Quasi-tree expansion for the Bollobás–Riordan–Tutte polynomial

Abhijit Champanerkar

College of Staten Island, CUNY

Joint work with Ilya Kofman & Neal Stoltzfus

KNOTS IN WASHINGTON XXVII
3rd Japan-USA Workshop in Knot Theory
January 9-11, 2009
George Washington University, Washington, DC
Tutte polynomial of graphs

Let G be a connected graph. A spanning tree T of G is a connected, spanning subgraph with no cycles.

The Tutte polynomial is defined by the spanning tree expansion:

$$T_G(x, y) = \sum_{T \subseteq G} x^{i(T)} y^{j(T)}$$

where

- $i(T) =$ number of internally active edges for spanning tree T;
- $j(T) =$ number of externally active edges for spanning tree T.

$T_G(1, 1) =$ number of spanning trees of G.
Bollobás and Riordan extended the Tutte polynomial to an invariant of oriented ribbon graphs, now called the Bollobás–Riordan–Tutte (BRT) polynomial.

<table>
<thead>
<tr>
<th>Graphs</th>
<th>←→</th>
<th>Ribbon graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning trees</td>
<td>←→</td>
<td>Quasi-trees</td>
</tr>
<tr>
<td>Tutte polynomial</td>
<td>←→</td>
<td>BRT polynomial</td>
</tr>
<tr>
<td>Activity w.r.t. spanning trees</td>
<td>←→</td>
<td>Activity w.r.t. quasi-trees</td>
</tr>
<tr>
<td>Spanning tree expansion of the Tutte polynomial</td>
<td>←→</td>
<td>Quasi-tree expansion of the BRT polynomial</td>
</tr>
</tbody>
</table>
Motivation

- **(Dasbach-Futer-Kalfagianni-Lin-Stoltzfus)** Associated to every link diagram D a ribbon graph G_D and obtained the Jones polynomial as a specialization of the Bollobás–Riordan–Tutte polynomial.

- **(C-Kofman-Stoltzfus)** Quasi-trees of G_D correspond to spanning trees of the Tait graph (checkerboard graph) of D and generate a complex whose homology is the Khovanov homology of D.

- **(C-Kofman-Stoltzfus, Manturov)** Maximal genus of quasi-trees of G_D plus two gives an upper bound on the thickness of Khovanov homology.
Ribbon graphs

Definition

An (oriented) **ribbon graph** \(G \) is a multi-graph (loops and multiple edges allowed) that is embedded in an oriented surface, such that its complement is a union of 2-cells.

The **genus** of \(G \), \(g(G) \), is the genus of the surface on which it is embedded.

\(G \) can also be described by a triple of permutations \((\sigma_0, \sigma_1, \sigma_2)\) of the set \(\{1, 2, \ldots, 2n\}\) such that \(\sigma_1\) is a fixed point free involution and \(\sigma_0 \circ \sigma_1 \circ \sigma_2 = \text{Identity}\). This triple gives a cell complex structure for the surface of \(G \) and the orbits of \(\sigma_i\) correspond to the \(i\)–cells for \(i = 0, 1, 2\).

Plane graphs are **genus zero** ribbon graphs.
Example

\[\sigma_0 = (1234)(56) \]
\[\sigma_1 = (14)(25)(36) \]
\[\sigma_2 = (246)(35) \]
Quasi-trees: Motivation

A spanning tree of a graph is a spanning subgraph without any cycles.

For a plane graph, a spanning tree is a spanning subgraph whose regular neighbourhood has one boundary component.

Example
Quasi-trees: Definition

Definition

A **quasi-tree** of a ribbon graph is a spanning ribbon subgraph with one face.

- The quasi-trees of a plane graph are spanning trees.
- The genus zero quasi-trees of a ribbon graph are its spanning trees.

Example
Quasi-trees and chord diagrams

The spanning tree expansion of the Tutte polynomial is defined using activity of edges with respect to a spanning tree.

We extend Tutte’s definition of activities to edges of a ribbon graph with respect to a quasi-tree.

Proposition

Every quasi-tree Q corresponds to the ordered chord diagram C_Q with consecutive markings in the positive direction given by the permutation:

$$
\sigma(i) = \begin{cases}
\sigma_0(i) & i \notin Q \\
\sigma_2^{-1}(i) & i \in Q
\end{cases}
$$
Example
Extending Tutte’s activities to ribbon graphs

Definition

Fix a total order on the edges of a connected ribbon graph G. An edge e in a quasi-tree Q is **live** if the corresponding chord in C_Q does not intersect any lower-ordered chords and otherwise it is **dead**.

An edge e is **internal** or **external**, according to $e \in Q$ or $e \in G - Q$, respectively.

- For a genus zero ribbon graph, activities using our definition agree with those using Tutte’s definition.
- Any spanning tree of a ribbon graph is also a quasi-tree of genus zero. In this case, the activities using our definition are **different** from those using Tutte’s definition.
Let \mathcal{H} be a spanning ribbon subgraph of G (i.e. contains all vertices and some edges of G).

- $v(\mathcal{H}) =$ number of vertices of \mathcal{H};
- $e(\mathcal{H}) =$ number of edges of \mathcal{H};
- $f(\mathcal{H}) =$ number of faces of \mathcal{H};
- $k(\mathcal{H}) =$ number of components of \mathcal{H};
- $n(\mathcal{H}) =$ nullity of $\mathcal{H} = e(\mathcal{H}) - v(\mathcal{H}) + k(\mathcal{H})$;
- $g(\mathcal{H}) =$ genus of $\mathcal{H} = k(\mathcal{H}) + n(\mathcal{H}) - f(\mathcal{H})$.

Bollobás and Riordan extended the Tutte polynomial to an invariant $C(G; X, Y, Z) \in \mathbb{Z}[X, Y, Z]$ of ribbon graphs using the following state sum over all spanning subgraphs:

$$C(G; X, Y, Z) = \sum_{\mathcal{H} \subset G} (X - 1)^{k(\mathcal{H}) - k(G)} Y^{n(\mathcal{H})} Z^{g(\mathcal{H})}$$
Properties

If G is the underlying graph of \mathbb{G} then

$$C(\mathbb{G}; X, Y, 1) = T_G(X, 1 + Y).$$

Proposition (C-Kofman-Stoltzfus)

Let $q(\mathbb{G}; t, Y) = C(\mathbb{G}; 1, Y, tY^{-2})$. Then $q(\mathbb{G}; t, Y)$ is a polynomial in t and Y such that

$$q(\mathbb{G}; t, 0) = \sum_j a_j t^j$$

where a_j is the number of quasi-trees of genus j. Consequently, $q(\mathbb{G}; 1, 0)$ equals the number of quasi-trees of G.

Main Theorem

Order the edges of G. Let Q be a quasi-tree of G.

- Let $ID(Q)$ be dead edges in Q;
- Let $IL(Q)$ be the live edges in Q;
- Let $EL(Q)$ be the live edges in $G - Q$;
- Let D_Q be the spanning subgraph with edges in $ID(Q)$;
- Let G_Q be the graph whose vertices are components of D_Q, and edges are in $IL(Q)$.

Theorem (C-Kofman-Stoltzfus)

For any connected ribbon graph G,

$$C(G) = \sum_{Q \subset G} Y^{n(D_Q)} Z^{g(D_Q)} (1 + Y)^{|EL(Q)|} T_{G_Q}(X, 1 + YZ)$$
Special cases

Planar Case

If $g(G) = 0$, G is a planar graph with underlying graph G. Quasi-trees of G are spanning trees of G, and each G_Q is a tree with $|IL(Q)|$ edges.

So if $Y = y - 1$ and $Z = 1$, we recover $T_G(x, y) = \sum_T x^i(T) y^j(T)$ from the Theorem.

One-vertex case

If G has a single vertex, all edges are loops, so we get

$$C(G) = \sum_{Q \subseteq G} Y^{n(D_Q)} Z^{g(D_Q)} (1 + Y)^{|EL(Q)|} (1 + YZ)^{|IL(Q)|}$$
Idea of proof

\[\rho : E(G) \rightarrow \{0, 1, *\} \text{ is a partial resolution of } G; \text{ } * \text{-edges are unresolved.} \]
An unresolved edge \(e \) is nugatory if \(\rho(e) = 0 \) or \(\rho(e) = 1 \) has no quasi-trees.

Binary tree \(\mathcal{T} \) of partial resolutions of \(G \) \(\iff \) Skein resolution tree of a link diagram \(D \)

Leaves of \(\mathcal{T} \) \(\iff \) Quasi-trees \(Q \subset G \)

Unresolved edges in \(\rho \) \(\iff \) Live edges in \(G \) wrt \(Q \)

Unresolved edges of a leaf \(\rho \) are nugatory, and can be uniquely resolved to get \(Q \), just like crossings of the twisted unknot.

State sum for \(\mathcal{T} \) is the state sum for poset of all resolutions of \(G \) and this gives the required expansion.
Main Theorem and Examples

Example

\[
\begin{array}{ccc}
Q & \text{Activity} & \text{Weight} \\
001010 & \ell dDdDd & (1 + Y) \\
001100 & \ell dDLdd & X(1 + Y) \\
001111 & \ell dDDDD & Y^2 Z(1 + Y) \\
010010 & \ell LddDd & X(1 + Y) \\
010100 & \ell LdLdd & X^2(1 + Y) \\
010111 & \ell LdDDD & XY^2 Z(1 + Y) \\
011011 & \ell LLdDD & Y(1 + Y)(X + 1 + YZ) \\
011101 & \ell LLLdD & XY(1 + Y)(X + 1 + YZ) \\
011110 & \ell LLDDd & Y(1 + Y)(X + 1 + YZ) \\
111010 & LDLdDd & Y(1 + YZ) \\
111100 & LDDLdd & XY(1 + YZ) \\
111111 & LDDDDD & Y^3 Z(1 + YZ) \\
\end{array}
\]

\[
C(G) = Z^2 Y^4 + 2XZY^3 + 4ZY^3 + X^2 Y^2 + 3XY^2 + 3XZY^2 + 4ZY^2 + 2Y^2 + 2X^2 Y + 6XY + 4Y + X^2 + 2X + 1
\]
Main Theorem and Examples

<table>
<thead>
<tr>
<th>(Q)</th>
<th>Activity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>001010</td>
<td>(\ell dDdDd)</td>
<td>((1 + Y))</td>
</tr>
<tr>
<td>001100</td>
<td>(\ell dDLdd)</td>
<td>(X(1 + Y))</td>
</tr>
<tr>
<td>001111</td>
<td>(\ell dDDDD)</td>
<td>(Y^2Z(1 + Y))</td>
</tr>
<tr>
<td>010010</td>
<td>(\ell LddDd)</td>
<td>(X(1 + Y))</td>
</tr>
<tr>
<td>010100</td>
<td>(\ell LdLdd)</td>
<td>(X^2(1 + Y))</td>
</tr>
<tr>
<td>010111</td>
<td>(\ell LdDDD)</td>
<td>(XY^2Z(1 + Y))</td>
</tr>
<tr>
<td>011011</td>
<td>(\ell LLdDD)</td>
<td>(Y(1 + Y)(X + 1 + YZ))</td>
</tr>
<tr>
<td>011101</td>
<td>(\ell LLLdD)</td>
<td>(XY(1 + Y)(X + 1 + YZ))</td>
</tr>
<tr>
<td>011110</td>
<td>(\ell LLDDd)</td>
<td>(Y(1 + Y)(X + 1 + YZ))</td>
</tr>
<tr>
<td>111010</td>
<td>(LDDdDd)</td>
<td>(Y(1 + YZ))</td>
</tr>
<tr>
<td>111100</td>
<td>(LDDLdd)</td>
<td>(XY(1 + YZ))</td>
</tr>
<tr>
<td>111111</td>
<td>(LDDDDD)</td>
<td>(Y^3Z(1 + YZ))</td>
</tr>
</tbody>
</table>

\[Y^n(D_Q) \ Z g(D_Q) (1 + Y)^{|EL(Q)|} \ T_{G_Q}(X, 1 + YZ) = XY(1 + Y)(X + 1 + YZ) \]