number k ∈ {2, . . . ,M +2} such that the ideal Jk is not equal to IN , for
any N ∈ N. But, by Lemma 4.5, this implies that Jk must be of PA degree. Thus,
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every infinite strictly decreasing chain of ideals R ⊇ J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jn ⊃ · · ·
contains an element of PA degree. This completes the proof of the theorem. �

We wish to make a remark about the last paragraph of the proof of Theorem
4.1. In particular, we wish to note that RCA0 + Σ0

1-induction suffices to make
the argument in this paragraph. To see why this is the case, first assume (for a
contradiction) that J0 ⊃ J1 ⊃ J2 ⊃ · · · is an infinite strictly decreasing sequence
of ideals in R, none of which are of PA degree. Furthermore, note that RCA0

proves Lemma 4.5, and it follows that J2 = IM , for some M ∈ N. Next, note
that “Jn ⊆ IM−n+2” is a Π0

1 statement, and can be proved via Π0
1-induction on

n ∈ N. This proves that JM+2 = {0}, which is a contradiction since we assumed
that the chain J0 ⊃ J1 ⊃ J2 ⊃ · · · was strictly decreasing. Therefore, Jn must be
of PA degree for some n ∈ N, and so, over RCA0, Theorem 4.1 implies WKL0. This
completes the proof of the lower bound in Theorem 1.12. The proof of the upper
bound (in Theorem 1.12) is given in Section 5.

4.4. Reversals in Theorem 3.4. We now use the proof of Theorem 4.1 to show
that, over RCA0, statements 2–6 in Theorem 3.4 imply WKL0. Throughout the rest
of this section we assume RCA0.

To show that 2 implies WKL0, assume that 2 holds, and note that the ring R of
Theorem 4.1 is not a field, but it is an integral domain. Therefore, if 2 holds, R
cannot be Artinian. But, as we have seen in the proof of Theorem 4.1, the fact that
R is not Artinian implies the existence of a separating set for ran(α) and ran(β).
Hence, we have WKL0.

To show that 3 implies WKL0, assume that 3 holds, and note that, since R is an
integral domain, {0} is a prime ideal in R that is not maximal. Hence, R cannot be
Artinian, and so, as in the previous paragraph, we have WKL0.

To show that 4 implies WKL0, assume that 4 holds, and note that, since R is
an integral domain and not a field, the set of nilpotent elements in R is equal to
{0}. Therefore, 4 implies that either R is not Artinian, in which case we can deduce
WKL0 as above, or else there must be a maximal ideal M ⊂ R, M 6= I∞. But, by
Lemma 4.5, we know that the existence of such an ideal also implies WKL0.

To show that 5 implies WKL0, assume that 5 holds, and note that the only t-
nilpotent set in R is {0}. Hence, 5 implies that either R is not Artinian, in which
case we can deduce WKL0, or else there is a maximal ideal M ⊂ R, M 6= J . As in
the previous paragraph, this also implies WKL0.

To show that 6 implies WKL0, assume that 6 holds, and note that the set of nilpo-
tent elements in R is equal to {0}. Now, since R contains a uniformly computable
increasing sequence of ideals, R is not Noetherian. Hence, by 6, R is not Artinian
either. In this case we have already shown that we can deduce WKL0.

5. ACA0 Upper Bound

In Sections 5 and 6 we turn our attention to showing that, over RCA0+BΣ2,
Theorem 1.11 is equivalent to ACA0. Our first step toward achieving this goal is the
proof of the following theorem.

Theorem 5.1 (ACA0). Every Artinian ring is strongly Noetherian.

Proof. We reason in ACA0. Our proof of Theorem 5.1 is very similar to the standard
proof given in texts such as [6, 17].

Before we proceed with the proof of Theorem 5.1, we require two standard facts
from commutative algebra. Let J ⊂ R be the Jacobson radical of R.
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Lemma 5.2. We have that x ∈ J if and only if for every a ∈ R, 1 − ax ∈ R is a
unit.

Proof. First, suppose that 1 − ax ∈ R is a unit for every a ∈ R, and suppose for a
contradiction that x /∈ J . Now, let M ⊂ R be a maximal ideal such that x /∈ M .
We can write

1 = ax + m,

for some m ∈ M, a ∈ R. Hence, 1 − ax ∈ M , and so 1 − ax is not a unit, a
contradiction. Therefore, x ∈ J .

Secondly, suppose that there is an element a ∈ R such that 1 − ax ∈ R is not
a unit. Then, using ACA0, construct a maximal ideal M ⊂ R containing 1 − ax.
Now, we cannot have that x ∈ J , or else we would have that x ∈ M and so
(1− ax) + (ax) = 1 ∈ M , a contradiction. Hence, x /∈ J . �

Note that one consequence of Lemma 5.2 is that ACA0 proves the existence of J .
Applying ACA0 relative to J also shows that for any R-module M , the submodule
JM ⊆ M exists.

In the literature, the following theorem is referred to as Nakayama’s Lemma.

Theorem 5.3. If M is an R-module such that M 6= 0 and JM = M , then M is
not finitely generated.

Proof. The proof is by Π0
3-induction relative to J and JM , with M as a parameter.

For the base case, suppose that M is generated by a single element m ∈ M, m 6= 0.
Then, since M = JM we have that

m = am, a ∈ J.

From this it follows that

(1− a)m = 0.

Since a ∈ J , by Lemma 5.2 we have that 1 − a ∈ R is a unit, and thus m = 0, a
contradiction. This proves the base case.

For the induction step, suppose that M 6= 0, M = JM , and let m0, m1, . . . ,mn ∈
M be given. Using the fact that m0, m1, . . . ,mn−1 does not generate M (i.e. the
induction hypothesis), we shall show that m0, m1, . . . ,mn does not generate M .

Suppose, for a contradiction, that m0, m1, . . . ,mn generates M , then we can write

mn = a0m0 + a1m1 + · · ·+ anmn, a0, a1, . . . , an ∈ J,

which implies that

(1− an)mn = a0m0 + a1m1 + · · ·+ an−1mn−1.

Now, since an ∈ J , we can apply Lemma 5.2 to conclude that 1 − a ∈ R is a
unit. Thus, M is generated by m0, m1, . . . ,mn−1, which contradicts the induction
hypothesis. �

5.1. Finishing the proof of Theorem 5.1. We now have all the necessary ingre-
dients to complete the proof of Theorem 5.1.

Since ACA0 implies WKL0, by our results in Section 3.5 we know that there ex-
ist finitely many maximal ideals M1, M2, . . . ,Mn ⊂ R such that J = ∩n

i=0Mi =
M1M2 · · ·Mn is the Jacobson radical of R. We shall show that J is nilpotent. In
other words, there exists m ∈ N such that Jm = J · J · . . . · J︸ ︷︷ ︸

m

= 0.
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5.1.1. J is nilpotent. Since we are working in ACA0, we have that the infinite (non-
strictly) decreasing sequence of ideals J ⊇ J2 ⊇ · · · ⊃ Jm ⊇ · · · exists. Now, since
R is an Artinian ring, it follows that there is some m ∈ N such that Jm = Jm+1.
We shall prove that Jm = 0.

Assume (for a contradiction) that Jm 6= 0, and use arithmetic comprehen-
sion to construct a sequence of elements x0, x1, x2, . . . , xn, . . . such that for every
n ∈ N we have xnJ

m 6= 0 and 〈xn〉 ⊃ 〈xn+1〉. Since R is Artinian, the sequence
x0, x1, x2, . . . xn, . . . must in fact be finite. Let N ∈ N be such that xN is the last
element in the sequence. By construction, we have that the ideal IN = 〈xN〉 is
minimal among all ideals I such that IJm 6= 0.

Let I = IN , and x = xN . By the construction of I and definition of x, it follows
that ((xJ)Jm) = xJm+1 = xJm 6= 0, and hence, by the minimality of I = 〈x〉, it
follows that 〈x〉 = xJ . Then, by Nakayama’s Lemma, we must have that x = 0, a
contradiction since xJm 6= 0. Hence, Jm = 0.

5.1.2. R has finite length. Now, using arithmetic comprehension, construct the chain
of ideals

R = M0 ⊃ M1 ⊃ M1M2 ⊃ · · · ⊃ M1M2 · · ·Mn−1 ⊃ J ⊃
JM1 ⊃ JM1M2 ⊃ · · · ⊃ JM1M2 · · ·Mn−1 ⊃ J2 ⊃ · · ·

· · · ⊃ Jm−1M1 ⊃ Jm−1M1M2 ⊃ · · · ⊃ Jm−1M1M2 · · ·Mn−1 ⊃ Jm = 0.

Note that, as an R-module, the quotient of any two consecutive terms in the chain
above is a vector space V over the field R/Mi, for some 0 ≤ i ≤ N . Furthermore,
since R is Artinian, V is finite dimensional (otherwise we could use ACA0 to con-
struct an infinite strictly decreasing sequence of subspaces in V and then lift these
subspaces via a quotient map to get an infinite strictly decreasing chain of ideals
in R, which contradicts the fact that R is Artinian). Let S denote the sum of the
dimensions of all such V .

Now, let I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ IS be a strictly increasing chain of ideals
of length S in R. Furthermore, let 0 ≤ l < nm, l = pn + r, 0 ≤ r < n,
be such that if V = JpM0M1M2 · · ·Mr/J

pM0M1M2 · · ·Mr+1, d0 = dim(V ), and
ϕ : JpM0M1M2 · · ·Mr → V is the canonical homomorphism, then there is a
set D ⊆ {0, 1, 2, . . . , S}, |D| > d0, such that for every d′ ∈ D, (Id′+1 \ Id′) ∩
JpM0M1M2 · · ·Mr 6= ∅ but (Id′+1 \ Id′)∩JpM0M1M2 · · ·MrMr+1 = ∅. The fact that
such a set D ⊆ {0, 1, 2, . . . , S − 1} exists follows from the definition of S.

Now, using the definition of l and D, and via an argument similar to the one
given in Section 3.5.1 (case 2), we can show that if for every k ∈ D we define vk to
be any nonzero element of (Jd′+1 \ Jd′)∩ JpM0M1M2 · · ·Mr, then {vk ∈ V : k ∈ D}
is a linearly independent set of vectors in V . But this contradicts the definition of
d0 = dim(V ). Therefore, the length of any strictly increasing chain of ideals in R is
bounded by S, and hence R is strongly Noetherian. �

We have now proven Theorem 1.12. We have also proven the upper bound of
Theorem 1.13. In Section 6, we complete the proof of Theorem 1.13 by showing
that, over RCA0+BΣ2, Theorem 1.11 implies ACA0.

6. ACA0 Lower Bound

This section is mostly devoted to proving the following theorem, which we then
use to show that, over RCA0+BΣ2, Theorem 1.11 implies ACA0.

Theorem 6.1. There exists a computable ring R such that for all N ∈ N, R has
a finite strictly increasing chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ IN ⊆ R of length
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N , and such that every infinite strictly decreasing sequence of ideals R ⊇ J0 ⊃ J1 ⊃
· · · ⊃ Jk ⊃ · · · computes the halting set ∅′.

Proof. We begin by fixing an infinite computably enumerable set, A ⊂ N, and a 1-1
computable function α : N → N whose range is A, such that the characteristic func-
tion of the complement of A, Ac = {0 = a0 < a1 < a2 < · · · < an < · · · }, dominates
the modulus function for the halting set ∅′ (A, and hence Ac, can be constructed
via a movable marker construction [21], which we give at the end of Section 6). By
definition of A, it follows that every infinite subset of Ac also computes ∅′. We now
construct the computable ring R.

R will be of the form Q[XN : N ∈ N]/I, where I ⊂ Q[XN : N ∈ N] is a computable
ideal. Therefore, to construct the computable ring R, it suffices to construct the
ideal I, which we shall do in stages.

First, define I0 = 〈XiXj : i, j ∈ N〉. Thus, I0 is the unique computable ideal
generated by all monomials of degree 2. We shall let I0 ⊂ I, and R = Q[XN : N ∈
N]/I. Hence, to construct R it suffices to construct a computable ideal I in the
computable ring R0 = Q[XN : N ∈ N]/I0, such that R = R0/I. Before constructing
the ideal I, we wish to make some simple observations about the ring R0.

It follows from the definition of I0 that every element in the quotient ring R0 =
Q[XN : N ∈ N]/I0 is equal to the image of a linear polynomial in Q[XN : N ∈ N]
under the canonical quotient map ϕ : Q[XN : N ∈ N] → R0. We shall code the
elements of R0 and R via linear representatives for each equivalence class, and for
any two elements f, g ∈ R0 of the form

f = a +
n∑

k=0

aiXi, g = b +
m∑

j=0

bjXj ∈ R0, a, b, ai, bj ∈ Q,

it follows from the definition of I0 that the product fg is equal to

fg = ab + a
m∑

j=0

bjXj + b
n∑

i=0

aiXi.

Note that for every n ∈ N, Xn ∈ R0, we have that X2
n = 0. Furthermore, if

p ∈ R0, p = a +
∑n

k=0 aiXi ∈ R0, then p is a unit if and only if a 6= 0 and
p−1 = a−1 −

∑n
k=0 aiXi. Furthermore, for any nonunits x0, x1, . . . , xn ∈ R0 we have

〈x0, x1, . . . , xn〉 = {r ∈ R0 : r =
n∑

k=0

qkxk, qk ∈ Q}.

Hence, determining whether or not any given y ∈ R0 belongs to 〈x0, x1, . . . , xn〉 is a
matter of solving a finite system of linear equations in finitely many variables, which
can be done computably. This shows that any finitely generated ideal J ⊂ R0 is
computable. Having now made the necessary observations about the ring R0, we
now turn our attention to constructing the ideal I ⊂ R0 in stages.

6.1. Constructing I. Let 0 = p0, p1, p2, . . . be an effective listing of the noninvert-
ible elements of R0. Rather than constructing the ideal I ⊂ R0, we shall construct
a generating set D = ∪s∈NDs ⊂ R0 in stages such that 〈D〉 = I is the ideal that we
want. Afterwards, we will verify that both D and 〈D〉 are in fact computable. At
stage s = 0, define D0 = 0 = p0. At stage s + 1, we are given Ds, and add to Ds

an element of the form Zn
s = nXα(s) −Xα(s)+1 ∈ R0, for some n ∈ N, to get Ds+1.

We do this in such a way (i.e. we choose n so) that we guarantee that for every
0 ≤ i ≤ s, if pi /∈ 〈Ds〉, then pi /∈ 〈Ds+1〉. But first, we need a lemma.
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Lemma 6.2. Fix a stage s + 1 ≥ 1. If for every q ∈ Q we define Zq
s = qXα(s) −

Xα(s)+1, and Zs = Xα(s), then we have that Zq
s , Zs /∈ 〈Ds〉, for any q ∈ Q. Also, for

every n0, n1 ∈ N, n0 6= n1, we have 〈Ds, Z
n0
s 〉 ∩ 〈Ds, Z

n1
s 〉 = 〈Ds〉.

Proof. Let Z be equal to Zq
s , for some q ∈ Q, or equal to Zs. Suppose, for a contradic-

tion, that Z ∈ 〈Ds〉. Then, there exist n0, n1, . . . , ns−1 ∈ N, and q0, q1, . . . , qs−1 ∈ Q,
such that

Z −
s−1∑
k=1

qkZ
nk
k = 0.

It is clear that Z 6= 0, and so s− 1 ≥ 0. Now, let N, M ∈ N be such that XM , XN

both appear in the expression above and such that N is maximal, and M is minimal
(one can show that M and N exist via ∆0

0-induction). Since s−1 ≥ 0, it follows that
N 6= M . Furthermore, by the construction of the elements Zm

t , m, t ∈ N, it follows
that XN cannot be canceled by any of the other summands, unless Z = Zs = Xα(s),
in which case both XM and XN cannot be canceled by any of the other summands.
Thus, we have a contradiction. Therefore, Z /∈ 〈Ds〉.

To prove the second part of the lemma, first note that 〈Ds, Z
n0
s 〉 ∩ 〈Ds, Z

n1
s 〉 ⊇

〈Ds〉. Now, suppose r ∈ 〈Ds, Z
n0
s 〉 ∩ 〈Ds, Z

n1
s 〉, we shall show that r ∈

〈Ds〉. By hypothesis, we have that there exist n0, n1, . . . , ns−1 ∈ N and
q0, q1, . . . , qs, q

′
0, q

′
1 . . . , q′s ∈ Q such that

r = qsZ
n0
s +

s−1∑
k=1

qkZ
nk
k = q′sZ

n1
s−1 +

s−1∑
k=1

q′kZ
nk
k ,

from which it follows that

qsZ
n0
s − q′sZ

n1
s ∈ 〈Ds〉.

By definition of Zm
t , m, t ∈ N, it follows that either Z

qsn0−q′sn1
qs−q′s

s ∈ 〈Ds〉, if qs 6= q′s,
or Zs ∈ 〈Ds〉, if qs = q′s 6= 0, or else r ∈ 〈Ds〉, if qs = q′s = 0. The first two cases
contradict the first part of the lemma, and so we must be in the third case, i.e.
r ∈ 〈Ds〉. This completes the proof Lemma 6.2. �

We now claim that there is a number n ∈ N such that for all pk, 0 ≤ k ≤ s,
if pk /∈ 〈Ds〉, then pk /∈ 〈Ds, Z

n
s 〉. By Lemma 6.2 we have that for any n0 6=

n1 ∈ N, 〈Zn0
s , Ds〉 ∩ 〈Zn1

s , Ds〉 = 〈Ds〉. This implies that, as n ∈ N varies, the
(infinite collection of) ideals 〈Ds, Z

n
s 〉 are all distinct, and so we can (uniformly and

computably) find one not containing any pk, for every 0 ≤ k ≤ s such that pk /∈ Ds.
This ends the construction of D. For every x ∈ R0, we let x ∈ R = R0/I denote
the image of x under the canonical quotient map ϕ : R0 → R0/I = R.

Note that 〈D〉 ⊂ R0 is a computable set, since, if pi ∈ R0 a noninvertible polyno-
mial, then pi ∈ 〈D〉 if and only if pi ∈ 〈Di〉.

It follows from the construction of R = R0/I that for every N ∈ N we have the
following equality of sets in R:

〈X0, X1, X2 · · · , XN〉 = 〈X0, Xa0 , Xa1 , · · · , Xan〉,
where an ∈ N is the least number in Ac greater than or equal to N .

6.2. Verifying that R has the desired properties. We now verify that R sat-
isfies the following properties.

(1) For each n ∈ N, R contains an increasing chain of computable ideals I0 ⊂
I1 ⊂ · · · ⊂ IN .

(2) Every infinite decreasing chain of ideals R ⊇ J0 ⊃ J1 ⊃ · · · ⊃ Jk ⊃ · · ·
computes an infinite subset of Ac.
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For any p ∈ R0, let p = ϕ(p) be the image of p under the canonical quotient map
ϕ : R0 → R. To verify that R has property 1, let N ∈ N be given, and let Ac = {0 =
a0 < a1 < a2 < · · · < ak < · · · }. If we define Ik = 〈Xa0 , Xa1 , · · · , Xak

〉, k ∈ N, then
it follows that the ideals I0 ⊂ I1 ⊂ · · · ⊂ IN form an increasing chain of computable
ideals. To show this note that, for all k ∈ N, Ik is computable since it is finitely
generated. We now show that for every k ∈ N, Ik ⊂ Ik+1, by proving that the
elements Xa0 , Xa1 , Xa2 , . . . ∈ R are linearly independent over Q.

It follows from the construction of R = R0/〈I〉 that every r ∈ R can be ex-
pressed as a Q-linear combination of 1, Xa0 , Xa1 , Xa2 , . . .. To show that the sequence
Xa0 , Xa1 , Xa2 , . . . is linearly independent over Q, it suffices to show that this rep-
resentation is unique. Suppose that c, c0, c1, . . . , cn, b, b0, b1, . . . , bm ∈ Q are such
that

f = c +
n∑

k=0

ckXak
, g = b +

n∑
j=0

bjXaj
∈ R0,

and f = g. It follows that

f − g = c− d +
n∑

k=0

(ck − dk)Xak
∈ 〈I〉.

By construction of I, it follows that c = d.
Now, either ck = dk, for every k = 0, 1, 2, . . . , n, or else there is some k ∈

{0, 1, 2, . . . , n} such that ck 6= dk. If we are in the former case, then the proof
is complete, so suppose that we are in the latter case, and let k ∈ {0, 1, 2, . . . , n} be
such that ck 6= dk. We shall derive a contradiction. By Π0

1-induction on s, one can
show that for every h ∈ 〈Is〉 ⊂ R0, f − g + h must contain a nonzero rational coeffi-
cient in front of Xl, for some ak−1 < l ≤ ak. Thus, f − g +h 6= 0. Therefore, we can
conclude that for every s ∈ N, f − g /∈ 〈Is〉, from which it follows that f − g /∈ 〈I〉,
a contradiction. We have now proven that the sequence Xa0 , Xa1 , Xa2 , . . . is linearly
independent over Q, and hence the ideals Ik, k ∈ N, are strictly increasing in k ∈ N.

Before we can prove that R has property 2, we need the following lemma.

Lemma 6.3. Fix N ∈ N, and let 〈0〉 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊆
Q[X0, X1, · · · , XN ]/(I0 ∩ Q[X0, X1, · · · , XN ]) = S be a strictly increasing chain of
ideals. Then k ≤ N + 1.

Proof. Note that S is a finite dimensional Q-vector space, with basis
1, X0, X1, X2, . . . , XN . Since any ideal I ⊂ S is a Q-subspace of S, it follows that
the length of any chain of ideals in S is bounded by N + 1. �

Corollary 6.4. Let 〈0〉 = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik be a strictly increasing chain of
ideals in 〈X0, X1, · · · , XN〉. Then k ≤ an, where an ∈ N is the least number in Ac

greater than or equal to N .

Suppose, for a contradiction, that there exist numbers m0, b0 ∈ N such that for
every m ≥ m0, if p ∈ R0 and p ∈ Im0 \ Im, then Xb does not occur in p for
any b ≥ b0. Then it follows that the ideal 〈X0, X1, · · · , Xb0〉 contains an infinite
strictly descending chain of ideals, which contradicts Corollary 6.4. Thus, we have
proven the following fact which we shall use in the next paragraph to construct a
set B = {b1 < b2 < · · · < bn < · · · } such that, for every n ∈ N, bn > an.

Proposition 6.5. Given any numbers m0, b0 ∈ N, there exist numbers m > m0, b >
b0, and p ∈ R0 with Xb occurring in p, and p ∈ Im0 \ Im.

We now construct the set B in stages using the proposition. At stage s = 0
compute numbers m0, b0 ∈ N such that Xb0 /∈ Jm0 . At stage s + 1, given ms, bs,



CHAIN CONDITIONS IN COMPUTABLE RINGS 25

define ms+1 = bs + 1, and compute a finite set Ks+1 = {kms+1, kms+2, · · · , kms+1}
such that for k = ms+1, ms+2, · · · , ms+1 we have that Jk−1\Jk contains an element

f =
∑n

i=0 ciXi ∈ R with n ≥ k and ck 6= 0. Now, let bs+1 be the maximum of the
finite set Ks+1, and put bs+1 into Bs+1. By Corollary 6.4, and the definition of ms+1,
we must have that bs+1 > bs, and there exists a number a ∈ Ac, bs < a ≤ bs+1.
From this it follows that the set B = {b1 < b2 < · · · < bs+1} majorizes the set
Ac = {0 = a0 < a1 < · · · < as}, and hence B computes the halting set ∅′. �

We now use Theorem 6.1 to show that, over RCA0+BΣ2 (i.e. RCA0, plus induction
for all Σ2 formulas), Theorem 1.11 implies ACA0. First, however, we review the
standard construction (i.e. computable approximation) of the set Ac = {0 = a0 <
a1 < a2 < · · · < an < · · · }.

Let ∅′s, s ∈ N, be a computable approximation to ∅′ such that for every stage
s ∈ N, there exists x ∈ N such that ∅′s+1(x) 6= ∅′s(x). The standard stage-by-stage
computable (movable marker) approximation of Ac is as follows.

(1) At stage s = 0, initialize (markers) Γx
0 = x, for every x ∈ N.

(2) At stage s + 1, assume that Γx
s is defined for every x ∈ N, and search for

the least x ∈ N such that ∅′s+1(x) 6= ∅′s(x). Then define Γy
s+1 = Γy

s for every
y < x, and for every y ≥ x, define Γy

s+1 = Γy+M
s , where Γx+M

s is the least

number of the form Γx+M ′

s′ , M ′, s′ ∈ N, that is greater than s.

Assume RCA0+BΣ2, and fix a number n ∈ N. We shall show that the ring R has
an increasing sequence of ideals of length n. Since the approximation ∅′s(x) comes
to a limit for every x ∈ N, we have that for every x ∈ N there exists a stage Mx ∈ N
such that for every stage s > Mx, ∅′s(x) = ∅′Mx

(x). Therefore, by BΣ2, it follows
that

(∀x ∈ N)(∃Mx ∈ N)(∀s > Mx)[∅′s�x = ∅′Mx
�x].

In other words, for every natural number x there is a stage Mx by which the first x
bits of our computable approximation to ∅′ have settled. Now, by the construction
of Ac above and Σ0-induction (on s), it follows that, for every number x ∈ N, and
every stage s > Mx, we have that Γk

s = Γk
Mx

, for all k ≤ x. In other words, for all
k ≤ x, the markers Γk

s have come to a limit by stage Mx.
This fact allows us to verify that for every n ∈ N, there exists a strictly increasing

chain of ideals of length n in R. In particular, (as in the proof of Theorem 6.1)
the chain may be taken to be of the form Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · ⊂ Yn, where
Yk = 〈Xa0 , Xa1 , · · · , Xak

〉 and ax = lims→∞ Γx
s , for every x ∈ N. Now, since we are

assuming that Theorem 1.11 holds, then there exists an infinite strictly decreasing
chain of ideals in R, which we can use to construct the halting set ∅′, as in the last
two paragraphs of the proof of Theorem 6.1. Hence, over RCA0+BΣ2, Theorem 1.11
implies the existence of the halting set ∅′, and therefore it also implies ACA0. This
completes the proof of Theorem 1.13.
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15. L. Kronecker, Grundzüge einer arithmetischen theorie der algebraischen groössen, J. Reine
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