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Abstract. In 1975 H. Friedman introduced two statements of hyperarithmetic anal-
ysis, SL0 (sequential limit system) and ABW0 (arithmetic Bolzano-Weirstrass), which
are motivated by standard and well-known theorems from analysis such as the Bolzano-
Weierstrass theorem for Fσ and Gδ sets of reals. In this article we characterize the
reverse mathematical strength of ABW0 by comparing it to most known theories of
hyperarithmetic analysis.

In particular we show that, over RCA0 + IΣ1
1, SL0 is equivalent to Σ1

1 − AC0, and
that ABW0 is implied by Σ1

1 − AC0, and implies weak− Σ1
1 − AC0. We then use Steel’s

method of forcing with tagged trees to show that ABW0 is incomparable with INDEC
(i.e. Jullien’s Theorem) and ∆1

1 − CA0. This makes ABW0 the first theory of hyper-
arithmetic analysis that is known to be incomparable with other (known) theories of
hyperarithmetic analysis. We also examine the reverse mathematical strength of the
Bolzano-Weierstrass theorem in the context of open, closed, Fσ, Gδ, and other types
of sets.

1. Introduction

The main goal of this paper is to examine the reverse mathematical strength of
two statements of second order arithmetic first introduced by Friedman in [Fri75], and
motivated by standard, well-known theorems from mathematical analysis such as the
Bolzano-Weierstrass theorem for Fσ and Gδ sets of real numbers (for a general reference
on the ongoing program of reverse mathematics, see [Sim]). Generally speaking, given a
theorem from ordinary mathematics, T , the program of reverse mathematics attempts
to assign a strength to T based upon the weakest subsystem of second order arithmetic
that proves T . Very frequently the answer to this question is one of the following five
subsystems of second order arithmetic: RCA0 (recursive comprehension axiom), WKL0
(weak König’s Lemma), ACA0 (arithmetic comprehension axiom), ATR0 (arithmetic
transfinite recursion axiom), and Π1

1 − CA0 (Π
1
1 comprehension axiom); the system RCA0

is almost always assumed. In other words, when one makes a reverse mathematical
assertion, one usually means that the assertion holds under the blanket assumption of
RCA0.

Generally speaking, RCA0 (i.e. recursive comprehension) resembles computable math-
ematics, and T is equivalent to RCA0, over RCA0, if there is a proof of T that involves
only computable constructions (i.e. the proof can be carried out computably). More
specifically, RCA0 says that if a set A ⊆ N exists, and B ⊆ N is computable from A (i.e.
B is Turing reducible to A), written B ≤T A, then B also exists. Note that, if we take
A = ∅, then we get that RCA0 implies that the computable sets exist. Also, one can
show that the ω-models that satisfy RCA0 are exactly those that are closed downwards
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under ≤T and closed under disjoint union. Here the disjoint union of two sets A,B ⊆ N
is equal to the set {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}. By ω-model, we mean a model of
second order arithmetic whose first order part is equal to the standard natural numbers
(ω, 0, 1,+,×). Such models are normally identified by their second order parts.

The behavior of ACA0 (arithmetic comprehension) is similar to that of RCA0, but
with respect to arithmetic reducibility instead of Turing reducibility. A set B ⊆ N is
arithmetically reducible to a set A ⊆ N if there exists n ∈ N such that B is computable
from A(n) (here A(n) denotes the nth Turing jump of A), or, equivalently, if B is definable
by an arithmetic formula with A as a parameter (informally, a formula is arithmetic if
it has finitely many number quantifiers and no set quantifiers; a more formal definition
is given in the Basic Notation and Background subsection at the end of this section).
An ω-model is a model of ACA0 if and only if it is closed under arithmetic reducibility
and disjoint union. In this case we have that ACA0 implies T if there is a proof of
T that involves only arithmetical constructions. It is well-known that ACA0 implies
WKL0, the theory of second order arithmetic which says that RCA0 holds and that
every infinite binary branching tree has an infinite path. This fact will be used in the
proof of Theorem 2.1. Next, we define the class of hyperarithmetic sets, a main focus
of our study.

The main purpose of this article is to determine the reverse mathematical strength
of various standard, well-known theorems of mathematical analysis all of which are
motivated by compactness and the Bolzano-Weierstrass theorem for sets of different
complexities (such as Fσ and Gδ sets of real numbers). Two of these statements were
first introduced by H. Friedman in [Fri75]. One of Friedman’s statements is denoted
by SL0 (sequential limit system), and says that if A(X) is an arithmetic predicate of
reals such that {X : A(X)} has an accumulation point, Z0, then there is an infinite
subsequence of {X : A(X)} that converges to Z0. The second statement is denoted by
ABW0 (arithmetic Bolzano-Weirstrass), and says that if A(X) is a bounded arithmetical
predicate of reals, then A(X) either has finitely many solutions, or else {X : A(X)} has
an accumulation point Z0 (Z0 need not satisfy A(X)). We also examine the restriction
of ABW0 to arithmetic predicates of various low complexities corresponding to open,
closed, Fσ, Gδ, and other types of sets of real numbers and show that these theorems
quickly become much stronger than arithmetic comprehension. Furthermore, both of
our main theorems about ABW0 yield corollaries pertaining to certain restrictions of
ABW0 as described in the previous sentence. More information on hyperarithmetic sets
and hyperarithmetic reducibility is given in the next section (i.e. Section 1.1). More
information on theories of hyperarithmetic analysis is given in Section 1.2. For more
information on SL0 and ABW0, consult Section 1.3.
We now (briefly) state our main results. In the next section (i.e. Section 2), we

prove that, over RCA0 + IΣ1
1, SL0 is equivalent to Σ1

1 − AC0, and that ABW0 is implied
by Σ1

1 − AC0, and implies weak− Σ1
1 − AC0. We also analyze the strengths of various

restricted versions of ABW0 (to be defined in Section 1.4 below). Then, in Sections
3 and 4 we employ Steel’s method of forcing with tagged trees [Ste78] to prove our
main theorems which (when taken together) imply that ABW0 is incomparable with
other theories of hyperarithmetic analysis called INDEC (i.e. Jullien’s Theorem) and
∆1

1 − AC0 (see Section 1.2 for more information on theories of hyperarithmetic anal-
ysis). In addition, we will obtain various corollaries that shed light on the reverse
mathematical strength of the restrictions of ABW0 that we briefly mentioned in the
previous paragraph. A more precise description of the information in this paragraph is
given in Section 1.4.
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1.1. Hyperarithmetic Sets. Let L = ⟨L,≤L⟩, L ⊂ ω, be a presentation of a linear
ordering which has least element 0 ∈ ω. Given sets X, Y ⊆ ω, we say that Y is an
H(X,L)-set if Y [0] = X, and for every l ∈ L \ {0} we have that

Y [l] =
⊕
k<Ll

(Y [k])′,

where Y [j] = {n ∈ ω : ⟨j, n⟩ ∈ Y } and
⊕

k∈ABk = {⟨k, n⟩ : k ∈ A, n ∈ Bk} (here
⟨·, ·⟩ : ω2 → ω is a computable pairing function, as defined in [Soa]).
It is not difficult to show that, when L is an ordinal (i.e. L has no infinite descending

sequences), then there exists a unique H(X,L)-set, which we denote by X(L). However,
if we let L′ be a different presentation of an isomorphic copy of L, then the Turing
degree of X(L′) may not equal that of X(L). But, if we take L to be a computable
ordinal (as defined in [AK]), then, by a result of Spector [Spe55], all H(X,L) sets are
Turing equivalent (where L ranges over different computable presentations of a fixed
computable ordinal). We denote the least non-X-computable ordinal by ωX

1 , and write
ωCK
1 for ω∅

1 (where CK stands for Church-Kleene). It is well-known that the set of
computable ordinals is closed downwards [AK].

A formula φ of second order arithmetic is Σ1
1 (relative to A ⊆ ω) if it is of the form

(∃X)ψ, for some arithmetic formula ψ (with A as a parameter), and X is a set variable.
A set B ⊆ ω is Σ1

1 (relative to A ⊆ ω), written B ∈ Σ1
1 (B ∈ Σ1

1(A)), if it is definable by
a Σ1

1 formula (with parameters from A). We say that B ⊆ ω is ∆1
1 (relative to A ⊆ ω),

and write B ∈ ∆1
1 (B ∈ ∆1

1(A)), if there exist Σ
1
1 formulas φ, ψ (with A as a parameter)

such that
(∀n)[(n ∈ B) ⇔ (φ(n) ⇔ ¬ψ(n))].

Theorem 1.1 ([AK]). For any two sets A,B ⊆ ω, the following are equivalent:

(1) (∃α < ωA
1 )B ≤T A

(α).
(2) B ∈ ∆1

1(A).
(3) There is a A-computable infinitary formula φ such that X = {n : φ(n)}.

If ωA
1 = ωCK

1 , then we also have that:

(4) there is a computable infinitary formula φ such that X = {n : φ(n, Y )}.

A brief explanation of computably infinitary formulas is given at the end of this
section (for more information see the subsection called Basic Notation and Background).

Definition 1.2. Whenever A,B,⊆ ω satisfy any of conditions (1)–(3) above, we say
that B is hyperarithmetically reducible to A, and write B ≤H A. We also define
HYP(A) = {X ⊆ ω : X ≤H A} and HYP=HYP(∅).

More information on hyperarithmetic sets and hyperarithmetic reducibility can be
found in [AK].

1.2. Theories of Hyperarithmetic Analysis.

Definition 1.3. Let T be a collection of axioms of second order arithmetic. We say
that T is a theory of hyperarithmetic analysis if

(1) T holds in HYP(A), for every A ⊆ ω, where HYP(A) is the ω-model consisting
of the sets that are hyperarithmetically reducible to A.

(2) All ω-models of T are hyperarithmetically closed.

This is equivalent to saying that, for every A ⊆ ω, HYP(A) is the minimum ω-model
of T that contains A, and that every ω-model of T is closed under disjoint unions.
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Thus, the theories of hyperarithmetic analysis are those axioms of second order arith-
metic that characterize both HYP and hyperarithmetic reduction. They also seem to
exhibit a unique and interesting behavior in that small modifications often yield in-
equivalent theories. In the next section we will use the fact that all the theories of
hyperarithmetic analysis mentioned in this section (and, indeed, this article) imply
ACA0. This fact is already known (see, for example, [Mon06]) for those theories of
hyperarithmetic analysis that are not equal to ABW0 and SL0, which will be defined
below in the next subsection (i.e. Section 1.3). We will prove this fact in the case of
SL0 and ABW0

1 in Section 2 (Lemma 2.2).

Definition 1.4. A sentence S is a sentence (statement, theorem) of hyperarithmetic
analysis if RCA0 + S is a theory of hyperarithmetic analysis.

Before we can state the well-known statements of hyperarithmetic analysis that will
play a central role in this article, we require a definition and a theorem of Jullien
[Jul]. Jullien’s Theorem was first examined in the context of reverse mathematics by
Montalbán in [Mon06].

Definition 1.5. Given a linear ordering Z = ⟨Z,≤⟩, we define a cut in Z to be a
pair of sets ⟨L,R⟩ such that L = Z \ R is an initial segment of Z. We say that Z is
indecomposable if, for every cut ⟨L,R⟩, Z embeds into either L, or else Z embeds into
R (thinking of L and R as sub-orderings of Z). We say that Z is indecomposable to the
right if, for every cut ⟨L,R⟩ with R ̸= ∅, Z embeds into R. We define indecomposable
to the left in a similar fashion. A linear order is called scattered if η, the order type of
the rational numbers, does not embed in it.

Theorem 1.6 (Jullien’s Theorem, [Jul]). Every scattered indecomposable linear order
is either indecomposable to the right, or indecomposable to the left.

We say that a computable infinitary formula (see Section 1.5.2 for more details) φ is
determined if there is a map v : subformulas(φ) → {True,False} such that the obvious
logical rules hold.

The following list consists of the well-known theories of hyperarithmetic analysis that
play a significant role in this article.

(Σ1
1 − AC0) If A(X,n) is an arithmetic predicate with a free set variableX and a free number

variable n, then we have

(∀n)(∃Y )[A(Y, n) ⇒ (∃Z)(∀n)[A(Z [n], n)]].

(Π1
1 − SEP0) If φ, ψ are Σ1

1 formulas satisfying (∀n)[¬(¬φ(n) ∧ ¬ψ(n))], then there exists a
set D such that (∀n ∈ D)[¬φ(n) ∧ ψ(n)].

(∆1
1 − CA0) If φ, ψ are Σ1

1 formulas such that (∀n)[φ(n) ∨ ψ(n)] and (∀n)[¬φ(n) ⇔ ψ(n)],
then there exists a set D such that (∀n)[n ∈ D ⇔ φ(n)].

(INDEC0) Every scattered indecomposable linear order is either indecomposable to the
right or indecomposable to the left. (Jullien’s Theorem)

(Σ1
1 − ACw

0 ) If A(X,n) is an arithmetic predicate with a single free set variable X and a
single free number variable n, then we have

(∀n)(∃!Y )[A(Y, n) ⇒ (∃Z)(∀n)[A(Z [n], n)]].

(Lω1,ωCA0) Let {φn} be a sequence of determined computable infinitary sentences. Then
there exists a set D such that n ∈ D ⇔ φn is true.

1To show that ABW0 implies ACA0 we require the additional hypothesis of induction for Σ1
1 formulas,

which we denote IΣ1
1, and we define in Section 1.5.
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Throughout this article we shall denote the weak Σ1
1 choice scheme by Σ1

1 − ACw
0 (as

above), or weak− Σ1
1 − AC0. We prefer to use the latter, but use the former at certain

times (as above) because it is more compact.
Montalbán (unpublished) has recently shown that Lω1,ωCA0 (above) is a theorem

of hyperarithmetic analysis that is implied by the restriction of weak− Σ1
1 − AC0 to

two-quantifier arithmetic predicates of the form ∀∃ · · · 2. For more information on com-
putably infinitary formulas, consult Section 1.5.2 below.

The statements Σ1
1 − AC0 and ∆1

1 − CA0 were first introduced by Kreisel in [Kre62],
along with another statement of hyperarithmetic analysis known as Σ1

1 dependent
choice. Kreisel also asked whether or not Σ1

1 − AC0 implies Σ1
1 dependent choice and

whether ∆1
1 − CA0 implies Σ1

1 − AC0 (the opposite implications are both trivial). Soon
after that, H. Friedman [Fri] proved that Σ1

1 dependent choice is strictly stronger than
Σ1

1 − AC0. Later on, Steel [Ste78] showed that Σ1
1 − AC0 is strictly stronger than

∆1
1 − CA0. Furthermore, over the past forty years it has been established that (over

RCA0)

(Σ1
1 − AC0) → (Π1

1 − SEP0) → (∆1
1 − CA0) → (INDEC0) → (Σ1

1 − ACw
0 ) → (Lω1,ωCA0),

and none of the arrows is reversible, except possibly the righmost. Each of the above im-
plications are straightforward, except for ∆1

1 − CA0 → INDEC0 and weak− Σ1
1 − AC0 →

Lω1,ωCA0, proven by Montalbán in [Mon06], and INDEC0 → weak− Σ1
1 − AC0, shown by

Neeman in [Nee]. On the other hand, the fact that the two leftmost arrows cannot be
reversed was first established by Montalbán in [Mon06, Mon], while the irreversibility
of the next two (leftmost) arrows was established by Neeman in [Nee]. It should also be
noted that Steel [Ste78] first developed the main technique of this article (i.e. forcing
with tagged trees) to prove that ∆1

1 − CA0 does not imply Σ1
1 − AC0, while van Wesep

[vW] subsequently used a variant of Steel’s technique to show that weak− Σ1
1 − AC0

does not imply ∆1
1 − AC0.

1.3. SL0, ABW0, and restrictions of ABW0. We now introduce the two statements of
hyperarithmetic analysis, SL0 (sequential limit system) and ABW0 (arithmetic Bolano-
Wierstrass), that are the main focus of our study in this paper. SL0 and ABW0 were first
introduced by Friedman in [Fri75], and come from from basic, well-known theorems in
mathematical analysis. Our statement of ABW0 differs slightly from that of Friedman
[Fri75], which mentions predicates of real numbers. We now state Friedman’s version
of ABW.

(ABW) Consists of RCA (i.e. RCA0, plus the induction scheme for all formulas) together
with the axioms which assert that to every bounded arithmetic predicate of
reals there is either a finite sequence of reals that includes all solutions, or a
real, every neighborhood of which contains at least two solutions.

It is easy to prove that, over RCA0, our version of ABW0 (below) is equivalent to that
of Friedman (above) minus the induction scheme for all formulas. Although we prefer
to think of ABW0 in terms of Friedman’s definition above, we find our version of ABW0

(below) to be more convenient for carrying out proofs related to ABW0, and therefore
after this section we will work exclusively with our version of ABW0, given below.

2In fact, Montalbán has shown that Lω1,ωCA0 is equivalent to a theorem of hyperarithmetic analysis
known as CDG− CA (see [Mon06] for more details including the definition of CDG− CA). In [Mon06,
page 113] Montalbán proves that the restriction of weak− Σ1

1 − AC0 to two-quantifier arithmetic pred-
icates of the form ∀∃ · · · implies CDG− CA.
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Let A(X) be an arithmetic predicate (possibly with parameters) of reals with a single
free set (i.e. real) variable X and no other free variables. Let Z be a set of reals. Recall
that a real Z0 is said to be an accumulation point of the set Z if every neighborhood of
Z0 contains some X ∈ Z such that X ̸= Z0 (Z0 need not belong to Z). In other words,
Z0 is an accumulation point of Z if

(∀n)(∃X ∈ Z)[(X ̸= Z0) ∧ (X↾n = Z0↾n)].

Note that this is equivalent to saying that every neighborhood of Z0 contains at least two
elements of Z. We say that a predicate is bounded if its solutions all live in Cantor space3

(we define Cantor space in the next subsection, called Basic Notation and Background).
Over RCA0, our definition of bounded predicate is equivalent to many other standard
definitions.

(SL0) If A(X) has an accumulation point Z0, then there is an infinite sequence of reals,
{Xn}n∈N, such that (∀n)[A(Xn)] and limnXn = Z0.

(ABW0) If A(X) is bounded then either A(X) has finitely many solutions, or else the set
of solutions to A, {X : A(X)}, has an accumulation point.

It should be noted that Friedman originally introduced SL0 and ABW0 in the context
of unrestricted induction, and in doing so did not include the subscript 0.4

The following are various restrictions of ABW0 that are perhaps more natural than
ABW0 because they do not make use of arithmetic predicates, a notion that is not used
outside of logic.

(OABW0) Every bounded open set of reals has either finitely many points or an accumu-
lation point.

(CABW0) Every bounded closed set of reals has either finitely many points or an accumu-
lation point.

(FσABW0) Every bounded Fσ set of reals has either finitely many points or an accumulation
point.

(GδABW0) Every bounded Gδ set of reals has either finitely many points or an accumulation
point.

(FσδABW0) Every bounded set that is an intersection of Fσ sets of reals has either finitely
many points or an accumulation point.

(GδσABW0) Every bounded set that is a union of Gδ sets of reals has either finitely many
points or an accumulation point.

The notation Fσδ and Gδσ will be explained in Section 1.5.2 below. In the next
section we will show that OABW0 is equivalent to RCA0; CABW0 and FσABW0 are
equivalent to ACA0; GδABW0 and FσδABW0 imply ACA0; and GδσABW0 is a statement
of hyperarithmetic analysis. Furthermore, our main theorems in Sections 3 and 4 will
show that, like ABW0, we have that GδABW0, FσδABW0, and GδσABW0 are incomparable
with other theorems of hyperarithmetic analysis (in particular INDEC0 and ∆1

1 − CA0;
see Corollaries 3.18 and 4.2 below for more details). As a corollary we will conclude
that GδABW0 and FσδABW0 are strictly stronger than ACA0 (Corollary 3.19). We do
not know whether or not GδABW0 and FσδABW0 are statements of hyperarithmetic
analysis.

3It is not difficult to show that, over RCA0, this is equivalent to the standard definition of a bounded
set of reals.

4By including the subscript 0 in SL0 and ABW0, we indicate that we are only assuming induc-
tion for Σ0

1 formulas. This convention applies to all subsystems of second order arithmetic (i.e.
RCA0, WKL0, ACA0, etc.).
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Question 1.7. Are GδABW0 and FσδABW0 statements of hyperarithmetic analysis?

1.4. Our Main Results. Friedman’s article [Fri75] serves as our starting point. In
[Fri75], Friedman makes the following assertions.

Proposition 1.8. [Fri75, Theorem 2.1] Over RCA, SL0 is equivalent to Σ1
1 − AC0. In

other words, if we assume RCA0 and induction for all formulas of second order arith-
metic, then SL0 is equivalent to Σ1

1 − AC0.

Proposition 1.9. [Fri75, page 239] Over RCA, we have that Σ1
1 − AC0 implies ABW0.

One of our main goals in the next section (Theorem 2.1), is to provide explicit proofs of
the previous two propositions. To the author’s knowledge, no proof of either proposition
has ever been published, but the author believes that Friedman must have had proofs
similar to the ones given in the next section before [Fri75].

In the next section (Theorem 2.1) we prove the following theorem.

Theorem 2.1. [Fri75, page 239] Over RCA0 + IΣ1
1 (here IΣ1

1 denotes Σ1
1-induction and

is defined in the next subsection), SL0 is equivalent to Σ1
1 − AC0, while ABW0 implies

weak− Σ1
1 − AC0 and is implied by Σ1

1 − AC0. It follows that SL0 and ABW0 are state-
ments of hyperarithmetic analysis.

As a corollary we will be able to conclude that GδσABW0 (above) is a theorem of
hyperarithmetic analysis. In Theorem 2.4 we will analyze the reverse mathematical
strengths of OABW0, CABW0, FσABW0, GδABW0, and FσδABW0 (see the end of the
previous subsection for our results).

We do not know whether or not our hypothesis of IΣ1
1 can be reduced or eliminated

in Theorem 2.1 above.

Question 1.10. Do the implications of Theorem 2.1 (above) hold over RCA0?

In Section 3 we prove the following theorem.

Theorem 3.1. There is an ω-model of ABW0 that is not a model of ∆1
1 − CA0. There-

fore, ABW0 does not imply ∆1
1 − CA0.

In Section 4 we prove the following theorem.

Theorem 4.1. There is an ω-model of ABW0 that is not a model of INDEC. Therefore,
ABW0 does not imply INDEC0.

These results imply that the reverse mathematical strength of ABW0 lies strictly
between those of Σ1

1 − AC0 and weak− Σ1
1 − AC0, and that the strength of ABW0 is

incomparable to those of ∆1
1 − CA0, and INDEC0. These facts make ABW0 the first

theory of hyperarithmetic analysis that is known to be incomparable to other theories
of hyperarithmetic analysis. As a corollary we will conclude that GδABW0, FσδABW0,
and GδσABW0 are also incomparable with both ∆1

1 − CA0 and INDEC0 (see Corollaries
3.18 and 4.2 below). We leave the following question open, and conjecture that its
answer is “yes.”

Question 1.11. Is every ω-model of Π1
1 − SEP0 also a model of ABW0? In other words,

in the context of ω-models, does Π1
1 − SEP0 imply ABW0?

The following diagram summarizes our main results (over RCA0 + IΣ1
1).
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1.5. Basic Notation and Background.

1.5.1. Cantor space and Baire space. We use 2ω to denote Cantor space, the space of
infinite sequences of 0s and 1s. We use 2<ω to denote the full binary tree, or the set
of finite sequences of 0s and 1s. If σ ∈ 2<ω, and either τ ∈ 2<ω or τ ∈ 2ω, we write
σ ⊆ τ to mean that τ extends σ, or (equivalently) that σ is an initial segment of τ . We
define σ ⊂ τ to mean that σ ⊆ τ and σ ̸= τ . If X ∈ 2ω and n ∈ ω, we write X↾n to
denote the initial segment of X of length n. A set T ⊆ 2<ω is called a tree if T is closed
under initial segments, and for any given tree T ⊆ 2<ω and f ∈ 2ω, we say that f is a
path through T if for every n ∈ ω we have that f↾n = ⟨f(0), f(1), · · · , f(n− 1)⟩ ∈ T .
Furthermore, if T ⊆ 2<ω is a tree, we define [T ] be the set of paths in 2ω through T .
The standard topology on 2ω is obtained by defining basic open sets of the form

[σ] = {X ∈ 2ω : σ ⊂ X},
for every σ ∈ 2<ω. It follows that a sequence of points {Xn : n ∈ ω} ⊆ 2ω converges to
X ∈ 2ω if and only if

(∀k ∈ ω)(∃m ∈ ω)(∀n ≥ m)[Xn↾k = X↾k].

Let ωω denote the set of infinite strings of natural numbers (Baire space), and let ω<ω

denote the set of finite strings of natural numbers. For all X ∈ ωω, σ, τ ∈ ω<ω, and
n ∈ ω, we define σ ⊆ X, σ ⊆ τ, σ ⊂ X, σ ⊂ τ, X↾n, tree, path, [T ] (where T ⊆ ω<ω

is a tree), and basic open sets [σ] ⊆ ωω analogously to the case of Cantor space.
Given a tree T ⊆ ω<ω, and σ ∈ T , we define the well-founded rank of σ (relative to

T ), denoted |σ|T , such that |σ|T = sup{|τ |T +1 : τ ∈ T, σ ⊂ τ}. It follows that σ ∈ T is
not in the well-founded part of T ⊆ ω<ω exactly when |σ|T = ∞. Lastly, for any given
sets A,B ⊆ ω, we will use the notation A ⊂f B to mean that A is a finite subset of B.
We will assume that the reader is familiar with the basics of reverse mathematics,

as presented in Simpson’s book [Sim]. We will use IΣ1
1 (Σ1

1-induction) to denote the
scheme which says that for any Σ1

1 formula φ the following holds:

(IΣ1
1) (φ(0) ∧ (∀n)[φ(n) → φ(n+ 1)]) → (∀n)φ(n).

For the definition of Σ1
1 formula, or more information on the role of induction in reverse

mathematics, consult [Sim].

1.5.2. Arithmetical and Hyperarithmetical Formulas and Hierarchies. A formula φ is
arithmetic if it contains only number quantifiers (i.e. φ contains no set quantifiers).
More specifically, a formula is Σ0

0 or Π0
0 if it is an open formula (i.e. it contains only

bounded quantifiers). Now, for any n ∈ ω, a formula φ is Σ0
n, n > 0, if φ is of

the form (∃x)ψ(x), and ψ(x) is Π0
n−1. A formula φ is Π0

n, n > 0, if φ is of the
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form (∀x)ψ(x), and ψ(x) is Σ0
n−1. We can also define the sets of Σ0

n(A0, A1, . . . , Ak)
and Π0

n(A0, A1, . . . , Ak) formulas in the same way, except that we also allow the sets
A0, A1, . . . , Ak to be used as parameters in these formulas. A formula is arithmetic
(relative to A0, A1, . . . , An) if it is Σ0

n (Σ0
n(A0, A1, . . . , An)), for some n ∈ ω. A set

A ⊆ ω is arithmetic (relative to A0, A1, . . . , Ak) if it is definable by an arithmetic
formula (with parameters A0, A1, . . . , Ak). More information on arithmetic formulas
and arithmetic sets can be found in [Soa].

Let A ⊆ 2ω. We say that A is a Σ0
n (or Π0

n)-class if there is a Σ0
n (or Π0

n) formula φ
such that

A = {X ∈ 2ω : φ(X)}.
Similarly, one can define the notion of Σ0

n(B)-class and Π0
n(B)-class, for any parameter

B ⊂ N. It is well-known that A is Fσ if and only if there is a set B ⊆ ω such that
A is a Σ0

2(B)-class, and A is Gδ if and only if there is a set B ⊆ ω such that A is a
Π0

2(B)-class. Hence, the Fσ and Gδ subsets of Cantor space are arithmetically definable
(with parameters). We will also say that A is Fσδ whenever there exists a parameter

B such that A is a Π0,B
3 -class, and similarly A is Gδσ whenever A is Σ0,B

3 , for some
parameter B. This is equivalent to saying that A is an intersection of Fσ sets, or that
A is the union of Gδ sets, respectively. One of the goals of this article is to examine the
reverse mathematical strength of the Bolzano-Weierstrass theorem (i.e. ABW0) in the
context of open, closed, Fσ, Gδ, Fσδ, and Gδσ sets. This is primarily done in the next
section.

A set A ⊆ ω is computably enumerable (c.e.) if it is the range of a 1-1 computable
function. In other words, A is c.e. if there is an algorithm that lists the elements of A
(not necessarily in order). Generally speaking, a formula φ is a computable infinitary
formula if it contains (finite or) infinite conjunctions or disjunctions, so long as they
are taken over computably enumerable (c.e.) sets of computable infinitary formulas.
More specifically, a computable infinitary Σ0

0 or Π0
0 formula is an open formula (i.e. a

formula with only bounded quantifiers). Now, for any given computable ordinal α > 0,
we define a computable infinitary Σ0

α formula to be a (possibly) infinite disjunction
of a c.e. set of formulas of the form (∃x)φi(x), where φi is a computable infinitary
Π0

β formula, for some β < α. The definition of a computable infinitary Π0
α formula is

similar, except we replace disjunction by conjunction, ∃ by ∀, and Π0
β by Σ0

β. Also,

the sets of computable infinitary Σ0
α(A0, A1, . . . , Ak), Π0

α(A0, A1, . . . , Ak) formulas are
defined similarly, except that we allow the sets A0, A1, . . . , Ak to appear as parameters
in our formulas. X ⊂ ω is Σ0

α (relative to A0, A1, . . . , Ak) if it can be defined by
a Σ0

α formula (with parameters A0, A1, . . . , Ak). A formula φ is computable infinitary
(relative to A0, A1, . . . , Ak) if it is Σ

0
α (Σ0

α(A0, A1, . . . , Ak)), for some computable ordinal
α < ωCK

1 . For further information on computably infinitary formulas and their relation
to the hyperarithmetic hierarchy, consult [AK].

2. ABW0 and SL0 are Theories of Hyperarithmetic Analysis

The purpose of this section is the proof of the following theorem (i.e. Theorem 2.1).
As we already said in the introduction, implications (1)-(3) below are stated (without
proof) in [Fri75, page 239].

Theorem 2.1. The following implications hold over RCA0 + IΣ1
1.

(1) Σ1
1 − AC0 → SL0.

(2) Σ1
1 − AC0 → ABW0.

(3) SL0 → Σ1
1 − AC0. (and hence Σ1

1 − AC0 ↔ SL0)
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(4) ABW0 → weak− Σ1
1 − AC0.

More precisely, we have that SL0 ↔ Σ1
1 − AC0 over RCA0 (without IΣ1

1).

Before we begin the proof of Theorem 2.1, we require the following lemma. Recall
that every known theory of hyperarithmetic analysis that is not equal to either SL0 or
ABW0 implies ACA0. The following lemma says that the same holds for SL0 and ABW0.

Lemma 2.2. Over RCA0 + IΣ1
1 we have that:

(1) SL0 → ACA0.
(2) ABW0 → ACA0.

Proof. We reason in RCA0 + IΣ1
1.

To prove that a subsystem of second order arithmetic S implies ACA0, it suffices to
show that S implies the existence of the halting set ∅′ ⊆ N. To show that SL0 implies
the existence of the halting set ∅′, let A(X) be the arithmetic predicate which says that
there is some n ∈ N such that X↾ (2n + 1) is equal to 0n1∅′↾n, and X = 0n1X↾n0∞.
Then, we have that every neighborhood of 0∞ contains at least two solutions to A(X),
and therefore, by SL0, there is a sequence of reals, ⊕n∈NXn, such that for all n ∈ N,
A(Xn) holds. Via RCA0, we can assume without loss of generality that for every k ∈ N,
Xk satisfies Xk = 0m1∅′↾m for some m > k. Then it is clear that, for any given n ∈ N,
the first n bits of ∅′ can be computed (uniformly) from Xn (so, via RCA0, we have that
∅′ ⊆ N exists).

To prove that ABW0 implies the existence of the halting set ∅′, let A(X) be the
arithmetic predicate which says that X is of the form X = σ0∞, where σ ∈ 2<N, and
σ = ∅′↾ |σ|. Now, since ∅′ ⊆ N is an infinite/coinfinite set, it follows that A(X) does not
have finitely many solutions. Therefore, by ABW0, A(X) must have an accumulation
point. Now, by IΣ1

1, for every n ∈ N there are at most n-many solutions of A(X) such
that X ↾ n ̸= ∅′↾ n). Therefore, we have that ∅′ is the unique accumulation point of
{X : A(X)}, and by ABW0, ∅′ exists.

Note that we only used the hypothesis IΣ1
1 in the second paragraph to show that

ABW0 implies ACA0. Therefore, (1) of Lemma 2.2 is valid over RCA0. □

Proof. Proof of Theorem 2.1 We reason in RCA0 + IΣ1
1. Note that, by Lemma 2.2 above,

if S ∈ {Σ1
1 − AC0, SL0,ABW0,weak− Σ1

1 − AC0}, then S implies ACA0, and therefore we
will assume that ACA0 holds throughout the proof of Theorem 2.1. We prove the four
implications in order. Before we begin the proof of Theorem 2.1, we require the following
elementary observations, definitions, and notation.

Now, let

V = {X ∈ 2N : (∃∞n)[X(n) = 1]};

we will refer to V ⊂ 2N as the set of irrational numbers, and the complement of V (in 2N)
as the set of rational numbers. Note that there is a natural computable homeomorphism
Z : V → NN, such that Z(X)(n), X ∈ V, n ∈ N, is equal to the number of 0s between
the (n − 1)th and nth 1s appearing in X ∈ V . Note also that for every X ∈ V ,
Z(X) ≡T X.

To prove (1), first assume Σ1
1 − AC0. Now, let A(X) be an arithmetic predicate with

a single free set variable X. Furthermore, let X0 ∈ 2N be such that for every open
neighborhood U ⊆ 2N of X0, there exist X1, X2 ∈ U, X1 ̸= X2, such that both A(X1)
and A(X2) hold. We shall use Σ1

1 − AC0 to construct a set Y ∈ 2N such that for every
k ∈ N, A(Y [k]) holds and limk→∞ Y [k] = X0, thus proving that Σ1

1 − AC0 → SL0.
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Let B(X,n), X ∈ 2N, n ∈ N, be the arithmetic predicate with a single free set variable
X, and a single free number variable n, such that

B(X,n) ≡ A(X) ∧ (X↾n = X0↾n).

For any X ∈ 2N and n ∈ N, B(X,n) says that A(X) holds and A↾ n = X0↾ n. Now,
by hypothesis (above), we know that for every n ∈ N there exists a Y ∈ 2N such that
B(Y ). Therefore, by Σ1

1 − AC0, there exists a set Y ∈ 2N such that for every k ∈ N we
have that B(Y [k], k) holds. By definition of B(X,n), this implies that for all k ∈ N we
have that Y [k]↾k = X0↾k (and so limk→∞ Y [k] = X0) and A(Y

[k]) holds.

To prove (2), assume Σ1
1 − AC0 (recall that Σ

1
1 − AC0 implies ACA0), and let A(X) be

a bounded arithmetic predicate with a single free set variable X. We need to show that
if for every n ∈ N, A has at least n-many solutions, then A has an accumulation point
X0 ∈ 2N (note that X0 need not satisfy A). Define an arithmetic predicate B(X,n)
with a single free set variable X and a single free number variable n, such that

B(X,n) ≡ (X =
n⊕

i=0

X i) ∧ (∀i ≤ n)[A(X i)] ∧ (∀i, j ≤ n)[i ̸= j → X i ̸= Xj].

For a fixed n ∈ N, B(X,n) says that X ∈ 2N is the join of n-many distinct solutions
to A(X). We shall apply Σ1

1 − AC0 to the predicate B(X) in order to prove that
ABW0 holds for the predicate A(X). To do this, we first need to prove that, for every
n ∈ N, there exists Xn ∈ 2N such that B(Xn, n) holds. This follows from IΣ1

1 and
our assumption that for all n ∈ N, A(X) has at least n-many solutions. Hence, by
Σ1

1 − AC0, we have that there exists a set

X =
⊕
n∈N

Xn =
⊕
n∈N

⊕n
i=0X

i
n

such that B(Xn, n) holds for every n ∈ N. Note that, by our definition of B(X,n), X i
n

satisfies A(X i
n) for all n ∈ N, 0 ≤ i ≤ n. Moreover, if for every n ∈ N we define

Yn =
⊕

0≤m≤n
0≤i≤m

X i
m,

then Yn contains at least n-many distinct columns because X i
n, 0 ≤ i ≤ n, are columns

of Yn. Using this fact, and arithmetic comprehension (i.e. ACA0) relative to X, we can
construct a set Y ∈ 2N such that Y is of the form

Y =
⊕
n∈N

Yn

and for every n ∈ N we have that A(Yn) holds and Y0, Y1, . . . , Yn, . . . ∈ 2N are mutually
distinct.

Now, using ACA0 relative to Y , we may construct a tree T ⊆ 2<N via the following
definition:

T = {σ ∈ 2<N : (∃∞n ∈ N)[σ = Yn↾ |σ|]}.
T ⊆ 2<N consists of all nodes σ ∈ 2<N that are initial segments of Yn for infinitely
many n ∈ N. We now wish to show that T contains infinitely many nodes, then,
since we are assuming ACA0, we can conclude that there exists an infinite path Z ∈ 2N

through T . Lastly, we will show that Z is in fact an accumulation point of the set
{X ∈ 2N : A(X)}. Let n ∈ N be given. We shall show that T contains a node of length
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n. Note that there are 2n-many binary strings of length n, and by ACA0
5 it follows

that for some σ ∈ 2<N, |σ| = n, there exist infinitely many m ∈ N such that σ = Ym↾n.
By definition of T , we have that σ ∈ T . Hence, T is infinite. Now, using ACA0 with
the parameter T , we can construct an infinite path Z ∈ 2N through T . We now claim
that Z is an accumulation point of the set {X ∈ 2N : A(X)}. Let n ∈ N be given. We
must construct a real X ∈ 2N such that Z↾n = X↾n, Z ̸= X, and A(X) holds. Since
Z↾n ∈ T , (by definition of T ) we know that there are infinitely many m ∈ N such that
Ym↾ n = Z↾ n and A(Ym). Now, since Y0, Y1, Y2, . . . are mutually distinct sets, we can
find some Ym, m ∈ N, such that Ym ̸= Z, Ym↾n = Z↾n, and A(Ym) holds. This proves
that Z ∈ 2N is indeed an accumulation point for the set {X ∈ 2N : A(X)}.

To prove (3), assume that SL0 holds, and suppose that A(X,n) is an arithmetic
predicate with one free set variable X and one free number variable n such that for
every m ∈ N there exists X ∈ 2N such that A(X,m) holds. We need to construct a set
Y = ⊕n∈NYn such that, for every n ∈ N, we have A(Yn, n). Without loss of generality,
assume that A(X, 0) has a solution of the form 0X, X ∈ 2N, and define an arithmetic
predicate B(X), X ∈ 2N, as follows:

B(X) ≡ (∃n ∈ N)(∀m ∈ N)[(m < n→ X [m] = 0∞) ∧ (m > n→ X [m] = 10∞)∧

(m = n→ (X [n] =
n⊕

i=0

Xn
i ) ∧ (X [n](0) = 0) ∧ (∀i ≤ n)[A(Xn

i , i)])].

B(X) says that there exists a number n ∈ N such that every row of X, X [m], m ∈ N,
is equal to 0∞ if m < n or 10∞ if m > n, except for possibly the single row, X [n], which
is the join of sets Xn

0 , X
n
1 , . . . , X

n
n such that for all 0 ≤ i ≤ n, Xn

i satisfies A(Xn
i , i).

If A(X, 0) has no solution of the form 0X, X ∈ 2N, then replace X [n](0) = 0 in the
definition of B(X) with X [n](0) = 1. The rest of the proof would change only slightly
in this case. We assume that after having read the rest of our proof below, the reader
could supply the proof of Theorem 2.1 (3) in the case where A(X, 0) has no solution of
the form 0X, X ∈ 2N (and therefore we will neglect to consider this case in our proof
below).

Let n ∈ N be given, and (by IΣ1
1) let Xn

0 , X
n
1 , . . . , X

n
n ∈ 2N be such that A(Xn

i , i)
holds for all 0 ≤ i ≤ n. By definition of B(X), the set Xn ∈ 2N, n ∈ N, defined by

X
[k]
n = 0∞ if k < n, X

[k]
n = 10∞ if k > n, and X

[n]
n = ⊕n

i=0X
n
i , satisfies B(Xn). Since, by

assumption, there exists a numberm ∈ N such that A(X,m) → X ̸= 0∞, then it follows
that every neighborhood of 0∞ contains at least two solutions to B(X). Therefore, by
SL0, 0

∞ is the limit of some sequence of solutions to B(X). In other words, there exists
Y = ⊕n∈NYn ∈ 2N such that limn→∞ Yn = 0∞ and for all n ∈ N, B(Yn) holds.
Notice that Y must (uniformly) code solutions to A(X,n), for all n ∈ N. To see this,

for all n ∈ N (via ACA0) let f(n) ∈ N be the largest natural number such that that for

all m ≤ f(n) we have that Y
[m]
n (0) = 0. By our construction of B(X) above, it follows

that, for every n ∈ N, f(n) exists and X = Y
[f(n)]
n satisfies A(X [k], k), 0 ≤ k ≤ f(n). In

other words, Y
[f(n)]
n codes solutions to A(X, k) for k = 0, 1, . . . , f(n). Also, note that

since limn→∞ Yn = 0∞, it follows that limn→∞ f(n) = ∞.

5ACA0 implies BΣ2, which is equivalent to the infinite pigeonhole principle. The infinite pigeon-
hole principle states that if X ⊆ N is infinite and we have that X = ∪n

i=0Xi, then there is an
i ∈ {0, 1, 2, . . . , n} such that Xi is infinite.
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Now, from Y = ⊕n∈NYn and f(n), we shall uniformly compute a set X = ⊕n∈NXn

such that for every n ∈ N, A(Xn, n) holds. To compute X [n] (using the fact that
limn f(n) = ∞) find the smallest argument m ∈ N such that f(m) > n, and set X [n]

equal to (Y
[f(m)]
m )[n] (i.e. the nth column of the f(m)th column of Ym). By our construc-

tion of B(X) above, we have that A(X [n], n) holds, as required.

To prove implication (4), assume ABW0, and suppose that A(X,n) is an arithmetic
predicate with a single free set variable X and a single free number variable n such
that for every n ∈ N there exists a unique X ∈ NN such that A(X,n) holds. Recall
our definitions of V ⊆ 2N and Z : V → NN given at the beginning of this proof. Via
ABW0, we shall construct the set Y ∈ 2N such that Y = ⊕n∈NXn and A(Z(Xn), n)
(it is not difficult to check that, over RCA0, constructing such a Y ∈ 2N is equivalent
to proving that weak choice holds for A(X,n)). To construct Y ∈ 2N, consider the
bounded arithmetic predicate B(X) defined by

B(X) ≡ (∃n0 ∈ N)[(∀n ≤ n0)[A(Z(X
[n]), n)] ∧ (∀n > n0)[X

[n] = 0∞]].

B(X) says that there exists a number n0 ∈ N such that if n ≤ n0 then X
[n] ∈ 2N satisfies

A(Z(X [n]), n), and if n > n0 then X [n] = 0∞. By IΣ1
1, and the fact that 0∞ /∈ V , it

follows that for all k ∈ N, B(X) has at least k-many solutions.
Now, we can apply ABW0 to conclude that there exists Y ∈ 2N such that Y is an

accumulation point for the set {X ∈ 2N : B(X)}. Note that, for any given number
k ∈ N, Y is also an accumulation point for the class {X ∈ 2N : B(X)} ∩ {X ∈
V : (∀i ≤ k)[A(Z(X [k]), k)]}, since this class differs from {X ∈ 2N : B(X)} by
at most k-many elements. We now show that Y = ⊕n∈NXn, where Xn, n ∈ N,
is such that A(Z(Xn), n) holds. It suffices to show that, for every n ∈ N and
k ≤ n, we have that Y [k] ↾ n = X ↾ n, where X ∈ 2N is the unique solution to
A(Z(X), k). Suppose, for a contradiction, that this were not the case. In other
words, suppose that for some n ∈ N there is some k ∈ N, k ≤ n, such that
Y [k] ↾ n ̸= X0 ↾ n, X0 ∈ V, and A(Z(X0), k) holds. Then, since Y ∈ 2N is an accu-
mulation point for the class {X ∈ 2N : B(X)} ∩ {X ∈ V : (∀i ≤ k)[A(Z(X [i]), i)]},
there exists W ∈ {X ∈ 2N : B(X)} ∩ {X ∈ V : (∀i ≤ k)[A(Z(X [i]), i)]} such that
Y [k]↾n = W [k]↾n ̸= X0↾n and B(W ) holds. Now, by definition of X0,W ∈ V , we have
that A(Z(X0), k) holds, A(Z(W [k]), k) holds, but Z(X0) ̸= Z(W [k]), and therefore we
have contradicted the fact that for every m ∈ N there is a unique set X ∈ NN such
that A(X,m) holds. We now conclude that Y ∈ 2N, Y = ⊕n∈NXn, A(Z(Xn), n), as
required.

At this point we wish to note that we did not use our hypothesis of IΣ1
1 in the proofs

of (1) and (3) above, therefore, we have that SL0 ↔ Σ1
1 − AC0 holds over RCA0. □

Corollary 2.3. GδσABW0 is a theorem of hyperarithmetic analysis.

Proof. In [Mon06, page 113] it is shown that the restriction of weak− Σ1
1 − AC0 to

two quantifier arithmetic predicates of the form ∀∃ · · · is a theorem of hyperarithmetic
analysis (since it implies CDG− CA, which is equivalent to Lω1,ωCA0). If we take the
predicate A(X,n) of Theorem 2.1 (4) to be of this form, then it follows that the predicate
B(X) is of the form ∃∀∃ · · · (i.e. B is Σ0

3 relative to some parameter), which corresponds
to a Gδσ set of real numbers. Therefore, to prove the restriction of weak− Σ1

1 − AC0 to
two quantifier arithmetic predicates of the form ∃∀∃ · · · it suffices to assume GδσABW0.
It follows that GδσABW0 is a theorem of hyperarithmetic analysis. □
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Next, we shed light on the reverse mathematical strengths of OABW0, CABW0,
FσABW0, GδABW0, and FσδABW0.

Theorem 2.4. The following hold over RCA0.

(1) OABW0 is equivalent to RCA0.
(2) CABW0, and FσABW0 are equivalent to ACA0.
(3) GδABW0 and FσδABW0 imply ACA0.

Proof. Note that FσABW0 implies CABW0, and that FσδABW0 implies GδABW0 (since
every open set is Fσ, even in RCA0).
To prove (1) it suffices to prove OABW0 via RCA0. Let U ⊆ 2N be a bounded open set

of reals (recall that in RCA0 bounded open sets of reals are represented by a prefix-free
sequence of finite binary strings), and let σ ∈ 2<N be such that the open set generated
by σ, [σ] ⊆ 2N, is contained in U . It follows that σ0∞ exists (via RCA0) and is the
accumulation point of the sequence fn = σ0n1∞ ∈ U , n ∈ N. Note that the sequence
{fn}n∈N exists via RCA0.
We now sketch the proof of (2) and leave it to the reader to fill in the details. First,

we show that ACA0 implies FσABW0. To see why, let Cn ⊆ 2<N, n ∈ N, be a sequence
of bounded (effectively) closed sets (relative to some parameter). We aim to show that
∪n∈NCn ⊆ 2N is either finite or has an accumulation point. If ∪n∈NCn ⊆ 2N is not finite,
then via ACA0 we can construct a sequence of mutually distinct reals, {fj}j∈N, fj ∈ 2N,
such that for all j ∈ N there exists n ∈ N such that fj ∈ Cn. Then, we may apply
the standard Bolzano-Weierstrass theorem [Sim, Theorem III.2.2] (via ACA0) to the
bounded sequence of reals {fj}j∈N to obtain a convergent subsequence. Finally, we may
use ACA0 (again) to take the limit of the subsequence, thus obtaining an accumulation
point for the convergent subsequence (which is also an accumulation point for the
sequence {fj}j∈N and also the Fσ set ∪n∈NCn ⊆ 2N). To complete the proof of (2) it
suffices to show that CABW0 implies ACA0. To prove this, simply construct a Π0

1-class
with a unique rank one (i.e. nonisolated) point that computes the halting set. The
construction is valid in RCA0 (here we are using the fact that RCA0 includes induction
for Σ0

1 formulas).
Note that (3) follows from (2) (i.e. (3) follows from the fact that CABW0 implies

ACA0 since every closed set of reals is Gδ and every Gδ set of reals is Fσδ). □

In the next two sections we will show that GδABW0, FσδABW0, and GδσABW0 are
incomparable with ∆1

1 − CA0 and INDEC0 (see Corollaries 3.18 and 4.2 below), and
that GδABW0 and FσδABW0 are strictly stronger than ACA0 (see Corollary 3.19 below).
We will obtain all of these results as a corollary to our proof that ABW0 is incomparable
with ∆1

1 − CA0 and INDEC0.

3. ∆1
1 − CA0 does not imply ABW0

In this section we prove the following theorem.

Theorem 3.1. There is an ω-model of ∆1
1 − CA0 that is not a model of ABW0. Hence,

∆1
1 − CA0 does not imply ABW0.

In [Ste78], Steel constructs an ω-model M∞ ∩ P(ω) that satisfies ∆1
1 − CA0, but not

Σ1
1 − AC0. In [Mon], Montalbán shows that Steel’s model also satisfies Π1

1 − SEP0. We
shall provide a subtle modification of Steel’s construction that produces a model M∞
satisfying ∆1

1 − CA0 + ¬ABW0. The rest of this section closely follows Montalbán’s
treatment of the matter in Section 2 of [Mon].
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3.1. Constructing M∞. To construct M∞, we first construct a generic object

G = ⟨TG, {αG
i : i ∈ ω}, hG⟩,

where TG ⊆ ω<ω is a tree, {αi : i ∈ ω} is a set of paths through TG, and hG : TG →
ωCK
1 ∪ {∞} is the well-founded rank function for TG; i.e. hG(s) = |s|TG . The function
hG ensures that [TG] ∩M∞ = {αi : i ∈ ω}, and helps to prove certain properties of the
forcing notion.

Throughout this section F will denote a finite subset of ω, i.e. F ⊂f ω. For all such
F , we letMF be the class of sets that can be defined by a computable infinitary formula
relative to the parameters TG and αi, i ∈ F. In other words,

MF = {X ⊆ ω : (∃µ < ωCK
1 )[X ∈ Σ0

µ(T
G, αG

i : i ∈ F )]}.
This can also be expressed as follows

MF = P(ω) ∩ LωCK
1

({TG} ∪ {αi : i ∈ F}),

where LωCK
1

({TG} ∪ {αi : i ∈ F}) is the class of Gödel constructible sets up to level

ωCK
1 , starting from {TG} ∪ {αG

i : i ∈ F} [Ste78, page 57]. Lemma 3.8 says that, for
every F ⊂f ω, we have that that MF =HYP(T ⊕

⊕
i∈F αi). It follows that, for every

F ⊂f ω, MF is closed under hyperarithmetic reductions.
We now define our desired model M∞ as follows:

M∞ =
⋃

F⊂fω

MF .

As in [Ste78, Mon], we will show that for every F ⊂f ω, the set of paths through
TG in MF is equal to {αi : i ∈ F}. It follows that the set of paths through TG in
M∞ is {αi : i ∈ ω} (Lemma 3.6), and from this fact we shall be able to deduce that
M∞ ⊭ ABW0 (Corollary 3.7).

For any given µ < ωCK
1 and F ⊂f ω, we define Mµ,F , Mµ,∞, HF,µ, and Sµ,F,e exactly

as in Section 2 of [Mon]. Mµ,F is the class of Σ0
ν-definable sets in the parameters T and

αi, i ∈ F , where ν ranges over all ordinals less than µ. Mµ,∞ = ∪F⊂fωMµ,F . HF,1 is

defined as the join of TG, αi, i ∈ F ; Sµ,F,e is the e-th c.e. set relative to HF,µ; and for
µ > 1, HF,µ is the join of Sν,F,e such that ν < µ, e ∈ ω. By our definitions above, and
some well-known facts about infinitary formulas and definability, it follows that the sets
Sµ,F,e belong to Σ0

µ(T
G, αi : i ∈ F ) and that Mµ,F = {Sν,F,e : e ∈ ω, ν < µ}.

3.2. Our Forcing Conditions. Our forcing conditions are motivated by those of Steel
[Ste78] and Montalbán [Mon]. One major difference, however, is the introduction of a
new tagging function g : T p

∞ → {0, 1} that tags the set of nodes T p
∞ = {σ ∈ T p : hp(σ) =

∞} (see below for more details). The function g ensures that we do not add too many
paths to the generic tree TG = ∪p∈GT

p, which allows us to conclude that [TG] has no
accumulation points in M∞, and therefore M∞ does not satisfy ABW0 (see Lemma 3.6
and Corollary 3.7).

Our forcing conditions are quadruplets ⟨T p, fp, hp, gp⟩ such that

(1) T p ⊂ ω<ω is a finite nonempty tree.
(2) fp : ω → T p is such that dom(fp) ⊂f ω.
(3) hp : T p → ωCK

1 ∪ {∞} so that
(a) (∀σ, τ ∈ T p)[σ ⊂ τ ⇒ hp(σ) > hp(τ)].
(b) (∀σ ∈ T p)[((∃i ∈ ω)σ ⊆ fp(i)) ⇒ hp(σ) = ∞].
(c) hp(∅) = ∞.
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(4) gp : T p
∞ → {0, 1}, where T p

∞ = {σ ∈ T p : hp(σ) = ∞}, is such that if T p = {∅}
then gp(∅) = 1.

By fiat, ∞ > ∞ and ∞ > ωCK
1 . From now on, let P denote the set of our forcing

conditions.
For p, q ∈ P , we define p ≤ q if and only if

(5) T q ⊆ T p.
(6) (a) dom(f q) ⊆ dom(fp).

(b) (∀i ∈ dom(f q))[f q(i) ⊆ fp(i)].
(c) (∀i ∈dom(f q))(∄σ ∈ T q)[f q(i) ⊂ σ ⊆ fp(i)].

(7) hq = hp↾T q.
(8) (a) If gq(σ) = 1, but gp(σ) = 0, then there exists some τ ⊃ σ, τ ∈ T p, such

that σ ∈ T q is the longest initial segment of τ on T q, and gp(τ) = 1.
(b) For all σ ∈ T p \ T q such that gp(σ) = 1, there exists τσ ∈ T q, τσ ⊂ σ such

that gq(τσ) = 1 and gp(τσ) = 0.
(9) For every i ∈dom(fp)\dom(f q), if σi ∈ T q is the longest initial segment of fp(i)

on T q, then we have that gq(σi) = 1.

For any given p ∈ P , T p, hp, and fp play the same role here as they did in [Mon, Ste78].
The most significant difference between our conditions and those of [Mon, Ste78] is the
introduction of our function gp : T p

∞ → {0, 1} that tags the nodes of T p
∞ = {σ ∈ T p :

hp(σ) = ∞}. More precisely, gp acts as a lock on σ ∈ T p
∞. The lock is open when

gp(σ) = 1, and the lock is closed when gp(σ) = 0. Condition (9) says that if p ≤ q
wishes to add new paths to our model by extending the domain of f q ⊂ fp, then the
longest initial segment of all such paths in T q must be unlocked. The primary goal
of the lock gp(σ) is to restrict the creation of new paths, so that we can prove that
[T ] ⊂ ωω has no accumulation points in M∞, and hence M∞ does not satisfy ABW0

(Lemma 3.6 and Corollary 3.7). Our second requirements on g is given in condition
(8) above. Roughly speaking, condition (8a) above says that whenever we lock a node
σ ∈ T q, there must be some node τ ⊃ σ, τ ∈ T p \ T q, that is unlocked. This property
will be used to prove that M∞ satisfies ∆1

1 − CA0 (Lemma 3.13). Condition (8b) is a
converse to (8a), and says that in order to unlock a node τ ∈ T p, we must lock some
initial segment of τ . We will use condition (8b) in the proof of Corollary 3.7 below,
which says that ABW0 does not hold in our model M∞.

Let P = ⟨P,≤⟩, and let G ⊂ P be a sufficiently P -generic filter. More specifically,
let G be generic enough to force every Σ-over-LF formula, which we will define later
in this section. Define TG = ∪p∈GT

p, αG
i = ∪p∈Gf

p(i), i ∈ ω, and hG = ∪p∈Gh
p.

By definition of M∞ = ∪F⊂fωMF , we will show that for all i ∈ ω, we have that

[TG] ∩M∞ = {αG
i : i ∈ ω}. From this it will follow that M∞ does not satisfy ABW0.

3.3. The Forcing Language. The forcing language L∞, as well as the languages
LF , F ⊂f ω, are identical to those defined by Montalbán in Section 2.3 of [Mon]. For a
complete description of Montalbán’s languages, we refer the reader to [Mon]. Here we
will give a brief overview of our languages, which we denote by L∞ and LF , F ⊂f ω.
The languages LF , F ⊂f ω, consist of the symbols ∈,=,+,×, ,≤; constants for

natural numbers; number variables; unranked set variables XH , YH , . . . , H ⊆ F ; ranked
set variables Xν

H , Y
ν
H , . . . , H ⊆ F ; the usual logical connectives; the usual quantifiers for

both number an set variables; the symbols T ,αi,Sν,F,e,Hν,F : i ∈ F ⊂f ω, e ∈ ω, ν <
ωCK
1 ; and the elements of the sets of constants CF

λ , λ < ωCK
1 , that name elements of

MF .
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The symbols of L∞ include those in ∪F⊂fωLF , but also includes both ranked and
unranked set variables of the form Xν and X, respectively. A variable X ∈ L∞ is
F -restricted if it is subscripted H for some H ⊆ F . A formula of L∞ is F -restricted if
and only if all of its bounded variables are F -restricted.

The semantics of the languages L∞,LF , F ⊂f ω, are straightforward. Simply re-
member that T denotes TG ⊆ ω<ω; αi denotes α

G
i ∈ ωω; Sν,F,e denotes Sν,F,e; Hν,F

denotes Hν,F ; X
ν
F ranges over Mν,F ; X

ν ranges over Mν,∞; XF ranges over MF ; and X
ranges over M∞.
We say that a formula of L∞ is ranked if all of its bounded variables

are ranked. If ψ is a formula of L∞, then o(ψ) denotes the least up-
per bound of {ν : ν is the superscript of a quantified variable in ψ} ∪ {ν + 1 :
some constant of the form Sν,F,e or Hν,F appears in ψ}. For every constant c = CF

λ

above, we let o(c) = o(∅ ∈ C). Also, for all ψ ∈ L∞, define

rk(ψ) = ωCK
1 · u(ψ) + ω2 · o(ψ) + ω · r(ψ) + n(ψ),

where u(ψ) is the number of unranked quantifiers in ψ, r(ψ) is the number of ranked
quantifiers in ψ, and n(ψ) is the number of connectives in ψ.

3.4. The Forcing Relation. The definition of the forcing relation is standard; for
further details consult [Mon]. One can show (by transfinite induction) that if p ∈ P
and ψ ∈ L∞, then p ⊩ ψ if and only if whenever G is a sufficiently generic filter such
that p ∈ G and M∞ is the model obtained from G, then M∞ ⊨ ψ.

3.5. Retaggings in P . We now introduce the notion of a retagging. This notion will
play a significant role throughout the rest of Section 3, and we will define other notions
of retaggings later on. For now, our definition of retagging is similar to that of Steel
[Ste78] and Montalbán [Mon], and, as a result, both the statements and proofs of the
results in this section are similar to those found in Section 2.5 of [Mon].

Definition 3.2. Let p, p∗ ∈ P , F ⊂f ω, and µ ∈ ωCK
1 be given. Then p∗ is a µ −

F−absolute retagging of p, and we write Ret(µ, F, p, p∗), if the following three conditions
are satisfied:

(1) T p = T p∗ , F ⊆dom(fp), fp↾F = fp∗↾F .
(2) (∀σ ∈ T p)[hp(σ) < µ⇒ hp

∗
(σ) = hp(σ)].

(3) (∀σ ∈ T p)[hp(σ) ≥ µ⇒ hp
∗
(σ) ≥ µ].

It can be shown that, for a fixed subset F ⊂f ω and ordinal µ < ωCK
1 , we have that

Ret(µ, F, ·, ·) is an equivalence relation on P . The intuition behind the following lemma
is that Ret(µ, F, p, p∗) holds only if p, p∗ ∈ P are indistinguishable inside Mµ,F .

Lemma 3.3. [Mon, Lemma 2.4] Let ψ be a ranked formula in LF , and let p, p∗ ∈ P .
Then,

Ret(ω · rk(ψ), F, p, p∗) ⇒ (p ⊩ ψ ⇔ p∗ ⊩ ψ).

The following lemma is crucial to the proof of Lemma 3.3. It is also crucial to the
proof of Theorem 3.1.

Lemma 3.4. [Mon, Lemma 2.5] Let p∗ be an ω ·β−F−absolute retagging of p ∈ P and
suppose that γ < β and q ≤ p. Then, there exists q∗ ≤ p∗ such that Ret(ω · γ, F, q, q∗).
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Proof. We construct q∗ ∈ P as follows. First, set T q∗ = T q. Secondly, set f q∗(i) = f q(i),
for all i ∈ F , and f q∗(i) = fp∗(i), for all i ∈dom(fp∗) \ F . Next, let hq

∗ ⊇ hp
∗
be such

that hq
∗
(σ) = ∞ for all σ ∈ T q∗ \ T p∗ , σ ⊆ f q∗(i), i ∈ F . Also, define hq

∗
(σ) = hq(σ)

whenever hq(σ) < ω · γ, and set hq
∗
(σ) = ω · γ + |σ|Q, for all σ ∈ Q, where Q ⊆ T q∗

is the set of nodes in T q∗ on which hq
∗
is currently undefined. Finally, let gq

∗ ⊇ gp
∗
be

such that gq
∗
(σ) = 0, for all σ ∈ T q∗

∞ \ T p∗
∞ .

One can check that q∗ ∈ P , q∗ ≤ p∗, and Ret(ω · γ, F, q, q∗). □

The proof of Lemma 3.3 (above) is exactly the same as that of [Mon, Lemma 2.4].

Define Pβ = {p ∈ P : ran(hp) ⊆ β ∪ {∞}}. By Lemma 3.3, it follows that if ψ = ¬φ
is of rank β and p ∈ Pω·β, then p ⊩ ¬φ if for every q ∈ Pω·β, q ≤ p, we have that q ⊮ φ.
From this, we can conclude the following corollary (by transfinite induction on β).

Corollary 3.5. [Mon, Corollary 2.6] For a formula ψ of rank β, 0(β) can decide whether
or not p ⊩ ψ uniformly in ψ, p, and β.

The first major application of Lemmas 3.3 and 3.4 is in the proof the following lemma,
a corollary of which says that our generic model M∞ does not satisfy ABW0.

Lemma 3.6. [Mon, Lemma 2.7] For every F ⊂f ω, we have that

MF ∩ [TG] = {αG
i : i ∈ F}.

Proof. Suppose, for a contradiction, that S = Sν,F,e ∈ MF is a path through TG that
is different from αG

i , for i ∈ F . Then there exists σ ⊂ S, |σ| > 1, such that σ is not an
initial segment of αG

i , i ∈ F . Now, let p ∈ G be such that dom(fp) ⊇ F , σ ∈ T p, and

p ⊩ S ∈ [T ] & σ ⊆ S & ∀i ∈ F (σ ⊈ αi).

Now, let β be greater than ω times the rank of ψ, and large enough so that p ∈ Pβ.
Since S is a path in TG, it follows that hG(σ) = ∞, and thus hp(σ) = ∞. We will
construct a p∗ ∈ P such that Ret(β, F, p, p∗) and hp

∗
(σ) ∈ ωCK

1 . To define p∗, all we
need to do is change the values of hp(τ), τ ⊇ σ, to ordinals in ωCK

1 that are greater
than β.
Now, by Lemma 3.3, we have that

p∗ ⊩ S ∈ [T ] & σ ⊆ S & ∀i ∈ F (σ ⊈ αi),

a contradiction since σ is in the well-founded part of TG∗
, for any generic filter G∗

extending p∗. □

The following corollary says that our generic model M∞ does not satisfy ABW0. The
reason for this, informally speaking, is that the set

{X : X ∈ [TG]}

has no accumulation point in M∞.
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Before we state and prove the corollary, however, we require some elementary defini-
tions. Recall (from the proof of Theorem 2.1) that

V = {X ∈ 2ω : (∃∞n)[X(n) = 1]};
we will refer to V ⊂ 2ω as the set of irrational numbers, and the complement of V (in 2ω)
as the set of rational numbers. Note that there is a natural computable homeomorphism
Z : V → ωω, such that Z(X)(n), X ∈ V, n ∈ ω, is equal to the number of 0s between
the nth and (n + 1)th 1s appearing in X ∈ V . Note also that for every X ∈ V ,
Z(X) ≡T X.

Corollary 3.7.
M∞ ⊭ ABW0.

Proof. Let A(X) be the bounded arithmetic formula of a single free set variable X such
that

A(X) ≡ (X ∈ V ) ∧ (Z(X) ∈ [TG]).

Note that A(X) is a Π0,TG

2 predicate, and therefore defines a Gδ set of reals.
First, note that A(X) has infinitely many solutions inM∞ of the form Z−1(αG

i ), i ∈ ω.
Next, we will show that {X : A(X)} has no accumulation point in M∞.
The first step in proving that {X : A(X)} has no accumulation point in M∞ is to

show that such an accumulation point cannot be rational. To see why this is the case,
note that by condition (8b) and the genericity of G ⊆ P , it follows that for any given
node σ ∈ TG there exists a number nσ ∈ ω such that for every p ∈ G and every τ ∈ TG

such that τ ⊇ σk, k ≥ nσ, we have that gp(τ) = 0 whenever it is defined. Therefore, if
X ∈ 2ω is an accumulation point of {X ∈M∞ : A(X)}, then X must be irrational (i.e.
Z(X) ∈ ωω is defined).

Now, since [TG] ⊆ ωω and Z−1([TG]) ⊆ 2ω are closed sets, by the previous paragraph
we have that every accumulation point of {X : A(X)} must live inside Z−1([TG]) (but
not necessarily inside M∞ ∩ Z−1([TG])). Furthermore, by Lemma 3.6, to show that
{X : A(X)} has no accumulation point in M∞, it suffices to show that for every i ∈ ω,
Z−1(αG

i ) ∈ 2ω is not an accumulation point of {X ∈ M∞ : A(X)}. We prove this by
contradiction.

Suppose, for a contradiction, that there exists some i ∈ ω such that Z−1(αG
i ) ∈ 2ω is

an accumulation point of the set {X : A(X)}, and let p ∈ P be such that i ∈dom(fp).
Now, by genericity of G ⊆ P , let q ≤ p, q ∈ P , be such that all σ ∈ T q

∞ such that
gq(σ) = 1 are incomparable with f q(i) ∈ T q

∞. By our condition (9) in Section 3.2, it
follows that Z−1(αG

i ) ∈ 2ω is not an accumulation point for the set {X : A(X)}, because
[TG] ∩ [f q(i)] ∩M∞ = {αG

i }, and thus αG
i is isolated in [TG], from the point of view of

M∞.
Note that Theorem 2.4 above implies that we could not have produced a simpler

formula (in terms of quantifiers) for A(X). In other words, Corollary 3.7 is sharp in
terms of the quantifier complexity of A(X). □

Following [Ste78, Mon], for all F ⊂f ω, we say that a formula ψ ∈ L∞ is Σ-over-LF if
it is built up from ranked, F -restricted formulas using ∧,∀n, and ∃X. For any formula
ψ ∈ L∞ and µ < ωCK

1 , ψµ is the result of replacing “X” by “Xµ”, for every unranked
variable X. Note that if F ⊂f ω, ψ is Σ-over-LF , µ < ωCK

1 , and µ > o(d) for any
constant d appearing in ψ, then we have that ψµ ⇒ ψ.

The proof of the following lemma is very similar to the one given in [Mon].

Lemma 3.8. [Mon, Lemma 2.9]
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(1) Let p ∈ P , p ⊩ ψ, where ψ ∈ L∞ is Σ-over-LF , and F ⊂f ω. Then (∃µ <
ωCK
1 )(∀ρ)[µ ≤ ρ < ωCK

1 ⇒ p ⊩ ψρ].
(2) MF ⊨ Σ1

1 − AC0, and hence MF is hyperarithmetically closed. Moreover,
MF =HYP(T ⊕

⊕
i∈F α

G
i ).

3.6. Automorphisms of P . Let π : ω → ω be an automorphism (i.e. permutation) of
ω. Then π induces an automorphism π̂ of P as follows: T π̂(p) = T p, hπ̂(p) = hp, gπ̂(p) =
gp, and f π̂(p)(π(i)) = fp(i), i ∈ ω. Automorphisms of the form π̂, π : ω → ω a
permutation, play a significant role throughout the rest of this section. Given φ ∈ L∞,
let π(ψ) be the formula obtained from ψ by replacing αi by απ(i) for every i ∈ ω.
The following lemma is proved by induction on the rank of ψ ∈ L∞.

Lemma 3.9. [Mon, Lemma 2.10] Let π be a permutation of ω, let p ∈ P , and let
ψ ∈ L∞. Then

p ⊩ ψ ⇔ π̂(p) ⊩ π(ψ).

Remark : As in [Mon], we shall mainly use automorphisms (of P ) of the form π̂ in
the following way. Let F ⊂f ω, and let K ⊂f ω be such that F ∩K = ∅. Also, suppose
that p ∈ P has dom(fp)⊆ F , that ψ has constants in LF , and that r ∈ P is such that
r ≤ p and r ⊩ ψ. Now, via an automorphism of P , we can replace r by a condition π̂(r)
such that π̂(r) ≤ p, π̂(r) ⊩ ψ, and dom(f π̂(r)) ∩K. In other words, we could replace r
by π̂(r) if necessary to guarantee that dom(r)∩K = ∅ is disjoint from F ⊂f ω.

We now introduce a stronger notion of retagging, which we shall use throughout the
rest of this section.

Definition 3.10. Let p, p∗ ∈ P , F ⊂f ω, and µ ∈ ωCK
1 be given. Then p∗ is a good

µ−F−absolute retagging of p, and we write Ret(µ, F, p, p∗), if the following conditions
are satisfied:

(1) T p = T p∗ , and fp↾F = fp∗↾F .
(2) (∀σ ∈ T p)[hp(σ) < µ⇒ hp

∗
(σ) = hp(σ)].

(3) (∀σ ∈ T p)[hp(σ) ≥ µ⇒ hp
∗ ≥ µ].

(4) T p
∞ ⊆ T p∗

∞ .
(5) (∀σ ∈ T p

∞)[gp(σ) = 1 ⇒ gp
∗
(σ) = 1].

We also define RetF (µ, F, p, p
∗) exactly as Ret(µ, F, p, p∗), except that we also require

F ⊆dom(fp) in condition (1). Note that Ret and RetF are not equivalence relations
(because of condition (5)).

We now prove some retagging lemmas concerning Ret and RetF . These lemmas are
similar in spirit to Lemmas 3.3 and 3.4 above (or [Mon, Lemma 2.4, Lemma 2.5]).

Lemma 3.11. Let ψ be a ranked formula in LF , and let p, p∗ ∈ P . Then,

RetF (ω · rk(ψ), F, p, p∗) ⇒ (p ⊩ ψ ⇔ p∗ ⊩ ψ).

Note that Lemma 3.3 is is a particular case of Lemma 3.11. It depends heavily upon
Corollary 3.13 and Lemma 3.14 below. First, however, we prove Lemma 3.12, which is
a stronger version of Corollary 3.13. Lemma 3.12 will play a major role in the proof of
Lemma 3.15 below.

Lemma 3.12. Suppose that F ⊂f ω, Ret(ω · β, F, p, p∗), and that γ < β and q ≤ p.
Then, there exists q∗ ≤ p∗ such that Ret(ω · γ, F, q, q∗).
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Proof. We construct q∗ ∈ P as follows. First, define T q∗ = T q. Secondly, set f q∗(i) =
f q(i), for all i ∈ F∩dom(f q), and f q∗(i) = fp∗(i), for all i ∈dom(fp∗) \ F . Next, we
define hq

∗
: T q∗ → ωCK

1 ∪ {∞} as follows.

(a) Let hq
∗
(σ) = hp

∗
(σ), for all σ ∈ T p∗ .

(b) Let hq
∗
(σ) = ∞, for all σ ∈ T q∗ \ T p∗ such that hq(σ) = ∞.

(c) Let hq
∗
(σ) = hq(σ), whenever σ ∈ T q∗ \ T p∗ is such that hq(σ) < ω · γ.

(d) Let hq
∗
(σ) = ω · γ + |σ|Q for all σ ∈ Q, where Q ⊆ T q∗ \ T p∗ is the set of nodes

in T q∗ \ T p∗ not covered by cases (a)-(c) above.

Lastly, we define gq
∗
: T q∗

∞ → {0, 1} as follows.

(i) For all σ ∈ T p∗ , let gq
∗
(σ) = 0, if either gp

∗
(σ) = 0, or else gp(σ) = 1 and

gq(σ) = 0. Let gq
∗
(σ), σ ∈ T p∗ , be equal to 1 otherwise.

(ii) Let gq
∗
(σ) = 1, for all σ ∈ T q∗ \ T p∗ such that gq(σ) = 1.

(iii) Let gq
∗
(σ) = 0, for all σ ∈ T q∗ \ T p∗ such that gq(σ) = 0.

One can verify that, by the construction of q∗, we have that q∗ ∈ P , q∗ ≤ p∗, and
Ret(ω · γ, F, q, q∗), as required. □

The statement of the following corollary is the same as that of the previous lemma,
except that we replace Ret with RetF . Moreover, it follows immediately from Lemma
3.12.

Corollary 3.13. Suppose that F ⊂f ω, RetF (ω ·β, F, p, p∗), and that γ < β and q ≤ p.
Then, there exists q∗ ≤ p∗ such that RetF (ω · γ, F, q, q∗).

The next lemma is the counterpart to Lemma 3.12 above, except that it can only be
verified with RetF in place of Ret.

Lemma 3.14. Suppose that F ⊂f ω, RetF (ω · β, F, p, p∗), and that γ < β and q∗ ≤ p∗.
Then, there exists q ≤ p such that RetF (ω · γ, F, q, q∗).

Proof. We construct q ∈ P as follows. First, define T q = T q∗ . Secondly, set f q(i) =
f q∗(i), for all i ∈ F , and f q(i) = fp(i), for all i ∈dom(fp) \ F . Next, we define
hq : T q → ωCK

1 ∪ {∞} as follows.

(a) hq(σ) = hp(σ), for all σ ∈ T p.
(b) hq(σ) = ∞, for all σ ∈ T q \ T p such that hq

∗
(σ) = ∞ and hp(τσ) = ∞, where

τσ ∈ T p is the longest initial segment of σ on T p.
(c) hq(σ) = hq

∗
(σ), whenever σ ∈ T q \ T p and hq

∗
(σ) < ω · γ.

(d) hq(σ) = ω · γ + |σ|Q for all σ ∈ Q, where Q ⊆ T q \ T p is the set of nodes in
T q \ T p not covered by cases (a)-(c) above.

Lastly, we define gq : T q
∞ → {0, 1} as follows.

(i) For all σ ∈ T p, let gq(σ) = 0, if either gp(σ) = 0, or else gp
∗
(σ) = 1 and

gq
∗
(σ) = 0. Let gq(σ), σ ∈ T p, be equal to 1 otherwise.

(ii) Let gq(σ) = 1, for all σ ∈ T q \ T p such that gq
∗
(σ) = 1 and there is some τ ⊂ σ,

τ ∈ T p, such that gp(τ) = 1 but gq(τ) = 0 via case (i) above.
(iii) Let gq

∗
(σ) = 0, for all σ ∈ T q∗ \ T p∗ not covered by case (ii) above.

One can verify that, by condition (8a) in Section 3.2 and our construction of q above,
we have that q ∈ P , q ≤ p, and RetF (ω · γ, F, q, q∗), as required. □

The following key lemma (Lemma 3.15) will play a major role in the proof of Theorem
3.17 (below), which says thatM∞ satisfies ∆1

1 − CA0. Its statement is similar to that of
[Mon, Lemma 2.12], but our proof depends heavily on the previous two (new) lemmas
and corollary.
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Lemma 3.15. Let F ⊂f ω and ψ ∈ L∞ be a Σ-over-LF sentence. Suppose also that
ν = rk(ψµ), where µ < ωCK

1 . Then,

RetF (ων + ω2, F, p, p∗) & dom(fp) = F ⇒ (p ⊩ ψµ ⇒ p∗ ⊩ ψµ).

(Note that ψµ is not necessarily in LF , because it may have quantifiers of the form
∃Xµ.)

Proof. The proof is by induction on the number k ∈ ω of steps needed to build ψ from
ranked, F -restricted formulas; we will show that the formula holds with “ων + ω2k”
replacing “ων + ω2”. The case k = 0 follows directly from Lemma 3.3 above. All of
the cases follow easily from the induction hypothesis, except when ψ is of the form
∃Xφ(X). In this case we must show that (∀q∗ ≤ p∗)(∃r∗ ≤ q∗)(∃S ∈ Cµ)[r

∗ ⊩ φµ(S)].
Now, let q∗ ≤ p∗ be given. By Lemma 3.14, there exists q ≤ p such that RetF (ων +

ω(2k + 1), F, q, q∗). Moreover, the proof of Lemma 3.14 produces such a q ≤ p with
dom(f q) = F . Since p ⊩ ψµ, there exists r ≤ q and S ∈ Cµ such that r ⊩ φµ(S).
Choose H ⊂f ω such that S ∈ CF∪H

µ , dom(f r) = F ∪ H, and F ∩ H = ∅. Using
an automorphism of P if necessary, we can assume without loss of generality that
H ∩dom(f q∗) = ∅. Then we have that Ret(ων+ω(2k+1), F ∪H, q, q∗), and by Lemma
3.12, there exists r∗ ≤ q∗ such that RetF∪H(ων + ω2k, F ∪ H, r, r∗). Finally, we can
apply the induction hypothesis to conclude that r∗ ⊩ φµ(S). □

3.7. M∞ satisfies ∆1
1 − CA0. Before we can prove that M∞ satisfies ∆1

1 − CA0, we
require the following definition.

Definition 3.16. Suppose that T ′ ⊆f T
G and g : T ′ → ωCK

1 ∪ {∞}. We say that g is
ν-good if

(∀σ ∈ T ′)[(hG(σ) < ν ⇒ g(σ) = hG(σ)) & (hg(σ) ≥ ν ⇒ g(σ) ≥ ν)].

Note that deciding whether or not g is ν-good is hyperarithmetic in g, TG, and ν, since
it requires at most (ν + ω)-many Turing jumps of TG.

We are now ready to prove that M∞ satisfies ∆1
1 − CA0.

Theorem 3.17.
M∞ ⊨ ∆1

1 − CA0.

Proof. The proof is similar to that of [Mon, Lemma 2.14], with a few modifications.
Let φ(n), ψ(n) be Σ-over-LF with only n free, F ⊂f ω, and such that

M∞ ⊨ (∀n)[ψ(n) ⇔ ¬φ(n)].
We need to show that there exists D ∈M∞ such that

M∞ ⊨ (∀n)[ψ(n) ⇔ n ∈ D].

Let p ∈ G be such that p ⊩ (∀n)[ψ(n) ⇔ ¬φ(n)]. By enlarging F ⊂f ω (if necessary)
and taking an extension p′ ≤ p, we can assume without any loss of generality that
dom(fp) = F . By Lemma 3.8, there exists µ < ωCK

1 such that

p ⊩ (∀n)[ψµ(n) ∨ φµ(n)]

and µ > o(S), for any constant S occurring in either ψ or φ. Fix ν < ωCK
1 such that

p ∈ Pν and for all n ∈ ω we have that rk(φµ(n) ⇔ ¬ψµ(n)) < ν. We are now ready to
define the set D ∈M∞, D ⊆ ω described above.

Let d ∈ D if and only if there exists q ∈ Pων+ω2+ω2, q ≤ p, such that

(1) q ⊩ ψµ(d);
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(2) T q ⊂ TG;
(3) hq is ων + ω2 + ω2-good;
(4) (∀i ∈ F )[f q(i) is the longest initial segment of αG

i on T q];

We will show that, for every d ∈ ω, we have that d ∈ D if and only if ¬φ(d) holds.
Note that D ⊆ ω is hyperarithmetic in T ⊕

⊕
i∈F α

G
i . Furthermore, since MF =

HY P (T ⊕
⊕

i∈F α
G
i ), we have that D ∈MF ⊆M∞.

Now, assume that d ∈ ω is such that ¬φ(d). We will show that d ∈ D. Since
φ is Σ-over-LF , by definition of µ, ¬φµ(d) holds. Let q ∈ G, q ≤ p, be such that
q ⊩ ¬φµ(d), and hence q ⊩ ψµ(d). By construction, q satisfies conditions (1)-(4) above,
but q may not be in Pων+ω2+ω2. To fix this issue, define q∗ ∈ P as follows. Begin
by setting T q = T q∗ , f q = f q∗ ↾ F , and hq

∗ ⊇ hp. Then, for all σ ∈ T q∗ \ T p, define
hq

∗
(σ) = ∞, whenever hq(σ) ≥ ων + ω2 + ω2, and hq

∗
(σ) = hq(σ) otherwise. Finally,

set gq
∗
(σ) = 1 for all σ ∈ T q∗

∞ such that σ ∈ T q
∞ and gq(σ) = 1, and set gq

∗
(σ) = 0

otherwise. By our construction of q∗, it follows easily that q∗ ∈ Pων+ω2+ω2, q
∗ ≤ p,

and that q∗ satisfies (2)-(4) above. To see that q∗ also satisfies condition (1), note that
RetF (ων + ω2 + ω2, F, q, q∗). Hence, by definition of q ≤ p and Lemma 3.15 above, it
follows that q∗ also satisfies (1). Hence, q∗ witnesses that d ∈ D.

Now, assume that d ∈ ω is such that φ(d) holds. We will show that d /∈ D. Let
r ≤ p, r ∈ G, be such that r ⊩ φ(d), and thus r ⊩ φµ(d)∧¬ψµ(d). Now, suppose for a
contradiction that d ∈ D and q ∈ P witnesses it. Via an automorphism of P , we may
assume without loss of generality that dom(f q)= F ∪H, H ⊂f ω, where F ∩H = ∅ and
H∩dom(f r) = ∅. Let Fq∗ ⊂f ω denote dom(f q∗), and let Fr∗ ⊂f ω denote dom(f r∗).
Next, we will define q∗ ≤ q, r∗ ≤ r, and s∗ ≤ p, such that

(i) RetFq∗
(ων + ω2 + ω, Fq∗ , q

∗, s∗).

(ii) RetFr∗
(ων + ω2 + ω, Fr∗ , r

∗, s∗).

Now, since r ⊩ φµ(d) and q ⊩ ψµ(d), then by Lemma 3.15, it will follow that
s∗ ⊩ φµ(d) ∧ ψµ(d). However, since s∗ ≤ p and p ⊩ (∀n)[ψµ(n) ⇔ ¬φµ(n)], we have a
contradiction. All that is left to do is construct q∗, r∗, and s∗.
We now construct a tree T ⊇ T q ∪ T r, T ⊆ 2<ω, as follows. First, let A ⊆ ω<ω be

the set of ρ ∈ T q
∞ ∪ T r

∞ such that either gq(ρ) = 1 or gr(ρ) = 1. Next, for every ρ ∈ A,
let τρ ∈ ω<ω be any node such that τρ ⊃ ρ, |τρ| = |ρ|+ 1, and τρ /∈ T q ∪ T r. Now, let

T = T q ∪ T r ∪ {τρ : ρ ∈ A};
note that, by its construction, T ⊆ ω<ω is a tree. Let R = {τρ : ρ ∈ A} = T \ (T q ∪T r).
Define q∗ as follows.

(1) T q∗ = T ;
(2) (i) f q∗(i) = f q(i), for i ∈ H.

(ii) f q∗(i) = αG
i ↾n, where n ∈ ω is the largest number such that αG

i ↾n ∈ T q∗ ,
and i ∈ F .

(3) (a) hq
∗
(τ) = hq(τ), for all τ ∈ T q.

(b) hq
∗
(τ) = hr(τ), for all τ ∈ T r \ T q such that hr(τ) < ων + ω2 + ω.
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(c) hq
∗
(τ) = ∞, if (∃i)[τ ⊆ f q∗(i)].

(d) hq
∗
(τ) = ∞, if τ ∈ R, and hq(στ ) = ∞, where στ is the longest initial

segment of τ on T q.
(e) hq

∗
(τ) = ων + ω2 + ω + |τ |Q, for all τ ∈ Q, where Q = {τ ∈ T :

τ is not covered by cases (a), (b), or (c) above}.
(4) gq

∗
(σ) = 1 for all σ ∈ R such that gq(τ) = 1, for some τ ⊂ σ, τ ∈ T q; set

gq
∗
(σ) = 0 otherwise.

By the constuction of q∗, it follows that q∗ ∈ P , hq
∗
is (ων+ω2+ω)−good, and q∗ ≤ q.

We define r∗ as follows.

(1) T r∗ = T ;
(2) (i) f r∗(i) = f r(i), for i ∈dom(f r) \ F .

(ii) f r∗(i) = αG
i ↾n, where n is the largest number such that αG

i ↾n ∈ T , for each
i ∈ F .

(3) (a) hr
∗
(τ) = ∞, for all τ ∈ R such that hr(στ ) = ∞, where στ ∈ T r is the

longest initial segment of τ on T r.
(b) hr

∗
(τ) = hG(τ), for all τ ∈ T not covered by case (a).

(4) gr
∗
(σ) = 1 for all σ ∈ R such that gr(τ) = 1, for some τ ⊂ σ, τ ∈ T r; set

gr
∗
(σ) = 0 otherwise.

It is not difficult to check that r∗ ∈ P , r∗ ≤ r, and hr
∗
is ων + ω2 + ω−good.

Lastly, we construct s∗ ≤ p as follows.

(1) T s∗ = T .
(2) (i) f s∗(i) = f q∗(i) = f r∗(i), for all i ∈ F .

(ii) f s∗(i) = f q∗(i), for all i ∈dom(f q∗) \ F .
(iii) f s∗(i) = f r∗(i), for all i ∈dom(f r∗) \ F .

(3) (a) hs
∗
(τ) = hp(τ), for all τ ∈ T p.

(b) hs
∗
(τ) = hq

∗
(τ) = hr

∗
(τ) = hG(τ), for all τ ∈ T s∗ \ T p such that

hG(τ) < ων + ω2 + ω.
(c) hs

∗
(τ) = ∞, for all τ ∈ T s∗ \T p such that either hq

∗
(τ) = ∞ or hr

∗
(τ) = ∞.

(d) hs
∗
(τ) = ων + ω2 + ω + |τ |Q, for all τ ∈ Q, where Q = {τ ∈ T s∗ :

τ is not covered by cases (a), (b), or (c) above}.
(4) gs

∗
(σ) = 1, for all σ ∈ R; set gs

∗
(σ) = 0 otherwise.

It follows from the constructions of q∗, r∗, s∗ above that q∗, r∗, s∗ ∈ P , q∗ ≤ q, r∗ ≤ r,
s∗ ≤ p, and that conditions (i)-(ii) above are satisfied, as required. □

This completes the proof of Theorem 3.1. The following corollary says that Theorem
3.1 applies just as well to GδσABW0 in place of ABW0.

Corollary 3.18. ∆1
1 − CA0 does not imply GδABW0, FσδABW0, or GδσABW0.

Proof. Let B ∈ {Gδ, Fσδ, Gδσ}, and note that every Gδ set of reals is also a B set of

reals. Now, the predicate A(X) that we defined in Corollary 3.7 above is Π0,TG

2 and
hence corresponds to a (Gδ and hence a) B set of reals. It follows that our model M∞
above is a model of ∆1

1 − CA0 but not a model of BABW0. □

Corollary 3.19. GδABW0 and FσδABW0 are strictly stronger than ACA0.

Proof. First of all, note that FσδABW0 implies GδABW0 (since every Gδ set of reals is
Fσδ), and via Theorem 2.4 above we know that GδABW0 implies ACA0. It suffices to
show that ACA0 does not imply GδABW0. This follows from the previous corollary and
the fact that ∆1

1 − CA0 implies ACA0. □
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4. ABW0 does not imply INDEC0

Our main goal in this section is to prove the following theorem.

Theorem 4.1. There is an ω-model N that satisfies ABW0, but does not satisfy INDEC0.
Therefore, ABW0 does not imply INDEC0.

We obtain the following immediate corollary.

Corollary 4.2. GδABW0, FσδABW0, and GδσABW0 do not imply INDEC0.

Proof. Let B ∈ {GδABW0,FσδABW0,GδσABW0}, and note that ABW0 implies B. There-
fore, any model that satisfies ABW0 must also satisfy B. Thus, N satisfies B but does
not satisfy INDEC0. □

Thus, once we have proven Theorem 4.1 it will follow that ABW0, GδABW0, FσδABW0,
and GδσABW0 are incomparable with both ∆1

1 − CA0 and INDEC0.
To prove Theorem 4.1, we will show that van Wesep’s model N in [Nee, Section

3],[vW], is indeed a model of ABW0. Neeman [Nee] has already shown that N is a
model of ¬INDEC0. The key to showing that N satisfies ABW0 is to prove a modified
version of [vW, Lemma 1.5, Sublemma 1], which Neeman describes in [Nee, Lemma
3.6].

Van Wesep’s forcing conditions are similar to the ones that we defined in the previous
section, with one main difference. Rather than tagging with ordinals, [vW] tags his
trees with elements of a fixed computable linear order with no infinite hyperarithmetic
descending sequences. Fix a nonstandard initial segment of such a (computable) linear
ordering (for example, one could use the Harrison linear ordering [Har68]), and call it
γ ([vW] refers to it as Ia).
Our forcing conditions are similar to those of [Nee, vW]; they are triplets ⟨T p, fp, hp⟩

such that

(1) T p ⊂ ω<ω is a finite tree.
(2) fp : ω → T p is such that dom(fp) ⊂f ω.
(3) hp : T p → γ ∪ {∞} so that

(a) (∀σ, τ ∈ T p)[σ ⊂ τ ⇒ hp(σ) >γ h
p(τ)],

(b) (∀σ ∈ T p)[((∃i)σ ⊆ fp(i)) ⇒ hp(σ) = ∞], and
(c) hp(∅) = ∞.

By fiat, ∞ > ∞ and ∞ > ωCK
1 . Let P denote the set of the above forcing conditions.

We note that in [vW], instead of tagging nodes of T p with ∞, the author simply leaves
these nodes untagged, and so hp is only defined on the set of nodes in T p that are not
extended by fp(i), i ∈dom(fp) ⊂f ω.

For p, q ∈ P , [vW] defines p ≤ q if and only if

(4) T q ⊆ T p,
(5) (a) dom(f q) ⊆ dom(fp),

(b) (∀i ∈ dom(f q))[f q(i) ⊆ fp(i)],
(6) hq = hp↾T q.

Note that we have eliminated conditions (5c) and (5d) from Section 3.2. Our proof that
N ⊨ ABW0 will depend upon this fact (Lemma 4.6 below). Let P = ⟨P,≤⟩, and G be
any sufficiently P-generic filter.
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Another difference between the construction of van Wesep’s model, N , in [Nee, vW]
and our construction of M∞ in Section 3 is that N is of the form

N =
⋃

F⊂fω
F⊆S∗

MG
F ,

where MG
F is defined analogously to our notion of MF in Section 3, but S∗ ⊆ ω is such

that

(1) (∀i, j ∈ ω)[(fG
i (0) = fG

j (0)) ⇒ (i ∈ S∗ ⇔ j ∈ S∗)],

and fG
i = ∪p∈Gf

p(i), i ∈ ω (analogous to the definition of αG
i in Section 3). Note that

(1) above is a consequence of the (more complicated) definition of S∗ given in [vW].
In [vW], van Wesep uses the definition of S∗ and the construction of N to show that
N ⊭ ∆1

1 − CA0, while, in [Nee], Neeman uses these facts to conclude that N ⊭ INDEC0.
For every finite F ⊂f ω, we construct MG

F analogously to our construction of MF in
Section 3. The construction ofMG

F given by [Nee, vW] is different than, but equivalent to
our construction ofMG

F . In particular, [Nee, vW] constructMG
F in LωCK

1
(T, fG

i : i ∈ F ),

while our construction lives in P(ω). However, since the elements TG and fG
i , i ∈ ω,

are generic, it follows that ωCK
1 relative to T, fG

i , i ∈ F, is equal to ωCK
1 (relative to ∅),

and we therefore have that

MG
F = P(ω) ∩ LωCK

1
({TG} ∪ {fG

i : i ∈ F}),

where MG
F is constructed analogously to MF in Section 3 of this article. Furthermore,

for every F ⊂f ω, we have [T
G]∩MG

F = {fG
i : i ∈ F}, MG

F =HYP(TG, fG
i : i ∈ F ), and

MF ⊨ Σ1
1 − AC0 (see [Nee, vW] for more details).

Van Wesep [vW, Definition 1.2] defines retaggings (or absolute reducts, as he calls
them) exactly as we do in Definition 3.2 above. Using the genericity of G ⊆ P and
retaggings, one can prove the following theorem [vW, Lemma 1.5, Sublemma 2], which
we will use in our proof of Theorem 4.7 below to show that N ⊨ ABW0. The main idea
behind the proof of [vW, Lemma 1.5, Sublemma 2] is similar to that of Theorem 3.17
above, or [Mon, Lemma 2.14]. We give only but a sketch of the proof; for more details
we ask the reader to consult [vW, Lemma 1.5, Sublemma 2].

Lemma 4.3. [vW, Lemma 1.5, Sublemma 2] For any I, J ⊂f ω, we have that

MG
I ∩MG

J =MG
I∩J .

Proof: (Sketch). By our construction of MG
F , F ⊂f ω, above, it is clear that MG

I∩J ⊆
MG

I ∩MG
J . Therefore, it suffices to prove that MG

I ∩MG
J ⊆ MG

I∩J . In other words,
we will show that if X ∈ ωω satisfies X ∈ MG

I and X ∈ MG
J , then we also have that

X ∈MG
I∩J .

Let X ∈MG
I ∩MG

J . Let F = I ∩J , and H,G ⊂f ω be such that F ∩H = F ∩G = ∅,
I = F ∪H, J = F ∪G. Let ν < ωCK

1 be such that there exist e0, e1 ∈ ω such that

X = Sν,I,e0 = Sν,J,e1 ,

(where Sµ,A,z, µ < ωCK
1 , A ⊂f ω, z ∈ ω, is as defined in Section 3.1). The proof rests

on the following proposition, which we state, but will not prove (for a proof, consult
[vW, Lemma 1.5, Sublemma 2]). As we have already remarked, the main idea behind
the proof of the following proposition can be found in the proof of Theorem 3.17 above,
or [Mon, Lemma 2.14].



COMPARING THEOREMS OF HYPERARITHMETIC ANALYSIS . . . 27

Claim 4.4. Let p ∈ P be such that

p ⊩ X = Sν,I,e0 = Sν,J,e1 .

Then, for all n ∈ ω, we have that n ∈ X if and only if there exists q ≤ p such that

(1) q ⊩ n ∈ Sν,I,e0.
(2) T q ⊆ TG.
(3) hq is ων + ω-good for TG (see Definition 3.16 above).
(4) For all i ∈ F , we have that f q(i) is the longest initial segment of fG

i ∈ [TG] ⊆ ωω

on T q.

The proposition implies that X is hyperarithmetic in TG ⊕i∈F f
G
i , and hence X ∈

MG
F =MG

I∩J , as required. □

We now state [vW, Lemma 1.5, Sublemma 1], the main idea of which can be found
in [Nee, Lemma 3.6].

Lemma 4.5 ([vW], Lemma 1.5, Sublemma 1). Suppose that F ⊆ I ⊂f ω, Z0 ∈ MG
F ,

X0 ∈MG
I , and that B(X,Z) is an arithmetical predicate with with only the free variables

shown, such that B(X0, Z0) holds. Then, there exists J ⊂f ω, X1 ∈ MG
J , such that

I ∩ J = F and B(X1, Z0) holds. Moreover, for every j ∈ J there exists i ∈ I such
that fG

i and fG
j have a nontrivial initial segment in common. Hence, by (1) above,

I ⊆ S∗ ⇒ J ⊆ S∗.

Next, we will prove a modified version of [vW, Lemma 1.5, Sublemma 1] to show that,
indeed, N ⊨ ABW0. The main idea of our proof is derived from that of van Wesep.
Van Wesep’s proof depends upon automorphisms of P, which we defined in Section 3.6.
Note that, via the same proof, Lemma 3.9 also holds for P (in place of P ).

Lemma 4.6. Suppose that F ⊆ I ⊂f ω, Z0 ∈ MG
F , X0 ∈ MG

I , and B(X,Z) is an
arithmetical predicate with only the free variables shown, such that B(X0, Z0) holds.
Then, for any given k ∈ ω, there exists Jk ⊂f ω, Xk ∈ MG

Jk
, such that I ∩ Jk = F ,

B(Xk, Z0) holds, and
X0↾k = Xk↾k.

Moreover, for every j ∈ Jk there exists i ∈ I such that fG(i) and fG(j) have a nontrivial
initial segment in common. Therefore, by (1) above, I ⊆ S∗ ⇒ Jk ⊆ S∗.

Proof. The proof of Lemma 4.6 resembles that of [vW, Lemma 1.5, Sublemma 1].
Let I = F ∪ H1, H1 ∩ F = ∅, and k ∈ ω be given. Suppose that Z0 = Sν0,F,e0 and

X0 = Sν1,I,e1 , ν0, ν1 < ωCK
1 , F ⊆ I ⊂f ω, e0, e1 ∈ ω. Now, let σk ∈ ω<ω be the initial

segment of X0 ∈ ωω of length k, and p ∈ G be such that

p ⊩ B(Sν1,I,e1 ,Sν0,F,e0) ∧ (σk ⊂ Sν1,I,e1).

Finally, let H2 ⊂f ω be such that H2 ∩ (F ∪ H1) = ∅, and H0 = H1 ∪ H2 satisfies
dom(fp) ⊆ F ∪H0.

As in [vW, Lemma 1.5, Sublemma 1], we call q ∈ P a doublet if there exists n ∈ ω
such that dom(f q) = 2n and for all m < n we have that f q(m) = f q(m+n). Call n the
period of the doublet, and note that for any n ∈ ω, the set of doublets of period > n is
dense in P. Let n1 ∈ ω be such that n1 > max{F∪H0}, and let q ∈ G be such that q ≤ p
and q is a doublet with period n > n1, n ∈ ω. Let Li = {l ∈ ω : (∃j ∈ Hi)[l = j + n]},
for i = 0, 1, 2, and note that, by the construction of Li (i = 0, 1, 2) we have that
L0 = L1 ∪ L2 and L0 ∩ (F ∪H0) = ∅.

Now, let r ≥ q be identical to p ∈ P, except that
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(i) dom(f r) ⊆ F ∪ L0.
(ii) i ∈dom(f r) ⇔ [(i ∈ F∩dom(fp)) ∨ (i− n ∈ H0∩dom(fp))].
(iii) f r(i) = fp(i), for all i ∈ F∩dom(fp); and f r(i+ n) = fp(i), for all i ∈ H0.

In constructing r ≥ q above, we have simply translated the part of the domain of fp

that is H0 ⊆dom(fp) to the right by n and onto L0 ⊆dom(f r). Furthermore, since
r ≥ q and q ∈ G, we have that r ∈ G.

Note that, by our construction of r ≥ q, there is an automorphism of P taking p to r,
and so, via a suitably modified version of Lemma 3.9 (i.e. the automorphism lemma),
we have that

r ⊩ B(Sν1,F∪L1,e1 ,Sν0,F,e0) ∧ (σk ⊂ Sν1,F∪L1,e1).

Therefore, if we set

Xk = Sν1,Jk,e1 ∈ ωω and Jk = F ∪ L1 ⊂f ω,

then it follows that Xk ∈MG
Jk

satisfies the conclusion of Lemma 4.6. □

We are now ready to show that van Wesep’s N is indeed a model of ABW0.

Theorem 4.7.
N ⊨ ABW0.

Proof. Let A(X) be a bounded arithmetic predicate with parameters from N =
∪F⊂fS∗MG

F , and such that A(X) has infinitely many solutions X ∈ N . By definition
of N , there exists F ⊂f ω such that A(X) is an arithmetic predicate with parameters
from MG

F .
There are two cases to consider. The first case says that every solution of A(X) lies

in MG
F . In this case we use the fact that MG

F =HYP(TG, fp
i : i ∈ F ) to conclude that

MF ⊨ Σ1
1 − AC0, and thus, by Theorem 2.1, MF ⊨ ABW0. Therefore, there exists

X ∈ MG
F ⊆ N such that X is an accumulation point for the set {Z ∈ 2ω : A(Z)} ∩N ,

from which it follows that N ⊨ ABW0.
The second case says that there exists X ∈ N such that X /∈ MG

F and A(X) holds.
In this case it follows from Lemmas 4.3 and 4.6 above that for every k ∈ ω there exists
Y ∈ N such that Y ̸= X, but Y ↾n = X↾n. Hence, X ∈ N is an accumulation point
for the set {Z ∈ 2ω : A(Z)} ∩N , and therefore we have that N ⊨ ABW0. □
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