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Abstract. We show that, in the context of Reverse Mathematics, WKL0 (Weak König’s
Lemma) implies the statement ART0 which says that every Artinian ring is Noetherian,
over RCA0 (Recursive Comprehension Axiom). To achieve this goal, we prove a general
Computable Full Structure Theorem for computable Artinian rings similar to the classical
version found in most Algebra texts.

1. Introduction

Computable Mathematics is the subfield of Computability Theory that focuses on the
algorithmic content of mathematical constructions and structures. Generally speaking, com-
putable mathematicians ask questions like “which sets B ⊆ N can compute an isomorphic
copy of a given structure?” and “which computability strengths are sufficient to carry out
a given construction?” For example, one could ask “which finitely presented groups have
a computable (i.e. decidable) word problem?” or “relative to which Turing degrees are the
word problems of all computable groups computable?” or “for which Diophantine equations
is the set of solutions computable?” Interesting results are typically those that establish deep
interactions between the other branches of Mathematics (i.e. Group Theory, Ring Theory,
Analysis, etc.) and Computability Theory.

Computable Algebra is one of the oldest branches of Computable Mathematics. Its roots
can be found in the works of algebraists such as Galois, Gauss, Dedekind, Kronecker, van
der Waerden, and many others (see [SHT, pages 369–371] for more details and historical
remarks). More recently, however, the subject formally began after Turing and others gave a
precise definition of algorithm, with the early work of Post [Pos47] and Turing [Tur50] on the
decidability of the Word Problem for semigroups; the more well-known solution of the World
Problem for groups by Novikov [Nov55] and Boone [Boo66]; the work of Davis, Putnam, and
Robinson [DPR61] on Hilbert’s Tenth Problem; the work of Fröhlich and Shepherdson [FS56]
on computable fields; and finally Matyasevich’s solution to Hilbert’s Tenth Problem [Mat93].

This article is a contribution to Computable Algebra and Reverse Mathematics that ul-
timately deals with the computable structure of computable Artinian rings, as well as the
proof-theoretic consequences of this structure. In short, we will (essentially) “rewrite” the
traditional literature on Artinian rings from the point of view of Computability Theory
and Reverse Mathematics. Along the way, we will establish many natural and interesting
interactions between Computability Theory and the algebraic aspects of Artinian rings.

We will explicitly state and discuss the significance of our main theorems in the next
section. The remainder of this section gives a more general overview of our main results and
their mathematical, logical, computability-, and proof-theoretic significance.
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1.1. A General Overview of our Results. This article is a sequel to [Con10], and as such
will assume that the reader is familiar with most of the material presented in [Con10], as well
as the basics of Computability Theory (see [DH10, Nie09, Soa87, Soa] for more details) and
Reverse Mathematics (see [Sim09] for more details). Although in Section 3 we will review
much of what we need from these sources. Throughout this article the reader should always
bear in mind that all structures that we consider are either finite or countable, and we will
assume all rings to be commutative with identity.

Reverse Mathematics began mainly with the work of H. Friedman [Fri75] and others
[FSS83, FSS85] and, generally speaking, attempts to classify the strengths of mathemat-
ical theorems by determining the weakest axioms that prove them. More specifically, in
Reverse Mathematics one typically attempts to classify the strengths of “set-existence theo-
rems” from Second-Order Arithmetic by determining the smallest subsystem of Second-Order
Arithmetic in which that theorem has a proof. Over the years five axiom systems have played
the most prominent role in Reverse Mathematics. Indeed, it seems that “most” theorems
from Mathematics are equivalent to one of the following five subsystems of Second-Order
Arithmetic (listed in strictly increasing order of strength): RCA0 (Recursive Comprehension
Axiom), WKL0 (Weak König’s Lemma), ACA0 (Arithmetic Comprehension Axiom), ATR0

(Arithmetic Transfinite Recursion Axiom), and Π1
1 − CA0 (Π1

1-Comprehension Axiom); for
more information on the “Big Five” subsystems of Second-Order Arithmetic, including their
precise definitions, see [Sim09]. Generally speaking, RCA0 is the subsystem of Second-Order
Arithmetic that most closely resembles Computable Mathematics; WKL0 is the smallest sub-
system of Second-Order Arithmetic in which compactness arguments are valid; ACA0 is the
smallest subsystem of Second-Order Arithmetic in which Turing’s Halting Set and its finite
iterations exist; ATR0 is the smallest subsystem of Second-Order arithmetic that has a “rea-
sonable” theory of ordinals and in which any two ordinals are comparable; and Π1

1 − CA0

is the smallest subsystem of Second-Order Arithmetic in which Π1
1-definable sets and finite

iterates of the Turing Hyperjump exist. Recall that, in the context of Reverse Mathematics,
we take RCA0 as our base theory and hence we will always work over RCA0.
Recall that the Jacobson radical of a (possibly noncommutative) ring R is the intersection

of all maximal ideals of R, and if R is commutative then for any given x ∈ R the annihilator
of x is the ideal in R defined by

Ann(x) = {y ∈ R : x · y = 0}.

As we already said, we will present two new proofs that all Artinian rings are Noetherian
via WKL0 + IΣ2 (in the context of Reverse Mathematics). Both proofs consider annihilators
of various finite sequences of elements of the Jacobson radical and use the key fact that if
x0, x1, . . . , xk ∈ R, k ∈ N, are finitely many elements of a commutative ring R, then the
annihilator

Ann(x0, x1, . . . , xk) =
k⋂

i=0

Ann(xi) ⊂ R

is ∆0
1-definable (i.e. computable), uniformly in the parameters x0, x1, . . . , xk, k. However, we

consider our first proof to be the more significant one, because it uses the surprising key
lemma that says that the nilpotence of the Jacobson radical of an Artinian ring follows from
WKL0. This approach is different than anything that we are familiar with in the standard
algebraic literature, such as [DF99, Eis95, Lam01, Lan93, AM69, Mat04].

We now introduce several subsystems of Second-Order Arithmetic, some of which we have
previously discussed and will play major roles throughout the rest of this article. We take
each of the following statements to imply RCA0, as well as the statements written beside
them. For more information on subsystems of Second-Order Arithmetic, consult [Sim09].
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ART0: Every Artinian ring is Noetherian.
ARTl

0: Every local Artinian ring is Noetherian.
ARTs

0: Every Artinian ring is a finite direct product of local Artinian rings.
NIL0: The Jacobson radical of an Artinian ring exists and is nilpotent.

The main reverse mathematical theorems of this article show that ARTl
0, ART0, ART

s
0, and

NIL0 (introduced above) are equivalent to WKL0 over RCA0, thus completing the analysis of
the Reverse Algebra of Artinian rings begun in [Con10] and answering [Mon11, Question 13].
The proofs of these theorems will follow from a novel algebraic analysis of Artinian rings in
which annihilator ideals play a central role.

2. The Significance of our Main Results

2.1. The Computable Structure of Computable Artinian Rings. The main goal of
Section 7 below is to give a novel analysis of the computable structure of computable Artinian
rings and prove a Computable Full Structure Theorem for Artinian Rings that:

(1) sheds significant light on the computability structure of a computable Artinian ring,
(2) allows us to show that WKL0 implies ART0 over RCA0 without the added assumption

of IΣ2 (this is done in Section 8 below),
(3) demystifies and gives a good intuition for why ART0 should follow from a weak axiom

like WKL0, and
(4) explains why the theory of the annihilators of an Artinian ring R essentially deter-

mines the theory of R.1

One thing that was clear from the author’s initial algebraic analysis of ART0 in Section 5
was that annihilator ideals play a central role and are extremely important to the theory of
Artinian rings. Section 7 below extends that analysis and essentially shows that annihilators
play the central role in the theory of Artinian rings.

Before we state our Computable Full Structure Theorem for Artinian Rings, we first give
the Classical Full Structure Theorem for Artinian Rings which can be found in most standard
Algebra texts. Throughout this article we will use ω = {0, 1, 2, . . .} to denote the standard
natural numbers, and N to denote the natural numbers in some (possibly nonstandard)
model of First-Order Arithmetic (see [Sim09] for more details).

Theorem 2.1 (Classical Full Structure Theorem for Artinian Rings). Let R be a local
Artinian ring, and let M ⊂ R be the unique maximal ideal of R. Then M is nilpotent, i.e.
there exists n ∈ ω such that Mn = 0, and this gives a finite tower/filtration of ideals

0 =Mn ⊂Mn−1 ⊂ · · · ⊂M ⊂ R,

where n ∈ ω is least such that Mn = 0. Moreover, every successive quotient in the
tower/filtration, Mk/Mk−1, is an R/M-vector space.
Now, let R be an Artinian ring. Then R is a finite direct product of local Artinian rings,

each with a finite tower/filtration as above.

We think of the second part of the Classical Full Structure Theorem as being the Classical
Structure Theorem for Artinian rings, and we use the word “full” in our description of these
structure theorems to imply both the first and second parts. This makes sense from the
point of view of Computability Theory and Reverse Mathematics because, in general (i.e. in
an arbitrary ring), ideals of the form M i, 0 ≤ i ≤ n, M ⊂ R maximal, are not necessarily
computable and therefore may not exist in the context of Reverse Mathematics.

1In other words, when working with an Artinian ring, rather than working with every ideal in the ring, it
suffices to mainly work with annihilator ideals.
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Let n ∈ ω, n > 1, be given, and let

n =
k∏

i=1

pαi
i

be the unique prime factorization of n given by the Fundamental Theorem of Arithmetic. Re-
call the standard fact from undergraduate Algebra (more specifically the Chinese Remainder
Theorem) that says

Z/nZ ∼=
k∏

i=1

Z/pαi
i Z.

With this simple example in mind, the Classical Structure Theorem for Artinian Rings says
that, roughly speaking, every Artinian ring looks like Z/nZ, for some n ∈ ω, n ≥ 1. This is
what makes the Classical Full Structure Theorem so useful and beautiful.

We now state the Full Computable Structure Theorem for Artinian rings, which is key to
proving our Main Theorem (described below).

Theorem 7.3 (Full Computable Structure Theorem for Artinian Rings). Let R be a com-
putable local Artinian ring. Then the unique maximal ideal of R, M ⊂ R, is computable and
nilpotent. Moreover, there is a finite tower/filtration of computable (annihilator) ideals

0 =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn =M ⊂ R,

where n ∈ ω is least such that Mn = 0.
Now, let R be a computable Artinian ring. Then R is a finite direct product of local

computable Artinian rings, each with a finite tower/filtration as above.

From the perspectives of Computability, Definability, and Proof Theory, the finite tower
of annihilator ideals in each local factor of an Artinian ring R given in our Full Computable
Structure Theorem for Artinian Rings essentially determine the theory of R, as we shall see
in the proof of our Main Reverse Mathematical Theorem below, which we discuss further in
the next subsection.2

2.2. Our Main Reverse Mathematical Theorem. We now state our Main Reverse
Mathematical Theorem (Theorem 8.3 below) and an immediate corollary in the context
of [Con10, Theorem 4.1].

Theorem 8.3 (Main Reverse Mathematical Theorem). WKL0 proves ART0 (over RCA0).

Corollary 8.4. WKL0 is equivalent to ART0 (over RCA0).

We will prove our Main Reverse Mathematical Theorem in steps, by first proving the
following lemmas. Recall that in Section 5 we will prove that WKL0+ IΣ2 implies ART0 (and
thus WKL0+ IΣ2 implies ARTl

0). Also note that WKL0+BΣ2 is a strictly weaker theory than
WKL0 + IΣ2 (we will discuss this further in the next section; see [Sim09] or [KP77] for more
details).

Lemma 8.1. WKL0 + BΣ2 implies ARTl
0.

Lemma 8.2. WKL0 implies ARTl
0.

2The main reason why these towers are the most important ideals of R is because they readily give a
tower of ideals of R whose successive quotients are R/M -vector spaces, for some maximal ideal M ⊂ R.
Thus every computable Artinian ring is essentially a finite tower of computable vector spaces. This will be
discussed further later on.
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The Computable Full Structure Theorem for Artinian Rings will play a major role in the
proof of our Main Reverse Mathematical Theorem, as well as the two lemmas above. More
precisely, to prove ART0 from WKL0 we will essentially take two proofs that WKL0 + IΣ2

implies ART0 in Section 5, and then use the Full Computable Structure Theorem for Artinian
Rings to allow ourselves to use the Finitary Pigeonhole Principle rather than Infinitary
Pigeonhole Principles such as BΣ2.

3. Background, Definitions, and Notation

In this section we introduce our basic notation and definitions, as well as the author’s and
others’ previous results that we will require from [Con10, DLM07] and basic Commutative
Algebra.

3.1. The Basics.

3.1.1. Computability Theory. We briefly review the basic definitions and notation that we
require and will use throughout the rest of this article. For more information on the basics
of Computability, including our definitions and notation described below, consult [DH10,
Sim09, Soa87]. Most of what follows in this subsection can also be found in [Con10]. Recall
that ω = {0, 1, 2, . . .} denotes the standard Set of Natural Numbers. On the other hand,
N will denote the first-order part of a (possibly nonstandard) model of RCA0. We will say
that a property holds for almost all n ∈ N whenever that property holds for all but finitely
many n ∈ N. Throughout this subsection all of our definitions will be made in RCA0. In
other words, throughout this subsection we will assume that we are working in a possibly
nonstandard model of RCA0. Lower case roman letters a, b, c, . . . will usually denote first-
order (i.e. number) variables, while capital roman letters A,B,C, . . . will usually denote
second-order (i.e. set) variables. Let A,B ⊆ N. We say that a function f : N → N is total
whenever the domain of f is N, and we say that f is partial to indicate that the domain of
f may not be all of N. Also, we say that A is computable whenever there is an algorithm
that decides, for each x ∈ N, whether x ∈ A. It is well-known that A is computable iff A
is ∆0

1-definable, and we will use the term computable to mean ∆0
1-definable when working

in a nonstandard model of arithmetic. More information on definability and the complexity
of formulas can be found in [Soa87, Soa, Sim09]. One can also define what it means for a
set A to be computable relative to an oracle B [Soa87, Chapter III]. In this case one usually
writes A ≤T B, and it follows that ≤T is a quasi-ordering on P(N) while the relation

A ≡T B, i.e. A ≤T B & B ≤T A,

is an equivalence relation on P(N). The equivalence classes of the ≡T relation are called
Turing degrees. It follows that A is computable relative to B iff A is ∆0

1-definable relative to
the parameter B. We should also mention that, strictly speaking, in the context of Reverse
Mathematics and nonstandard models of arithmetic, ∆0

1-definability is the actual definition
of (relative) computability, though we will use these terms interchangeably. It follows that
a set A is computable (relative to B) iff its characteristic function is computable (relative
to B). Via a computable 1-1 and onto pairing function ⟨·, ·⟩ : N× N → N we may speak of
computable subsets of

Nn = N× N× · · · × N︸ ︷︷ ︸
n

, n ∈ N,

and it follows that a function f : N → N is computable (relative to B) iff the graph of f is
computable (relative to B). We will write A ⊕ B to denote the disjoint union of A and B,
i.e.

A⊕B = A× {0} ∪B × {1}.
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Similarly, we define

A0 ⊕ A1 ⊕ · · · ⊕ Ak =
k⋃

i=0

(Ai × {i}) ,

and
∞⊕
i=0

Ai =
∞⋃
i=0

(Ai × {i}).

Recall that an infinite set A is computably enumerable (c.e.) if and only if any of the following
equivalent conditions holds:

(1) There is an algorithm that lists the elements of A (not necessarily in increasing order);
(2) There is a 1-1 computable function f : N → N such that A is the range of f ;
(3) A is Σ0

1 definable.

One may also speak of c.e. relative to (the oracle/parameter) B. Recall that there is a
uniformly computable listing of the partial computable functions, {φe}e∈N, and that the
Halting Set ∅′ is defined as follows:

∅′ = {e ∈ N : φe(e)↓ },
where φe(e) ↓ means that the eth partial computable function halts on input e ∈ N. Via
the given listing {φe}e∈N, for any given oracle B, there is an (induced) effective listing of
the partial computable functions relative to B, {φB

e }e∈N, and define the Halting Set relative
to B, B′, in an analogous fashion. Let 0′ denote the Turing degree of ∅′. It is well-known
that ∅ does not compute ∅′ (i.e. ∅′ is not computable relative to ∅), and, more generally,
for all oracles B, B does not compute B′. We say that a set A is low whenever A′ ≡T ∅′.
By our previous remarks it follows that if A is low then A does not compute ∅′. Also, it is
well-known that noncomputable low sets exist, and that there is a low model of WKL0 that
is not a model of ACA0 (showing that ACA0 is not implied by WKL0). For any given oracle
A, a set B is said to be A-low whenever A′ ≡T B

′.
Fix a number n0 ∈ N, and let n<N

0 denote the set of finite strings formed from elements
in (the finite set) {0, 1, . . . , n0 − 1} ⊂ N. We will typically use lower case Greek letters to
denote the elements of n<N

0 . For all σ ∈ n<N
0 , let |σ| ∈ N denote the length of σ (i.e. the

number of character bits of σ) and let σ(k), 0 ≤ k < |σ|, denote the kth character bit of σ.
Furthermore, for any given l ∈ N, let

n=l
0 = {σ ∈ n<N

0 : |σ| = l}
and

n≥l
0 = {σ ∈ n<N

0 : |σ| ≥ l}.
For all σ, τ ∈ n<N

0 , we write σ ⊂ τ to mean that τ is a proper extension of σ (i.e. σ is a proper
initial segment of τ) and we write σ ⊆ τ to mean that either σ = τ or σ ⊂ τ . Also, for all
σ, τ ∈ n<N

0 we write στ ∈ n<N
0 to denote the concatenation of τ to the right of σ, and for all

k ∈ {0, 1, . . . , n0 − 1} we write σk ∈ n<N
0 to be the unique string of length |σ|+1 that has σ

as an initial segment and rightmost character bit k. We say that T ⊆ n<N
0 is a tree whenever

T is closed under ⊂ - i.e. for all τ ∈ T and σ ⊂ τ we have that σ ∈ T . Let nN
0 denote the

set of infinite strings formed from elements in (the finite set) {0, 1, . . . , n0 − 1} ⊂ N. We
will typically use the lower case roman letters f , g, and h, to denote elements of nN

0 . For all
f ∈ nN

0 and l ∈ N, let f ↾ l ∈ n<N
0 denote the first l bits of f (i.e. f ↾ l is the unique initial

segment of f of length l). Also, for all f ∈ nN
0 and σ ∈ n<N

0 , we write σ ⊂ f to mean that σ
is an initial segment of f . Now, if T ⊆ n<N

0 is a tree, then we let

[T ] = {f ∈ nN
0 : (∀n ∈ N)[f↾n ∈ T ]}
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and we say that [T ] ⊆ nN
0 is the set of infinite paths through T . Recall thatWKL0 is equivalent

to saying “for all n0 ∈ N, every infinite tree in n<N
0 has an infinite path,” which, over RCA0,

is equivalent to saying that “for any set A ⊆ N there exists a set B ⊆ A that is of PA
Turing degree relative to A.” Recall that a set B is of PA Turing degree relative to a set A
iff every infinite A-computable tree TA ⊆ n<N

0 , n0 ∈ N, (where the finite strings in n<N
0 are

coded as natural numbers via some fixed Gödel numbering) has a B-computable infinite path
fB ∈ [TA] ⊆ nN

0 . For nonobvious reasons this is equivalent to saying that “for every disjoint
pair of A-computably enumerable sets CA

0 , C
A
1 ⊆ N, there is a B-computable set DB ⊆ N

such that CA
0 ⊆ DB and DB ∩CA

1 = ∅.” We will primarily use this (latter) characterization
of “PA Turing degree relative to A” in all that follows. It is well-known that low PA Turing
degrees exist, and, more generally, for any oracle A there is a PA Turing degree that is A-low.
For more information on PA Turing degrees and their connection to WKL0, consult [Sim09].
Finally, recall that ACA0 is equivalent to the statement “for every set X, the Halting Set
relative to X, X ′, exists” and that this is equivalent to the Σn-Comprehension Scheme for
all n ∈ ω.

3.2. Commutative Algebra. Recall that all of our rings R will be commutative and have
an identity element 1 ∈ R. Also recall that a computable ring is a computable subset of
N, endowed with the structure of a ring such that the addition +R and multiplication ·R
operations on R are computable functions. By local ring, we mean a ring R with a unique
maximal ideal M ⊂ R. Let R be a ring. Then, if S ⊆ R, we write ⟨S⟩R ⊆ R to denote the
ideal generated by S in R. Recall that ⟨S⟩R is the set of finite sums of the form

k∑
i=0

rixi,

where k ∈ N, ri ∈ R, and xi ∈ S. For any k ∈ N and x0, x1, . . . , xk ∈ R, we write
⟨x0, x1, . . . , xk⟩R to denote the ideal generated by {x0, x1, . . . , xk} ⊆ R. We sometimes omit
the subscript R in ⟨S⟩R if it is clear which ring R the set S belongs to. For all A,B ⊆ R, let

SAB = {x ∈ R : x = ab, a ∈ A, b ∈ B},

SA,B = {x ∈ R : x = a+ b, a ∈ A, b ∈ B},
and define

A ·B = AB = ⟨SAB⟩R and A+B = ⟨SA,B⟩R.
Note that if A and B are ideals of R then it follows that AB ⊆ A,B, while A,B ⊆ A + B.
We will write A+B = C to mean that (A+B) = C; in other words, every element of C can
be expressed as a finite R-linear combination of elements in A ∪B. Also, for all sets S ⊆ R
and ideals I ⊆ R let

(S : I) = {r ∈ R : (∀s ∈ S)[r · s ∈ I]}.
It follows that (S : I) ⊆ R is always an ideal (since I is an ideal). We will write (x : I) to
mean ({x} : I), x ∈ R, I ⊆ R an ideal. For all multiplicatively closed subsets S ⊆ R not
containing 0 ∈ R, let R[S−1] be the ring of fractions given by

R[S−1] =
{r
s
: r ∈ R, s ∈ S

}
.

Recall that x ∈ R is nilpotent if there exists n ∈ N such that xn = 0. Similarly, we say that
A ⊆ R is nilpotent whenever there exists n ∈ N such that

An = A · A · A · · · · · A︸ ︷︷ ︸
n

= 0.
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This is equivalent to the existence of n ∈ N such that for any a0, a1, . . . , an ∈ A we have that
n∏

i=0

ai = 0.

Recall that for all x ∈ R, the annihilator of x, denoted by Ann(x) ⊂ R, is the ideal of R
given by

Ann(x) = {y ∈ R : xy = 0} = ({x} : ⟨0⟩).
Similarly, for all x0, x1, . . . , xk ∈ R, k ∈ N, we have that

Ann(x0, x1, . . . , xk) = {y ∈ R : (∀i ≤ k)[xiy = 0]} = ({xj : 0 ≤ j ≤ k} : ⟨0⟩).
If R is a quotient ring of the form R0/I, for some commutative ring R0 and ideal I ⊆ R0,
then we will write x ∈ R, x ∈ R0, to denote that x ∈ R is the image of x ∈ R0 under the
canonical map R0 → R. If I0 ⊇ I is an ideal of R0, then we will also write I0 to represent
the unique ideal corresponding to I0 under the canonical map R0 → R.

Let

Z∞ = Z[X0, X1, X2, . . .]

be a computable presentation of the standard free commutative polynomial ring over Z with
infinitely many indeterminates X0, X1, X2, . . . and no relations between them. Let F denote
the field of fractions of Z∞, and let Zk = Z[X0, X1, . . . , Xk], k ∈ N.

3.3. Induction Schemes in Reverse Mathematics. We now review some basic facts
about induction schemes in Reverse Mathematics. First of all, recall that a formula ψ in the
language of First-Order Arithmetic is Σ0

n,
3 n ∈ ω, n ≥ 1, whenever it is of the form

ψ = (∃x1)(∀x2)(∃x3) · · · (∃/∀xn)[φ(x1, . . . , xn)],
where φ contains only bounded quantifiers. Similarly, a formula ψ is said to be Π0

n whenever
it is of the form

ψ = (∀x1)(∃x2)(∀x3) · · · (∀/∃xn)[φ(x1, . . . , xn)],
where φ contains only bounded quantifiers. It follows that the negation of a Σ0

n formula is
Π0

n and vice versa. Now, recall that a model of Second-Order Arithmetic is called an ω-model
if its first-order part is the standard Set of Natural Numbers. It follows that any such model
satisfies Mathematical Induction for all predicates. Now, non-ω-models are those models
of Second-Order Arithmetic whose first-order parts are not the standard Set of Natural
Numbers. These models may satisfy Mathematical Induction for some predicates, but not
for others. With this general idea in mind we introduce the following first-order axiom
schemes in Second-Order Arithmetic.

(IΣn) [ψ(0) ∧ (ψ(n) → ψ(n + 1))] → [(∀n)ψ(n)], where ψ(n) is a Σ0
n predicate with free

variable n ∈ N (and possibly with other first/second-order parameters).

IΣn is the induction scheme for Σ0
n formulas (also referred to as Σ0

n-induction). It is well-
known that, over RCA0, for each n ∈ N, IΣn is equivalent to IΠn–the induction scheme for
Π0

n formulas. It is also well-known that, over RCA0, IΣn is equivalent saying that every Σ0
n-

definable set of natural numbers has a least element (i.e. the Σ0
n-Well-Ordering Principle),

and this is equivalent to saying that every Πn-definable set of natural numbers has a least
element (i.e. the Π0

n-Well-Ordering Principle). It is also well-known that for each n ∈ N,
n ≥ 1, IΣn+1 is strictly stronger than IΣn. In this article we will be most concerned with IΣ2

(i.e. Σ2-induction). More information on IΣn can be found in [KP77, Sim09].

3The superscript 0 indicates that ψ contains no set (i.e. second-order) variables, only number (i.e. first-
order) variables.
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We will also be concerned with a first-order bounding principle called BΣ2, although we
will use the fact that BΣ2 is equivalent to the Infinite Pigeonhole Principle over RCA0 (see
[Hir] for more details). Thus, we will essentially write BΣ2 to mean the Infinite Pigeonhole
Principle (this is valid since we will always be working over RCA0). Moreover, it is well-
known that BΣ2 is strictly weaker than IΣ2 but strictly stronger than IΣ1–one of the axiom
schemes included in RCA0 (and therefore IΣ1 is always assumed throughout this article).
One can also define a hierarchy of first-order bounding principles, usually denoted BΣn, that
is equivalent to I∆n (the induction scheme for ∆n formulas4); see [Sla04] for more details.
For more information on BΣn consult [Sim09, KP77].

A theorem of Harrington says that WKL0 is Π1
1-conservative over RCA0. In other words,

WKL0 proves no new arithmetic formulas over RCA0. Hence, WKL0 proves neither IΣ2 nor
BΣ2 over RCA0. Therefore the systems WKL0, WKL0 + BΣ2, and WKL0 + IΣ2 have strictly
increasing strengths over RCA0. Some other useful facts regarding RCA0 are that it proves the
Finitary Pigeonhole Principle and Bounded Σ0

1-Comprehension. In other words, if A ⊆ N is
Σ1-definable, then it follows from RCA0 that every initial segment of A exists. Finally, over
RCA0, Bounded Σ0

n-Comprehension is equivalent to Bounded Π0
n-Comprehension (defined

similarly to Bounded Σ0
n-Comprehension), for all n ∈ N.

3.4. The Plan of the Paper. In the next section we shall review some preliminary results
and prove a technical proposition that will help us in the proofs of our results in Sections
5-8. The main goal of Section 5 is to give two proofs that ART0 follows from WKL0+ IΣ2 over
RCA0. However, along the way we will also show that both ARTs

0 and NIL0 follow fromWKL0.
In Section 6 we take a brief intermission from our main objectives to prove some reversals
that say ARTs

0 and NIL0 each implyWKL0 over RCA0 (recall that [Con10, Theorem 4.1] shows
that ART0 implies WKL0 over RCA0). Thus it will follow that NIL0 and ARTs

0 are equivalent
to WKL0 over RCA0, and ART0 is equivalent to WKL0 over RCA0 + IΣ2. In Section 7 we
prove the Full Computable Structure Theorem for Artinian Rings, which essentially shows
that, from the logical perspective of Definability, annihilator ideals are the most important
kind of ideal in an Artinian ring and essentially determine the theory of these rings. We will
prove the Full Computable Structure Theorem both classically and in any model of WKL0.
Although Sections 5 and 6 are technically not prerequisites for Section 7, some of the crucial
ideas used in Section 7 come from our initial results in Section 5. Finally, in Section 8 we use
the Full Computable Structure Theorem of Section 7, along with the Finitary Pigeonhole
Principle and some key ideas from our previous proofs of Theorem 5.2 in Section 5, to prove
our Main Reverse Mathematical Theorem which says that ART0 is equivalent to WKL0 over
RCA0 (Theorem 8.3). Thus, our results about ART0 in Section 8 will supercede our results
about ART0 in Section 5.

4. Some Preliminary Results

We now proceed to collect various known results that will be useful later on in this paper,
beginning with Sections 5 and 6. The first lemma (Lemma 4.1) is a standard fact from
Commutative Algebra (regarding fraction rings); the second lemma (Lemma 4.2) and its
corollary (Corollary 4.3) are results in Computable Algebra and Reverse Mathematics that
have essentially appeared in the literature [Con10, DLM07, FSS83, Sim09] several times but
never been explicitly stated as we will now state them below. The next two theorems are
[Con10, Theorem 3.4, Theorem 4.1], and Lemma 4.7 reviews a standard technique for con-
structing computable rings (the“pullback technique”) that, in a general sense, is analogous

4A Σn formula ψ is ∆n whenever it is equivalent to a Πn-formula.
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to constructing free objects in the context of Category Theory. Afterwards, we will collect
a few more results that will be useful in Sections 7 and 8.

Let R be a commutative ring (with identity), and U ⊆ R a multiplicatively closed subset
not containing zero. We begin this section by proving an easy and well-known lemma that
we will use in our second proof of Theorem 5.2 in the next section. We use the notation
R[U−1] to denote the ring of fractions obtained from R by adding elements of the form 1

u
,

for all u ∈ U .

Lemma 4.1. Let φ : R → R[U−1] be the natural map given by r → r
1
, and let I0 ⊂ I1 ⊆ R

be ideals of R such that

x · u /∈ I0,

for all x ∈ I1 \ I0 and all u ∈ U . Then φ(I0)R[U
−1] ⊂ φ(I1)R[U

−1], as ideals in R[U−1].

Proof. Let x1 ∈ I1 \ I0, and suppose (for a contradiction) that

x1
1

=
x

u
∈ I0R[U

−1] ⊆ R[U−1],

for some x ∈ I0 and u ∈ U . It follows that we have

u · x1 = x ∈ I0 ⊂ R,

a contradiction (by hypothesis). □

The following lemma and its corollary are from Computable Algebra have essentially
appeared in the literature several times, but never been explicitly stated as follows. Lemma
4.2 and Corollary 4.3 are both well-known by computable algebraists, and we will use them
without necessarily saying so; we have included them mainly for the nonexpert’s convenience.

Lemma 4.2. Suppose that R is a computable commutative ring and {xk}k∈N, S ⊂ R, are such
that, for all n ∈ N, xn+1 is not an R-linear combination of elements in S ∪ {x0, x1, . . . , xn}.
Then every PA Turing degree computes an infinite sequence of ideals {Ik}k∈N of R such that,
for all n ∈ N, S ∪ {x0, x1, . . . , xn} ⊆ In, but xn+1 /∈ In.

We will not prove Lemma 4.2, but the proof can essentially be found in [Con10, DLM07,
FSS83, Sim09]; it was first essentially proven in [FSS83]. The main idea of the proof of
Lemma 4.2 is to construct an infinite computable tree T such that every infinite path through
T computes an infinite sequence of ideals {Ik}k∈N as in the statement of the lemma. The
conclusion of the lemma then follows by one of the characterizations of PA Turing degrees
that we gave above. The following corollary is the reverse mathematical analog of the
previous lemma. It assumes WKL0 and the proof is similar to that of Lemma 4.11 below,
which we will explicitly give later on in this section.

Corollary 4.3. (WKL0) Suppose that R is a commutative ring and {xk}k∈N, S ⊆ R, are such
that, for all n ∈ N, xn+1 is not an R-linear combination of elements in S ∪ {x0, x1, . . . , xn}.
Then there is an infinite sequence of ideals {Ik}k∈N of R such that, for all n ∈ N, S ∪
{x0, x1, . . . , xn} ⊆ In, but xn+1 /∈ In.

Before we proceed we need to recall the following definition from Algebra.

Definition 4.4. Let R be a ring with identity. Then we say that a subset S ⊂ R is t-nilpotent
if for every infinite sequence of elements x0, x1, x2, . . . , xn, . . . ∈ S (with possible repetitions)
there exists N ∈ N such that

N∏
i=0

xi = 0.
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Also recall that the nilradical of a commutative ring R is the intersection of all prime
ideals of R, while the Jacobson radical is the intersection of all maximal ideals of R. If R is
Artinian it follows that these two radicals are equal.

For the reader’s convenience we now state the two main theorems that we will use from
[Con10].

Theorem 4.5. [Con10, Theorem 3.4] Let R be a commutative ring with identity. The
following statements are equivalent over RCA0 + IΣ2.

(1) WKL0
(2) If R is an Artinian integral domain, then R is a field.
(3) If R is Artinian, then every prime ideal of R is maximal.
(4) If R is Artinian, then the Jacobson radical J and the nilradical N of R exist and

J = N .
(5) If R is Artinian, then the Jacobson radical of R is t-nilpotent.
(6) If R is Artinian and the nilradical of R exists, then R/N is Noetherian.

In fact, it follows from the proof of [Con10, Theorem 3.4] that (1)-(5) above are equivalent
over RCA0. We will refer to and use [Con10, Theorem 3.4] in Section 5 below.

Theorem 4.6. [Con10, Theorem 4.1] There exists a computable integral domain R contain-
ing an infinite uniformly computable strictly ascending chain of ideals

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · ⊂ R, n ∈ N,
and such that every infinite strictly descending chain of ideals in R,

R ⊇ J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jn ⊃ · · · , n ∈ N,
contains a member (i.e. an ideal) of PA Turing degree.

Moreover, in the proof of [Con10, Theorem 4.1] the author proves that there is an infinite
uniformly computable strictly ascending chain of ideals

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · ⊂ R, n ∈ N,
in R such that

I∞ =
⋃
n∈N

In

is also computable and every ideal I ⊂ R that is not of PA Turing degree is computable and
equal to In, for some n ∈ N ∪ {∞}. We will use [Con10, Theorem 4.1] in Section 4 below.
We will use the following useful lemma in Section 6 below, and its proof can be found in

[DLM07, Section 2.3].

Lemma 4.7. Suppose that Q is a computable ring, and R0 ⊆ Q is a computably enumerable
subring of Q. Then R0 is computably isomorphic to a computable ring R.

We now discuss the more advanced background material required for Sections 7 and 8.
It is known to most reverse mathematicians that most of finite dimensional Linear Algebra

follows from RCA0, essentially because all of finite dimensional Linear Algebra is computable.
The proofs of the next three lemmas (from Linear Algebra) in RCA0 are essentially the same
as the classical proofs, and thus can essentially be found in any standard Linear Algebra
textbook. The first lemma is used to prove the second, and the second lemma is used to
prove the third. We will use the third lemma to prove an important proposition (in this
section) that will be useful later on in proving our Main Reverse Mathematical Theorem
(i.e. Theorem 8.3) that says ART0 follows from WKL0 over RCA0. We leave the proofs of the
lemmas to the reader.
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Lemma 4.8 (RCA0). Every m× n matrix A has a reduced row echelon form.

Lemma 4.9 (RCA0). If S is a system of m ∈ N linear equations in n ∈ N unknowns, with
n > m, then S has a nontrivial (i.e. nonzero) solution.

Lemma 4.10 (RCA0). Let V be a vector space over a field F . If {v0, v1, . . . , vn}, n ∈ N,
is a spanning set for V , then any collection of m vectors in V , where m > n, is linearly
dependent.

We will use the previous lemma in the proof of the following proposition, which we will
use to prove our Main Reverse Mathematical Theorem in Section 8.

Proposition 4.11 (WKL0). Let R be a ring that is a finite product of fields,

R = F0 × F1 × · · · × Fn, n ∈ N,
and let

M = V0 × V1 × · · · × Vn
be an R-module such that the action of R on M is given naturally by the actions of each
Fi on the corresponding Fi-vector space Vi, 0 ≤ i ≤ n. Also, let {Sk}k∈N be an infinite
sequence of finite subsets of M such that for each k ∈ N we have that |Sk| > k and Sk is an
Fi-linearly independent subset of Vi, for some 0 ≤ i ≤ n. Then M contains infinite strictly
ascending/descending chains of submodules,

I0 ⊂ I1 ⊂ · · · ⊂ Im ⊂ · · · ⊂M, m ∈ N,
and

M ⊇ J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jm ⊃ · · · , m ∈ N.

Proof. We give a sketch of the proof with most of the details filled in. The main idea
and details behind the proof of Proposition 4.11 can be found in [Sim09, Lemma IV.6.2] and
[FSS83, FSS85]; it was also used by the author in [Con10, Section 3] and by Downey, Lempp,
and Mileti in [DLM07, Proposition 3.1]. We assume that the reader is familiar with at least
one of these sources.

Without any loss of generality we will construct an infinite strictly descending chain of
submodules M ⊇ J0 ⊃ J1 ⊃ · · · ; the construction of an infinite strictly ascending chain of
submodules is very similar.

First of all, for each k ∈ N, let {sk,0, sk,1, . . . , sk,k} be a listing of the first (k + 1)-many
elements of Sk, let R = {r0, r1, r2, . . .} be an effective listing of the elements of R, and
M = {m0,m1,m2, . . .} be an effective listing of the elements of M . Now, let T0 be the
computable tree with (k+1)-many branchings at level k, for all k ∈ N, and such that σ ∈ T0
if and only if every R-linear combination of vectors from

{s0,σ(0), s1,σ(1), . . . , s|σ|−1,σ(|σ|−1)}
with at least one nonzero R-coefficient from {r0, r1, . . . , r|σ|−1} is nonzero. Since R is a
product of fields and M is a product of corresponding vector spaces, it follows that σ ∈ T0
if and only if for every 0 ≤ i < |σ| we have that si,σ(i) is not an R-linear combination of

{s0,σ(0), s1,σ(1), . . . , si−1,σ(i−1), si+1,σ(i+1), . . . , s|σ|−1,σ(|σ|−1)}
with coefficients from {r0, . . . , r|σ|−1}. Finally, it follows that if f ∈ [T0] is an infinite path
through T , and

S = {sk,f(k) : k ∈ N},
then no sk,f(k) is a finite R-linear combination of S \ {sk,f(k)}.
Now we claim that T0 is an infinite tree. To prove this we will show that for every σ ∈ T

such that {sk,σ(k) : 0 ≤ k < |σ|} is R-linearly independent, there exists 0 ≤ l ≤ |σ| such that
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{sk,σl(k) : 0 ≤ k < |σl|} is also R-linearly independent. Then, along with the fact that any
nonzero s ∈ S0 is linearly independent over R, and Π0

1-induction, it will follow that for each
n ∈ N there exists σ ∈ T , |σ| = n. Now, let 0 ≤ i ≤ n be such that S|σ| ⊆ Vi, then

{s|σ|,0, s|σ|,1, . . . , s|σ|,|σ|} ⊆ S|σ|

spans a (|σ| + 1)-dimensional subspace of Vi. On the other hand, {si,σ(i) : 0 ≤ i < |σ|}
spans at most a |σ|-dimensional subspace of Vi. So, by the previous lemma it follows that
some s|σ|,i0 , 0 ≤ i0 ≤ |σ|, is not an R-linear combination of {si,σ(i) : 0 ≤ i < |σ|}. It now
follows that σi0 ∈ T0. Therefore (by Π0

1-induction it follows that) T0 is an infinite tree, and
via WKL0 it follows that T0 has an infinite path f ∈ [T0] that codes an infinite R-linearly
independent set of elements in M . In other words, we have used WKL0 to show that there
exists an infinite sequence S = {sk,f(k) : k ∈ N} of elements in M such that for each k ∈ N,
sk,f(k) is not a finite R-linear combination of S \ {sk,f(k)}.
Now, let T ⊆ 2<N be a computable tree whose infinite paths f ∈ [T ] code infinite strictly

descending submodules of M ,

J =
∞⊕
i=0

Jk, Jk ⊃ Jk+1,

such that for each i ∈ N we have that si,f(i) ∈ Ji but si,f(i) /∈ Ji+1. More precisely, an infinite
path f ∈ [T ] codes an element x = mj ∈ M , j ∈ N, into the submodule Ji, i ∈ N, iff when
we write f = ⊕∞

i=0fi, fi ∈ 2ω (each fi is a(n infinite) column of f that codes Ji), we have
that fi(j) = 1. Otherwise, fi(j) = 0 iff x = mj /∈ Ji.

Note that the uniformly computably enumerable strictly descending chain of submodules
coded by

F =
∞⊕
i=0

⟨si,f(i), si+1,f(i+1), . . .⟩M

would be an infinite path in T if it existed (but it may not). However, since the sequence
of generators {si,f(i)}∞i=0 exists by our previous arguments, and therefore the submodules
⟨si,f(i), si+1,f(i+1), . . .⟩M are Σ0

1-definable, uniformly in i ∈ N (because the corresponding gen-
erator sequences are computable, uniformly in i ∈ N), then via Bounded Σ0

1-Comprehension,
it follows that every finite initial segment of F exists and is on T . Hence, T ⊆ 2<N is an
infinite tree. Finally, WKL0 says that T has an infinite path, g ∈ [T ] ⊆ 2N, and by our
definition of T it follows that g codes an infinite strictly descending chain of subspaces in T ,
which proves the proposition. □

5. The Utility of Annihilators in Artinian rings

The main purpose of this section is to show that the structure theorem for Artinian rings
(i.e. ARTs

0) is provable in the systemWKL0. Along the way we will also show thatWKL0+IΣ2

proves that every Artinian ring is Noetherian (i.e. ART0) and that WKL0 proves that the
Jacobson radical of an Artinian ring is nilpotent (i.e. NIL0). Afterwards we will give an
alternate direct proof of ART0 via WKL0 + IΣ2. By previous results of the author [Con10]
it will follow that ART0 is equivalent to WKL0 over RCA0 + IΣ2. In the next section we will
examine the consequences of NIL0, ART0, and ARTs

0, in the context of Reverse Mathematics.
In the last section we will show that ART0 follows from WKL0, superceding some of the
results in this section.

We begin by showing that WKL0 proves NIL0 over RCA0.

Theorem 5.1. WKL0 implies NIL0 over RCA0.
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Proof. We reason in WKL0. Let R be a given Artinian ring. In the proof of [Con10, Theorem
3.4] the author showed that WKL0 proves that the Jacobson radical of R, J ⊂ R, exists. Let
J = {z0, z1, z2, . . .} be an enumeration of the elements of J , and for each n ∈ N, let

An = Ann(z0, . . . , zn).

RCA0 proves that the sequence of ideals {An}n∈N exists. Now, suppose that there are infin-
itely many k ∈ N such that Ank

⊃ Ank+1. Then, via RCA0, it follows that there exists an
infinite strictly descending chain of ideals of the form {Ank

}k∈N in R, contradicting the fact
that R is Artinian. Hence, there must exist a number n0 ∈ N such that for all n ≥ n0 we
have that

An0−1 = Ann(z0, z1, . . . , zn0−1) = Ann(z0, z1, . . . , zn) = An.

Let T ⊆ n<N
0 be the n0−branching computable tree defined by

T = {σ ∈ n<N
0 :

∏
j<|σ|

zσ(j) ̸= 0}.

First, suppose that T is infinite. Then by WKL0 T has an infinite path f ∈ [T ] ⊂ nN
0 such

that for all n ∈ N, ∏
j<n

zf(j) ̸= 0.

In other words, J is not t-nilpotent (see [Con10] for more details), which contradicts [Con10,
Theorem 3.4]. Hence, we must have that T is a finite tree.

Now, suppose that T is finite, and let m0 ∈ N be large enough so that there is no string of
lengthm0 on T . In this case we claim that Jm0 = 0. To see why, assume (for a contradiction)
that there exist elements x0, x1, . . . , xm0−1 ∈ J such that

∏
j<m0

xj ̸= 0 and via the Π0
1-Well-

Ordering Principle (which is equivalent to Σ0
1-induction, and thus follows from RCA0) let

i0 ≤ m0, i0 ∈ N, be maximal such that there exists σ ∈ n=i0
0 ⊂ n<N

0 such that∏
j<i0

zσ(j) ·
∏

i0≤j<m0

xj ̸= 0.

We claim that i0 = m0. Suppose for a contradiction that i0 < m0. Then there exists σ ∈ n=i0
0

such that the product

zσ(0)zσ(1) · · · zσ(i0−1)xi0xi0+1 · · ·xm0−1 ̸= 0,

from which it follows that the product

xi0xi0+1 · · ·xm0−1zσ(0)zσ(1) · · · zσ(i0−1) ̸= 0.5

Now, since xi0 ∈ J , and by our definition of n0 ∈ N and z0, z1, . . . , zn0 ∈ J above, it follows
that there is some n ∈ {0, 1, . . . , n0 − 1} such that

znxi0+1 · · ·xm0−1zσ(0)zσ(1) · · · zσ(i0−1) ̸= 0,

from which it follows that

zσ(0)zσ(1) · · · zσ(i0−1)znxi0+1 · · · xm0−1 ̸= 0,

from which it follows that there is some τ ∈ n
=(i0+1)
0 properly extending σ, τ = σn, such

that ∏
j<i0+1

zτ(j) ·
∏

i0+1≤j<m0

xj ̸= 0,

5Here we are using the commutativity of R. Whether or not ART0 follows from WKL0 in the noncommu-
tative case is still open.
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contradicting our definition of i0. Hence, i0 = m0 and there is a string τ ∈ n=m0
0 such that∏

j<m0

zτ(j) ̸= 0,

contradicting our definition of m0. Hence no such sequence x0, x1, . . . , xm0−1 ∈ J exists and
Jm0 = 0. □

In the next section we will use the author’s results in [Con10] to prove that NIL0 implies
WKL0 over RCA0. We now use the previous theorem (i.e. Theorem 5.1) to show that WKL0+
IΣ2 implies ART0 over RCA0.

Theorem 5.2. WKL0 + IΣ2 implies ART0 over RCA0.

Proof. The proof is very similar to the part of the proof of [Con10, Theorem 3.4] given in
[Con10, Section 3.5]. We assume that the reader is familiar with [Con10, Section 3.5] and
therefore we will only give a sketch of the proof and leave the details (which can essentially
be found in [Con10, Section 3.5]) to the reader. Let R be a ring with an infinite strictly
ascending chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · and a corresponding infinite sequence of
elements {xk}k∈N such that for all i ∈ N we have that xi ∈ Ii+1 \ Ii. We will construct, via
WKL0 + IΣ2, an infinite strictly descending chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · in R.

First of all, via [Con10, Section 3.5.1] we can assume that R has only finitely many maximal
ideals, M0,M1, . . . ,Mn0−1 ⊂ R, n0 ∈ N (otherwise we can construct an infinite strictly
descending chain of ideals in R by repeatedly intersecting maximal ideals; see [Con10, Section
3.5.1] for more details). In this case, we have that the Jacobson radical of R, J ⊂ R, is equal
to the productM0M1 · · ·Mn0−1 (see [Con10, Section 3.5.2] for more details), and by Theorem
5.1 above it follows that there is a numberm0 ∈ N such that Jm0 = (M0M1 · · ·Mn0−1)

m0 = 0.
Now, for all 0 < i ≤ n0m0, write i = kin0 + ri, ri, ki ∈ N, ri < n0, and define

Ai = JkiM0M1 · · ·Mri .

Although we cannot actually prove that Ai, 0 ≤ i ≤ n0m0, exist via WKL0, we have that
Ai is Σ0

1-definable for all 0 ≤ i ≤ n0m0, and we can use IΣ2 (as in [Con10, Section 3.5.2])
to find the largest number i0 ∈ N, i0 ≤ n0m0, such that there exist infinitely many k ∈ N
such that xk ∈ Ai0 . It follows that there is a computably enumerable subset of {xk}k∈N that
live inside Ai0 \ Ai0+1. Let f : N → N be a total computable strictly increasing function
such that xf(k) ∈ Ai0 \ Ai0+1 for all k ∈ N. Now, note that the quotient Ai0/Ai0+1 is an
R/Mri0+1

-vector space and by our construction of {xk}k∈N above it follows that for all k ∈ N
xf(k) is not an R-linear combination of {xf(j)}j>k. Now, by an argument similar to the one
given in 4.11 that is essentially based on the proof of Corollary 4.3 mentioned above, we can
use WKL0 to construct an infinite strictly descending chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · ·
such that for all k ∈ N we have that xf(k) ∈ Jk \ Jk+1. □

In the next section we will use the author’s results in [Con10] to prove that ART0 implies
WKL0 over RCA0 + IΣ2. We now use Theorem 5.1 above to show that WKL0 implies the
Structure Theorem for Artinian Rings (i.e. ARTs

0) over RCA0. First, however, we need
to prove the Chinese Remainder Theorem (CRT0) in RCA0. We now state the Chinese
Remainder Theorem.

Theorem 5.3 (Chinese Remainder Theorem (CRT0)). Let n ∈ N, n ≥ 2, and R be a
commutative ring with ideals A1, A2, . . . , An ⊂ R such that for all 1 ≤ i < j ≤ n we have
that Ai + Aj = R. Then the map

φ : R → R/A1 ×R/A2 × · · · ×R/An
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is a surjection with kernel

A1A2 · · ·An = A1 ∩ A2 ∩ · · · ∩ An.

Lemma 5.4. RCA0 implies CRT0.

Proof. The following proof of the Chinese Remainder Theorem in RCA0 is essentially identical
to many of the proofs given in standard Algebra texts, and does not require induction.

First of all, by the proof of [Con10, Proposition 2.16] (which is the same as the classical
proof of the same fact), it follows that the kernel of φ is as claimed above.

Suppose now that n = 2 in the statement of CRT0 above. Then there exist a1 ∈ A1 and
a2 ∈ A2 such that a1 + a2 = 1 ∈ R. Then a1x2 + a2x1 ∈ R maps to (x1, x2) ∈ R/A1 ×R/A2

under φ, which shows that φ is surjective.
Now, let n ∈ N be larger than 2. For each 2 ≤ i ≤ n there exist elements ai ∈ A1 and

bi ∈ Ai such that

ai + bi = 1 ∈ R.

Furthermore, the product
∏

2≤i≤n(ai + bi) = 1R and lies in A1 +
∏

2≤i≤nAi, and hence

A1 +
∏

2≤i≤n

Ai = R.

We can now apply our proof of the Chinese Remainder Theorem in the case n = 2 to
obtain an element y1 ∈ R such that

y1 ≡ 1 mod A1, y1 ≡ 0 mod Aj, 2 ≤ j ≤ n.

Similarly, there exist elements y2, . . . , yn ∈ R such that for all 2 ≤ i ≤ n we have that

yi ≡ 1 mod Ai, yi ≡ 0 mod Aj, 1 ≤ j ≤ n, j ̸= i.

It follows that the element x =
∑

1≤i≤n xiyi maps to

(x1, x2, . . . , xn) ∈ R/A1 ×R/A2 × · · · ×R/An

under φ, which shows that φ is surjective. This completes the proof of the lemma. □

We will now use the fact that CRT0 holds in RCA0 to prove the Structure Theorem for
Artinian Rings via WKL0.

Theorem 5.5. WKL0 implies ARTs
0 over RCA0.

Proof. We reason in WKL0, and assume that the reader is familiar with the proof of [Con10,
Theorem 3.4]. Let R be an Artinian ring. Let M0,M1, . . . ,Mn0−1 ⊂ R, n0 ∈ N, n0 ≥ 2,
be the maximal ideals of R (see [Con10, Section 3.5.1] or the proof Theorem 5.2 above for
more details). Note that if n0 = 1 then R is local and the theorem follows trivially. For all
0 ≤ j < n0 let

xj ∈Mj \
⋃

0≤k<n0
k ̸=j

Mk

and let J =M0∩M1∩ · · ·∩Mn0−1 =M0M1 · · ·Mn0−1 ⊂ R be the Jacobson radical of R. By
[Con10, Theorem 3.4] it follows that M0,M1, . . . ,Mn0−1 are also the prime ideals of R and J
is also the nilradical of R. Via Theorem 5.1 above and the Π0

1-Well-Ordering Principle, let
⟨m0,m1, . . . ,mn0−1⟩ ∈ N be the least n0−tuple such that

Mm0
0 Mm1

1 · · ·Mmn0−1

n0−1 = 0.
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Now, we claim that for every 0 ≤ j < n0 the ideal M
mj

j exists. To see why, without loss
of generality assume that j = 0 (the general argument is similar). First, we claim that there
exists

x ∈
∏

1≤i<n0

Mmi
i \M0.

Otherwise, we would have that
∏

1≤i<n0
Mmi

i ⊆M0 and hence the element

x =
∏

1≤i<n0

xmi
i

would satisfy x ∈ M0, from which it follows that some xi, 1 ≤ i < n0, is in M0 (since
M0 is a prime ideal), a contradiction. Hence x ∈

∏
1≤i<n0

Mmi
i \M0 as claimed. Next, we

claim that Ann(x) = Mm0
0 , from which it follows that Mm0

0 exists. By our construction of
m0,m1, . . . ,mn0−1 ∈ N it is easy to see that Mm0

0 ⊆ Ann(x). Now, suppose that there is
some y ∈ Ann(x)\Mm0

0 and use WKL0 to construct an ideal I such thatMm0
0 ⊆ I ⊂ Ann(x)

and y /∈ I. Consider the ring R/I. Since R/I is the quotient of an Artinian ring, RCA0

proves that R/I is Artinian and every ideal in R/I corresponds to an ideal in R containing
I via pullback. We claim that R/I is a local ring with unique maximal ideal M0 ⊂ R/I.
For suppose that there is another maximal ideal M ̸=M0 in R/I, then M must correspond
to a maximal ideal M in R containing I. But then we have that

M ⊃ I ⊇Mm0
0

and so it follows that M contains M0, from which it follows that M =M0, since M,M0 are
maximal and hence prime ideals in R. Therefore, we have that M = M0, a contradiction.
Now, since R/I is a local Artinian ring with unique maximal ideal M0 it follows that x ∈∏

1≤i<n0
M

mi

i \M0 is a unit in R/I. But, on the other hand we have that y ̸= 0 in R/I
(by our construction of I above) and (by our construction of y above) y · x = 0 in R/I, a
contradiction. Hence, no such y ∈ Ann(x)\Mm0

0 exists, and thus Ann(x) =Mm0
0 as claimed.

For all 0 ≤ i < j < n0 it follows that Mmi
i +M

mj

j = R. Otherwise we could use WKL0
to construct an ideal I such that Mmi

i +M
mj

j ⊆ I ⊆ Mk ⊂ R, 0 ≤ k < n0, a contradiction
since Mk is a prime ideal and so xi, xj ∈ Mk. Furthermore, by an argument similar to one
given in the last half of the previous paragraph it follows that for every 0 ≤ i < n0 the ring
R/Mmi

i is a local ring with unique maximal ideal M i ⊂ R/Mmi
i . Now, we can apply the

Chinese Remainder Theorem (CRT0) to construct a homomorphism

φ : R → R/Mm0
0 ×R/Mm1

1 × · · · ×R/M
mn0−1

n0−1

given by

φ(x) = (xR/M
m0
0
, xR/M

m1
1
, . . . , x

R/M
mn0−1
n0−1

)

with kernel

Mm0
0 Mm1

1 · · ·Mmn0−1

n0−1 = 0.

Hence, φ is an isomorphism and the theorem follows. □

5.1. A second proof of ART0 via WKL0 + IΣ2. We now give a second (different) proof of
Theorem 5.2 above. We assume that the reader is familiar with the proofs of Theorems 5.1
and 5.2 above.

A different proof of Theorem 5.2. We reason in WKL0+ IΣ2. First, let R be a local ring with
unique maximal ideal M ⊂ R and an infinite strictly ascending chain of ideals

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂M ⊂ R.
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We aim to show that R has an infinite strictly descending chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · ;
this suffices to prove the theorem. Let z0, z1, . . . , zn0−1 ∈ M ⊂ R, T ⊂ n<N

0 , and m0 ∈ N,
be as in the proof of Theorem 5.1 above, and let {xk}k∈N be as in the proof of Theorem
5.2 above. Without loss of generality we can assume that T is a finite tree; otherwise the
theorem follows as in Theorem 5.1 above. So far our proof has been very similar to that of
Theorem 5.2 above, but here is where they start to diverge.

First of all, let
U = R \M,

and note that U is the set of units in R since R is a local Artinian ring, and we are reasoning
in WKL0 (see [Con10, Theorem 3.4] for more details). Now, via IΣ2 let l0 ∈ N, l0 < m0, be
the least number such that there exist infinitely many k ∈ N and u0,k, u1,k, . . . , uk−1,k ∈ U =

R \M such that for all σ ∈ n≥l0
0 ∩ T we have that

yk = xk +
k−1∑
j=0

uj,kxj ∈ Ann(zσ),

where σ ∈ n<N
0 ,

zσ =
∏
i<|σ|

zσ(i) ∈M ⊂ R,

and z∅ = 1R. Note that l0 > 0 since z∅ = 1R. Let σ0 ∈ T , |σ0| = l0 − 1, be such that there
do not exist infinitely many k ∈ N and u0,k, u1,k, . . . , uk−1,k ∈ U as above (i.e. let σ0 ∈ T be
a witness to the fact that l0 is minimal). Finally, via our construction of σ0 and RCA0, let
{yk}k∈N be an infinite sequence of elements of R as displayed above where σ is any successor
of σ0 in n<N

0 .
We claim that there exists k0 ∈ N such that for all k ≥ k0, k ∈ N, we have that zσ0yk

is not an R-linear combination of {zσ0yl}l>k. To prove our claim suppose otherwise (for a
contradiction). In this case by hypothesis we have that for all k ∈ N there exists j > k,
j ∈ N, such that zσ0yj is an R-linear combination of {zσ0yl}l>j. Now, first of all note that
by our constructions of σ0 ∈ T and zσ0 , z0, . . . , zn0−1 ∈ M ⊂ R above it follows that for all
k ∈ N and x ∈M we have that

x · zσ0yk = 0

since, by our construction of {yk}k∈N in the previous paragraph, for all k ∈ N and successor
strings σ ⊃ σ0, σ ∈ n<N

0 , we have that zσyk = 0 (here we are using the defining property
of z0, . . . , zn0−1, as we did in the proof of Theorem 5.2 above). Hence, under our current
hypothesis and our remarks in the previous sentence, we can assume that there exist infinitely
many j ∈ N such that zσ0yj is a U -linear combination of {zσ0yl}l>j. Now, since U = R \M
is the set of units in the local ring R, every equation of the form

zσ0yj = zσ0 ·
l0∑

l=j+1

ulyl, j ∈ N, l0 > j, ul ∈ U,

can be manipulated/rearranged (via division by ul0 ∈ U) to read

zσ0

(
yl0 +

∑
j<l0

ujyj

)
= 0.

The fact that this can be done for unboundedly many (i.e. arbitrarily large) l0, j ∈ N con-
tradicts our construction of σ0 in the previous paragraph. Therefore, the claim we made in
the first sentence of this paragraph holds, and we can use this claim along with WKL0 to
construct an infinite descending chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · in R such that for all
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k ∈ N we have that zσ0yk0+k ∈ Jk \ Jk+1. This completes the proof of the theorem in the
case when R is a local ring. We now turn our attention to proving the theorem when R is
not a local ring.

Assume thatR is an Artinian ring, with finitely many maximal idealsM0,M1, . . . ,Mm0−1 ⊂
R, m0 ∈ N, and an infinite strictly ascending chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ R. The
fact that R has finitely many maximal ideals is a consequence of [Con10, Theorem 3.4]. Let
x0, x1, x2, . . . ∈ R, xi ∈ Ii+1 \ Ii, i ∈ N, be as before. Note that for every n ∈ N there
exists 0 ≤ i < m0 such that (xn : In) ⊆ Mi, since otherwise (using our previous arguments
in [Con10, Theorem 3.4]) we could use this fact along with WKL0 to construct a maximal
ideal M ⊂ R that is different from M0,M1, . . . ,Mm0−1, a contradiction. For all n ∈ N, let
in : N → N, be a uniformly computable sequence of total functions such that the range of in
is (xn : In) ⊂ R, and for all n, k ∈ N let

In,k = {in(0), in(1), . . . , in(k)}
and note that {In,k}n,k∈N is a uniformly computable listing of finite sets. Now, construct the
computable tree T1 ⊆ m<N

0 such that for all σ ∈ m<N
0 we have that

σ ∈ T1 ⇔ (∀τ ⊆ σ)[I|τ |,|σ| ⊆Mσ(|τ |−1)].

It follows from bounded Π0
1-comprehension and our previous remarks in this paragraph that

for every n ∈ N there is a string of length n on T1. It is also not difficult to verify that if
f ∈ mN

0 is an infinite path through T1, then for every n ∈ N we have that

(xn : In) ⊆Mf(n).

Moreover, via an argument similar to the proof (i.e. standard construction) of Lemma 4.3
above, along with our remarks in the previous paragraph, we can apply WKL0 to construct
an infinite strictly ascending chain of ideals {Ik,0}k∈N such that:

(1) xk ∈ Ik+1,0 \ Ik,0;
(2) Ik,0 ⊆ Ik;
(3) (Ik+1,0 : Ik,0) ⊆ (xk : Ik) ⊆Mf(k).

So without any loss of generality, we can assume that our original chain {Ik}k∈N satisfies
each of these properties.

But, by WKL0 it follows that there is an infinite path f ∈ mN
0 through T1 ⊆ m<N

0 , since
T1 is an infinite computable tree. Furthermore, it follows from IΣ2 that there is a number
i0 ∈ N, 0 ≤ i0 < m0, such that there exist infinitely many n ∈ N such that f(n) = i0. Let i0
be as in the previous sentence and use RCA0 to construct

P = {n ∈ N : f(n) = i0}.
It follows that P is an infinite set. Let

P = {p0 < p1 < · · · < pk < · · · , k ∈ N}
be a listing of the (infinitely many) elements of P . Let

R0 = RMi0
= R[(R \Mi0)

−1]

be the localization of R at the prime ideal Mi0 (RCA0 suffices to construct R0). By our
construction of the infinite set/sequence P = {pk}k∈N and Lemma 4.1 in Subsection 4 above
it follows that the infinite ascending chain of ideals

Ip0 ⊂ Ip1 ⊂ Ip2 ⊂ · · · ⊂ Ipk ⊂ · · · , k ∈ N,

in R corresponds to an infinite strictly ascending chain of ideals in R0. Now we can apply our
previous proof (for local rings) to the local ring R0 to produce an infinite strictly descending
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chain of ideals J0
0 ⊃ J0

1 ⊃ J0
2 ⊃ · · · in R0 corresponding to an infinite strictly descending

chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · in R. □

6. Deriving weak König’s lemma from NIL0, ART0, and ARTs
0

The main purpose of this section is to establish optimal lower bounds on the reverse
mathematical strengths of NIL0, ART0, and ARTs

0. More specifically, we will prove that

(1) NIL0 implies WKL0 over RCA0;
(2) ART0 implies WKL0 over RCA0; and
(3) ARTs

0 implies WKL0 over RCA0.

The author already proved (2) in [Con10, Theorem 4.1]. Our proof of (1) is based on the same
construction (i.e. [Con10, Theorem 4.1]). Our proof of (3) is based on [DLM07, Theorem
3.2, Proposition 3.4].

Theorem 6.1. NIL0 implies WKL0 over RCA0.

Proof. We reason in RCA0. Recall that NIL0 says that J exists and is nilpotent, which implies
that J exists and is t-nilpotent, which implies WKL0 by [Con10, Theorem 3.4]. □

Theorem 6.2. ARTs
0 implies WKL0 over RCA0.

Proof. Our proof uses some elements of the proof of [DLM07, Theorem 3.2], but is also
somewhat different. First, we will construct a computable ring R using some of the ideas
found in [DLM07, Theorem 3.2], then we will note that our construction relativizes to an
arbitrary oracle X ⊂ N to produce a ring RX with various special properties having to do
with PA Turing degrees relative to X. Afterwards, we will show that there is no model of
RCA0+¬WKL0+ARTs

0 by assuming that such a modelM exists, and deriving a contradiction
based on an application of the axiom ARTs

0 to the ring RX , where X ⊆ N is an oracle in
M chosen so that there is no PA Turing degree relative to X in M (note that the oracle X
exists because M satisfies ¬WKL0 by hypothesis). More precisely, we will apply ARTs

0 to RX

to deduce the existence of a PA Turing degree relative to X, which is a contradiction by the
way we chose X.

We now construct R = R∅. First, however, let C0, C1 ⊂ N be disjoint computably enu-
merable sets such that any separator for C0, C1 is of PA Turing degree. Let c0, c1 : N → N
be one-to-one total computable functions such that the range of ci is Ci, i ∈ {0, 1}. Let

Z = {z0 < z1 < z2 < · · · < zi < · · · , i ∈ N} ⊂ N
be an infinite computable set disjoint from both C0 and C1, and for all k ∈ N let

z0(k) = zc0(k) ∈ Z and z1(k) = zc1(k) ∈ Z.

It is well-known that Z exists; see [KS07, Lemma 2.6], for example. Recall that

Z∞ = Z[X0, X1, X2, . . .]

is the free polynomial ring over Z with infinitely many indeterminates X0, X1, X2, . . ., that
F is the field of fractions of Z∞, and that Zk = Z[X0, X1, . . . , Xk]. For all p ∈ Z∞ define
s(p) ∈ N to be the least number s0 such that p ∈ ⟨Xc0(k) : k ∈ N, 0 ≤ k ≤ s0⟩Z∞ ; let
s(p) = ∞ if no such s0 exists. Also let mp ∈ N, p ∈ Z∞, be the least m ∈ N such that
p ∈ Zm. Finally, let

D0 =

{
Xc0(k)

p
: k ∈ N, p ∈ Z∞, k < s(p)

}
,

D1 =

{
Xz0(k)

p
: k ∈ N, p ∈ Z∞, z0(k) > s(p)

}
,
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D2 =

{
Xc0(s(p)) −Xz1(k)

p
: k ∈ N, p ∈ Z∞, s(p) <∞, mp < z1(k)

}
,

and

D3 =

{
1

Xc1(k)

: k ∈ N
}
.

Note that D0, D1, D2, and D3 are c.e. subsets of the computable field F . It follows that the
subring generated by

R0 = Z∞ ∪
3⋃

i=0

Di

in F is computably isomorphic to a computable ring R (see Lemma 4.7 above for more
details). Without any loss of generality we identify R with R0 ⊂ F . Note that R0

∼= R are
integral domains.

For each n ∈ N, let
An = {c0(0), c0(1), . . . , c0(n)} ∪ Z ⊂ N.

By our construction of R ∼= R0 above it follows that for every n ∈ N the ideal

In = ⟨Xk : k ∈ An⟩R ⊂ R

is computable, and therefore exists via RCA0. Let

I∞ =
⋃
n∈N

In.

Now, by our construction of R above, it follows that for all n ∈ N we have that Xc0(n+1) /∈ In
since (by our construction of R above) for all n ∈ N we have that the numerator of every
element of In ⊂ R ∼= R0 is in ⟨Xk : k ∈ An⟩Z∞ . We leave the easy verification of these facts
to the reader.

Now, we claim that R is an Artinian ring unless there is a PA Turing degree. To prove
this claim, first of all note that if I is a nontrivial ideal such that I ⊈ I∞ then, by our
construction of D0 and D3 above, it follows that I has PA Turing degree since we have that

(a) Xc0(k) ∈ I, for all k ∈ N; and
(b) Xc1(k) /∈ I, for all k ∈ N.6

A similar (simpler) argument applies in the case I = I∞. Hence, in a model of RCA0+¬WKL0
we do not have any such ideals I. Now, by our construction of D0 above and our previous
remarks in this paragraph it follows that in any model of RCA0 + ¬WKL0 every nontrivial
ideal of R is contained in IN , for some N ∈ N. Let

J0 ⊃ J1 ⊃ J2 ⊃ · · ·
be an infinite strictly descending chain of ideals inR, and, via the Σ0

1-Well-Ordering Principle,
let n0 ∈ N be maximal such that In0 ⊂ Jk, for all k ∈ N. Note that if n0 does not exist, then
it follows that I∞ ⊂ Jk, for all k ∈ N, from which it follows (from our previous remarks)
that Jk is of PA Turing degree for all k ∈ N. Therefore, our claim (that R is Artinian unless
there is a PA Turing degree) is valid in the case when n0 does not exist. On the other hand,
if n0 ∈ N exists, then let m0 ∈ N be such that for all m ≥ m0 we have that In0+1 is not
contained in Jm (i.e. m ∈ N is a witness to the fact that n0 is maximal). It follows that

(1) In0+1 ⊇ Jm0 ⊃ Jm0+1 ⊇ In0 ; and
(2) Xc0(n0+1) /∈ Jm0 .

6Note that by our construction of D3 and R we have that Xc1(k) /∈ B for any proper ideal B ⊂ R and

k ∈ N.
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Now, because of (1) and (2) above, as well as our constructions of D1 and D2 (also above),
it follows that we have

(a) Xz0(k) ∈ Jm0 , for almost all k ∈ N; and
(b) Xz1(k) /∈ Jm0 , for almost all k ∈ N.

By our constructions of Z ⊂ N and z0, z1 : N → N above it follows that Jm0 is of PA Turing
degree, which proves our claim that R is Artinian unless there is a PA Turing degree. Note
that all of our constructions and arguments thus far can be relativized to any given oracle
X ⊆ N. In other words, for any given oracle X ⊆ N there is an X−computable integral
domain RX such that RX is an Artinian ring unless there exists a PA Turing degree relative
to X.

Now, suppose for a contradiction that ARTs
0 does not imply WKL0 over RCA0. Let M be

any model of RCA0 + ¬WKL0 + ARTs
0, and let X ∈ M be a subset of the universe of M

such that M does not contain a PA Turing degree relative to X. Throughout this paragraph
we will work within the model M. Let RX ∈ M be the X−computable integral domain
described in the final sentence of the previous paragraph (RX exists in M via RCA0). Now,
by our construction of RX and our construction of X ∈ M via our hypothesis ¬WKL0, it
follows that RX is an Artinian integral domain in M. Hence, we can apply our hypothesis
ARTs

0 to RX to conclude that RX is isomorphic to a finite direct product of local Artinian
rings, i.e. there exists k0 ∈ N and local Artinian rings R0,X , R1,X , . . . , Rk0,X with respective
unique maximal ideals M0,X ,M1,X , . . . ,Mk0,X , Mi,X ⊂ Ri,X , 0 ≤ i ≤ k0, such that

RX
∼= R0,X ×R1,X × · · · ×Rk0,X = ZX

via a given isomorphism φ : RX → ZX . But, since RX is an integral domain it follows that
k0 = 0 since otherwise RX contains nontrivial zero divisors. Hence, RX is a local Artinian
integral domain with unique maximal ideal MX ⊂ RX , MX , RX ∈ M. But, by our previous
remarks and constructions, and the maximality of MX , it follows that either MX is not
contained in I∞, or else MX = I∞. But in either case (again, by previous remarks) it follows
that MX is of PA Turing degree relative to X, a contradiction. Therefore we must have that
ARTs

0 implies WKL0 over RCA0. □

7. The Full Computable Structure Theorem for Artinian Rings

We are now ready to prove the Full Computable Structure Theorem for Artinian Rings,
which is similar to the Classical Full Structure Theorem for Artinian Rings, except that we
will work exclusively with annihilator ideals (rather than powers of maximal ideals), thus
ensuring that all ideals in the Full Computable Structure Theorem are computable whenever
the ring is computable. First we prove the theorem for local Artinian rings, and then we
prove it for arbitrary Artinian rings.

Elements of the proof of the following proposition can be found in Section 5 above.

Theorem 7.1 (Full Computable Structure Theorem for Local Artinian Rings). Let R be
a computable local Artinian ring. Then the unique maximal ideal of R, M ⊂ R, is an
annihilator ideal and therefore computable. Furthermore, there is a finite computable strictly
descending chain of ideals

0 =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂MN−1 =M ⊂MN = R, N ∈ ω,

such that for each 0 ≤ i < N we have that

M ·Mi+1 ⊆Mi.

It follows that each factor module Mi+1/Mi is a computable R/M-vector space.
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Proof. First we show that M is computable. To do this it suffices to show that the sets of
units/nonunits in R are computable. To prove this, first note that, because R is Artinian,
for every r ∈ R there exists k ∈ R and m ∈ ω such that

rm = krm+1;

otherwise the chain

⟨r⟩ ⊃ ⟨r2⟩ ⊃ · · ·
would contradict the fact that R is Artinian. It follows that for each r ∈ R there exist
m, k ∈ R such that

rm(1− kr) = 0.

Now, we claim that r is a unit if and only if 1 − kr = 0, i.e. k is the inverse of r. First of
all, if r is not invertible then we cannot have that 1 − kr = 0. On the other hand, if r is
invertible then it follows that 1−kr = 0, since we can divide the equation rm(1−kr) = 0 by
(the unit) rm. Therefore, to decide whether or not a given r ∈ R is invertible, simply search
for k ∈ R and m ∈ ω such that rm(1 − kr) = 0 (they certainly exist since R is Artinian)
and check whether or not kr = 1. If so, then r is invertible. Otherwise, r is not invertible.
Finally, since M is computable, it follows that the field R/M is computable.

Now, let M = {z0, z1, z2, . . .} be a computable listing of the elements of M . Since R is
Artinian it follows that there exists n ∈ ω such that

Ann(z0, . . . , zn) = Ann(z0, . . . , zn, . . . , zn+k),

for all k ∈ ω, and each zj, 0 ≤ j ≤ n, is nilpotent. Let nj be such that z
nj

j = 0. By
the Finitary Pigeonhole Principle it follows that every product of zj, 0 ≤ j ≤ n, of degree
N0 =

∑n
j=0 nj + 1 is zero. Now, let N ∈ ω, 0 ≤ N ≤ N0, be least such that all (finitely

many) products of the zj, 0 ≤ j ≤ n, of degree N is zero. For each 0 ≤ i ≤ N let Mi ⊆ R
be the annihilator of the products of zj, 0 ≤ j ≤ n, of degree i (here z0 = 1R for all z ∈ R).
It follows that:

(1) the finite sequence {Mi}Ni=0 is computable,
(2) M0 = 0,
(3) MN = R, and
(4) for each 0 ≤ i < N , Mi ⊆Mi+1.

All that is left to show is that MN−1 = M and for each 0 ≤ i < N we have that
M ·Mi+1 ⊆Mi. Before we can prove this, however, we must show that if y, z ∈M are such
that y · z ̸= 0 then there exists 0 ≤ j0 ≤ n for which y · zj0 ̸= 0. To prove this note that
by our construction of n ∈ ω it follows that Ann(z0, z1, . . . , zn) is contained in Ann(z), for
all z ∈ M (otherwise we would have added z to the set z0, . . . , zn above). Hence, it follows
that if y is not in the annihilator of z then y is not in Ann(z0, z1, . . . , zn), i.e. there exists
0 ≤ j0 ≤ n such that y is not annihilated by zj0 .
Now suppose that y ∈M and y·z ̸= 0 for some z ∈M that is a product of {zj : 0 ≤ j ≤ n},

of degree N − 1. Then, by the previous paragraph it follows that we have zi · z ̸= 0, for
some 0 ≤ i ≤ n, a contradiction since all products of zj, 0 ≤ j ≤ n, of degree N are zero, by
definition of N . Therefore, for any y ∈ M we must have that y ∈ MN−1. Hence it follows
that MN−1 = M , since MN−1 ⊂ R is a proper ideal because, by definition of N ∈ ω, there
is a nonzero product of {zj : 0 ≤ j ≤ n} of degree N − 1.
We now show that M ·Mi+1 ⊆ Mi, for all 0 ≤ i < N . Assume, for a contradiction, that

there exists 0 ≤ i < N such that M ·Mi+1 ⊈ Mi. Then, in particular, there exists z ∈ M
and x ∈ Mi+1 such that z · x /∈ Mi. More specifically, there exists z ∈ M and x ∈ R such
that x annihilates all products of {zj : 0 ≤ j ≤ n}, of degree i+1 but there exists a product
of {zj : 0 ≤ j ≤ n}, call it Z, of degree i, such that z · x ·Z ̸= 0. In this case by our remarks
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two paragraphs above it follows that there exists 0 ≤ j0 ≤ n such that zj0 · x · Z ̸= 0, i.e.
x · (zj ·Z) ̸= 0. In other words, there is a product of {zj : 0 ≤ j ≤ n}, of degree i+1, namely
zj0 · Z, that is not annihilated by x, a contradiction. □

Remark 7.2. It is not difficult to check that the proof of the previous proposition is valid in
WKL0. The only two facts that may require some additional justification for the reader are
that M is computable (i.e. ∆0

1-definable) and every element of M is nilpotent, and the proofs
of these two facts via WKL0 can be found in [Con10, Section 3].

Corollary 7.3 (Full Computable Structure Theorem for Artinian Rings). Let R be a com-
putable Artinian ring. Then R is a finite direct product of computable local Artinian rings,
i.e.

R ∼= R0 ×R1 × · · · ×Rn0

where Ri, 0 ≤ i ≤ n0 is a local Artinian ring with unique maximal ideal Mi ⊂ Ri, and for
each Ri, 0 ≤ i ≤ n0, there exists ni ∈ ω and a finite chain of computable ideals, {Mi,j}ni

j=0,
in Ri, such that:

(1) Mi,0 = {0Ri
},

(2) Mi,ni
= Ri,

(3) Mi,ni−1 =Mi,
(4) Mi,j+1 ⊇Mi,j, 0 ≤ j < ni, and
(5) Mi ·Mi,j+1 ⊆Mi,j.

Moreover, ni ∈ ω is such that Mni = 0.

Proof. It is well-known that every Artinian ring is isomorphic to a finite direct product of
local Artinian rings. If e0, e1, . . . , en0 ∈ R are the idempotents corresponding to this direct
product decomposition of R and E = {e0, . . . , en0}, Ei = E \ {ei}, 0 ≤ i ≤ n0, then
Ri

∼= Ann(Ei) ⊂ R and hence Ri is isomorphic to a computable subring of R. The rest of
the corollary follows from the previous proposition. □

Remark 7.4. In Theorem 5.5 above we showed that WKL0 proves that every Artinian ring
isomorphic to a finite direct product of local Artinian rings. From this and our previous
remark it follows from the proof of Corollary 7.3 that WKL0 proves the Full Computable
Structure Theorem for Artinian Rings.

An interesting immediate consequence of the Full Computable Structure Theorem for
Artinian Rings is the following result of Baur [Bau74].

Corollary 7.5. [Bau74],[SHT, Corollary 4.3.2] If R is a computable Artinian ring, then R
has an ideal membership algorithm.

Proof. Recall that by ideal membership algorithm we mean an algorithm that decides mem-
bership in finitely generated ideals that is uniform in the (finitely many) generators.

Now, if R is Artinian, then it follows that every R/Mi-vector space of the formMi,k+1/Mi,k,
0 ≤ i ≤ n0, 0 ≤ k ≤ ni, in the Full Computable Structure Theorem above is finite dimen-
sional. Hence, every ideal I in R is finitely generated and moreover is essentially given by a
finite union of subspaces of finite dimensional computable vector spaces, which is uniformly
computable in the generators of I. □

8. Proving ART0 via WKL0 and
the Full Computable Structure Theorem for Artinian Rings

We are now ready to begin proving our Main Theorem which says thatWKL0 proves ART0.
Our proof will consist of two lemmas and a theorem, each of which builds on its predecessor.
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The first lemma proves ARTl
0 via WKL0 + BΣ2. The second lemma proves ARTl

0 via WKL0.
The final theorem is our Main Theorem.

Lemma 8.1. WKL0 + BΣ2 proves ARTl
0.

Proof. We reason in WKL0+BΣ2. Let R be a given local Artinian ring with unique maximal
ideal M ⊂ R. Our previous results and remarks in this section say that WKL0 proves that
there is a finite increasing chain of ideals {Mi}ni=0 in R such that

(1) M0 = 0,
(2) Mn = R,
(3) Mn−1 =M ,
(4) Mi+1 ⊇Mi, 0 ≤ i < n, and
(5) M ·Mi+1 ⊆Mi.

By property (4) it follows that each successive quotient Mi+1/Mi, 0 ≤ i < n, is an R/M -
vector space. Now, assume (for a contradiction) that R is not Noetherian and let

I0 ⊂ I1 ⊂ · · · ⊂ Im ⊂ · · · ⊂ R

be a given infinite strictly ascending chain of ideals in R. Then, for each m ∈ N there exists
an index 0 ≤ im ≤ n such that Im+1 ∩Mim ⊃ Im ∩Mim , and the infinite sequence {im}∞m=0

is computable in the (given) chain {Im}∞m=0.
Now, we have that im ∈ {0, 1, . . . , n} for all m ∈ N, and so via BΣ2 (which is equivalent

to the Infinite Pigeonhole Principle) it follows that there exists n0 ∈ {0, 1, . . . , n} such that
infinitely many m ∈ N satisfy im = n0. In other words, for all x ∈ N there exists m ∈ N,
m > x, such that im = n0. This infinite subsequence of {im}m∈N is computable from {im}m∈N
and n0 ∈ N. Therefore, without any loss of generality we may assume that this infinite
subsequence is equal to or all of {im}m∈N. In this case the infinite ascending chain of ideals
{Im}m∈N corresponds to an infinite strictly ascending chain of subspaces in V =Mn0+1/Mn0 ,
and via WKL0 it is possible to construct an infinite descending chain of subspaces in V
corresponding to an infinite strictly descending chain of ideals in R (see [Con10, Lemma 3.5,
Corollary 3.6, Subsection 3.5] for more details). Thus, R is not Artinian, a contradiction.
Therefore, R must be Noetherian and ARTl

0 follows. □

Most of the work in proving our Main Theorem is contained in the proof of the following
lemma.

Lemma 8.2. WKL0 proves ARTl
0.

Proof. The proof of the current lemma picks up where the second to last paragraph of the
proof of the previous lemma ends, i.e. we pick up just before we used the hypothesis BΣ2 in
the proof of the previous lemma. The goal of the proof of the current lemma is to replace
our use of BΣ2 in the proof of the previous lemma with some applications of the Finitary
Pigeonhole Principle. In other words, we want to replace our use of the Infinitary Pigeonhole
Principle in the last lemma with the strictly weaker Finitary Pigeonhole Principle, which
follows from RCA0 and WKL0.
First, assume (for now) that there is 0 ≤ n0 ≤ n such that for infinitely many m ∈ N we

have that im = n0 (as in the previous lemma where we used the Infinite Pigeonhole Principle
to help us with the proof). In this case we may assume without any loss of generality that
im = n0 for all m ∈ N. Also, let N ∈ N, and z0, z1, . . . , zN ∈ M , N ∈ N, be as in the proof
of Theorem 7.1 above. Then if Z ⊆ M ⊂ R denotes the set of nonzero (or all) products
z0, z1, . . . , zN of degree n0 − 1, it follows that |Z| ≤ (N + 1)n0 .

For each m ∈ N, let
vm ∈ Im+1 ∩Mim \ Im ∩Mim ,
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and let vm,1 be a nonzero Z-multiple of vm in (the R/M -vector space) V = M1 (such a
multiple always exists by our construction of {Mk}nk=0 and the fact that vm ∈Mim =Mn0).
Now, we claim that there is a computable strictly increasing infinite sequence of numbers
N0 < N1 < · · · < Nk < · · · , k ∈ N, such that at least k of the vectors v0,1, v1,1, . . . , vNk,1 are
linearly independent over R/M , or, equivalently, R-linearly independent (since M ·M1 = 0).

By construction ofMn0 , for each vm,m ∈ N, there is some z ∈ Z such that vm,1 = z·vm ̸= 0,
vm,1 ∈ V . Therefore, by the Finitary Pigeonhole Principle we have that for v0, v1, . . . , vNk

,
where Nk = (Nn0 + 1)k, k ∈ N, there will be some z ∈ Z such that for a set of size k,
that we denote K ⊆ {0, 1, . . . , nk}, there is a single z ∈ Z such that vj,1 = z · vj for all
j ∈ K. Furthermore, we claim that these vectors are linearly independent. Suppose, for a
contradiction that the vectors {vj,1 : j ∈ K} ⊆ V are linearly dependent. Then there exist
unital coefficients from R, uj ∈ R \M , j ∈ K, such that∑

j∈K

ujvj,1 = 0,

but then
z ·
∑
j∈K

ujvj = 0

and so we have that
∑

j∈K ujvj ∈ Mn0−1, implying that {vj : j ∈ K} is linearly dependent

in the R/M -vector space Vn0 = Mn0/Mn0−1. But this contradicts our construction of {vm :
m ∈ N} above since for each k ∈ N we have that:

(1) {v0, v1, . . . , vk} ⊆ Ik,
(2) vk+1 ∈ Ik+1 \ Ik, and
(3) {Ik : k ∈ N} corresponds to an infinite strictly ascending chain of subspaces in the

R/M -vector space Vn0 .

This argument is very similar to the main idea of the author’s second proof that WKL0+ IΣ2

implies ART0 in Section 5 above.

In the previous paragraph we showed that if Nk = (Nn0 + 1)k, k ∈ N, then there is a
subset of size k, K ⊆ {0, 1, . . . , Nk}, such that the vectors {vj,1 : j ∈ K} ⊂ V = M1 are
linearly independent. Our goal now is to prove the current lemma without the assumption
that im = n0 for infinitely many m ∈ N.

Let Z be the set of nonzero products of factors from {z0, z1, . . . , zN}, and let N0 ∈ N be
as in the proof of Theorem 7.1 above, i.e. every product of {z0, z1, . . . , zN} of degree N0 is
zero. Then there are at most

N∗
0 = (1 +N +N2 + · · ·+ nN0)−many

(product) elements in Z. Now, by essentially the same reasoning as in the second to last
paragraph above (i.e. by the Finitary Pigeonhole Principle) it follows that if Nk = (N∗

0 +1)k
then there is a subset of size k, K ⊆ {0, 1, 2, . . . , Nk}, and z ∈ Z such that z · vm ̸= 0 and
z · vm ∈M1 = V , and furthermore the set

{vj,1 = z · vj : j ∈ K} ⊆ V

is linearly independent. Finally, by the special case of Proposition 4.11 above in which n = 1,
it follows that WKL0 can construct an infinite strictly descending chain of ideals/subspaces
in M1 = V , showing that R is not Artinian, a contradiction. Therefore, we must have that
R is Noetherian and so ARTl

0 holds. □

Theorem 8.3 (Main Reverse Mathematical Theorem). WKL0 proves ART0 over RCA0.
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Corollary 8.4. WKL0 is equivalent to ART0 over RCA0.

Proof. The corollary follows directly from our Main Reverse Mathematical Theorem and
[Con10, Theorem 4.1]. □

Proof of the Main Theorem. We reason in WKL0. Let R be an Artinian ring, and suppose
(for a contradiction) that there exists an infinite strictly ascending chain of ideals

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊂ · · · ⊂ R, k ∈ N.
By Remark 7.4 above it follows that the Full Computable Structure Theorem for Artinian
Rings holds in WKL0. In other words R is isomorphic to a finite product of local Artinian
rings,

R ∼= R0 ×R1 × · · · ×Rm0 = R̂,

with unique maximal ideal Mi ⊂ Ri, 0 ≤ i ≤ m0, and finite increasing chains of annihilator
ideals {Mi,j}ni

j=0, ni ∈ N, in Ri such that:

(1) Mi,0 = 0,
(2) Mi,ni

= Ri,
(3) Mi,ni−1 =Mi ⊂ Ri,
(4) Mi,j+1 ⊇Mi,j, 0 ≤ j < ni, and
(5) Mi ·Mi,j+1 ⊆Mi,j.

Furthermore, every ideal I ⊆ R corresponds to a product of ideals I0 × I1 × · · · Im0 , Il ⊆ Rl,

0 ≤ l ≤ m0, in R̂. For each k ∈ N, let 0 ≤ lk ≤ m0 be such that Rlk ∩ Ik+1 ⊃ Rlk ∩ Ik. Let
⟨·, ·⟩ : (m0 + 1) × N → N be a computable bijection and for each (fixed) 0 ≤ m ≤ m0 let

{z⟨m,l⟩ : l ∈ N} be a listing of the elements of Mm ⊂ Rm. Now, let J0 = R̂, and for all k ∈ N,
let

Jk+1 = Jk ∩R0 ×R1 × · · · ×Ri−1 × AnnRi
(zk)×Ri+1 × · · · ×Rm0 ,

where k = ⟨i, l⟩, 0 ≤ i ≤ m0, l ∈ N. Note that for all k ∈ N we have zk = z⟨i,l⟩ ∈ Mi ⊂ Ri

and so AnnRi
(zk) makes perfect sense.

Now, since R ∼= R̂ is Artinian and (by construction) Jk+1 ⊆ Jk for all k ∈ N, it follows
that there is some n0 ∈ N such that for all n ≥ n0 we have that Jn = Jn0 . From this it
follows that there exists n0 ∈ N (equal to n0 in the previous sentence) such that for each
0 ≤ i ≤ m0 we have that

AnnRi
(z⟨i,0⟩, z⟨i,1⟩, . . . , z⟨i,n0⟩) = AnnRi

(z⟨i,0⟩, z⟨i,1⟩, . . . , z⟨i,n0⟩, . . . , z⟨i,n⟩),

for all n ≥ n0. Notice that we have essentially proved a bounding principle for finite strictly
descending chains with elements of the form

Ann(z⟨i,0⟩, . . . , z⟨i,k⟩), 0 ≤ i ≤ m0, k ∈ N.
Now, since each of the z⟨i,l⟩ ∈Mi ⊂ Ri is nilpotent for all 0 ≤ i ≤ m0 (see [Con10, Section

3] for more details), 0 ≤ l ≤ n0, it follows that for each 0 ≤ i ≤ m0 there is a number Ni ∈ N
such that every product of {z⟨i,0⟩, z⟨i,1⟩, . . . , z⟨i,n0⟩} of degree Ni is zero. Let

N = max
0≤i≤m0

Ni,

and
N∗ = 1 + n0 + n2

0 + · · ·+ nN
0 .

Finally, if we set
N∗

k = (m0 + 1)(N∗ + 1)k, k ∈ N,
then, by the Finitary Pigeonhole Principle, it follows that there is Ri, 0 ≤ i ≤ m0, for which
there are at least (N∗ + 1)k-many numbers 0 ≤ l ≤ (m0 + 1)(N∗ + 1)k, such that

Il+1 ∩Ri ⊃ Il ∩Ri.
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Furthermore, via an argument similar to that given in the proof of the previous lemma,
we have that the annihilator ideal Vi = Mi,1 ⊂ Ri contains a finite subset K such that at
least k-many elements of K that are linearly independent vectors when Vi is viewed as a
R/Mi-vector space.

7 Now, via Proposition 4.118 above it follows that WKL0 can construct
an infinite strictly descending chain of subspaces in

V0 × V1 × · · · × Vm0 =M0,1 ×M1,1 × · · · ×Mm0,1 ⊂ R0 ×R1 × · · · ×Rm0 = R̂ ∼= R.

This contradicts the fact that R is Artinian, and proves our Main Theorem. □
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