Quasi-tree expansion for the Bollobás–Riordan–Tutte polynomial

Abhijit Champanerkar

College of Staten Island, CUNY

Joint work with Ilya Kofman & Neal Stoltzfus

KNOTS IN WASHINGTON XXVII 3rd Japan-USA Workshop in Knot Theory January 9-11, 2009 George Washington University, Washington, DC

Tutte polynomial of graphs

Let G be a connected graph. A spanning tree T of G is a connected, spanning subgraph with no cycles.

The Tutte polynomial is defined by the spanning tree expansion:

$$T_G(x,y) = \sum_{T \subseteq G} x^{i(T)} y^{j(T)}$$

where

i(T) = number of internally active edges for spanning tree T;
j(T) = number of externally active edges for spanning tree T.

 $T_G(1,1) =$ number of spanning trees of G.

Summary of results

Bollobás and Riordan extended the Tutte polynomial to an invariant of oriented ribbon graphs, now called the Bollobás–Riordan–Tutte (BRT) polynomial.

Graphs	\longleftrightarrow	Ribbon graphs
Spanning trees	\longleftrightarrow	Quasi-trees
Tutte polynomial	\longleftrightarrow	BRT polynomial
Activity w.r.t. spanning trees	\longleftrightarrow	Activity w.r.t. quasi-trees
Spanning tree expansion of the Tutte polynomial	\longleftrightarrow	Quasi-tree expansion of the BRT polynomial

Motivation

- (Dasbach-Futer-Kalfagianni-Lin-Stoltzfus) Associated to every link diagram D a ribbon graph \mathbb{G}_D and obtained the Jones polynomial as a specialization of the Bollobás-Riordan-Tutte polynomial.
- (C-Kofman-Stoltzfus) Quasi-trees of G_D correspond to spanning trees of the Tait graph (checkerboard graph) of D and generate a complex whose homology is the Khovanov homology of D.
- (C-Kofman-Stoltzfus, Manturov) Maximal genus of quasi-trees of \mathbb{G}_D plus two gives an upper bound on the thickness of Khovanov homology.

Ribbon graphs

Definition

An (oriented) ribbon graph \mathbb{G} is a multi-graph (loops and multiple edges allowed) that is embedded in an oriented surface, such that its complement is a union of 2-cells.

The genus of \mathbb{G} , $g(\mathbb{G})$, is the genus of the surface on which it is embedded.

 \mathbb{G} can also be described by a triple of permutations $(\sigma_0, \sigma_1, \sigma_2)$ of the set $\{1, 2, \ldots, 2n\}$ such that σ_1 is a fixed point free involution and $\sigma_0 \circ \sigma_1 \circ \sigma_2 =$ Identity. This triple gives a cell complex structure for the surface of \mathbb{G} and the orbits of σ_i correspond to the *i*-cells for i = 0, 1, 2.

Plane graphs are genus zero ribbon graphs.

Example

 $\sigma_0 = (1234)(56)$ $\sigma_1 = (14)(25)(36)$ $\sigma_2 = (246)(35)$

$$\begin{aligned} \sigma_0 &= (1234)(56) \\ \sigma_1 &= (13)(26)(45) \\ \sigma_2 &= (152364) \end{aligned}$$

Quasi-trees: Motivation

A spanning tree of a graph is a spanning subgraph without any cycles.

For a plane graph, a spanning tree is a spanning subgraph whose regular neighbourhood has one boundary component.

Example

Quasi-trees: Definition

Definition

A quasi-tree of a ribbon graph is a spanning ribbon subgraph with one face.

- The quasi-trees of a plane graph are spanning trees.
- The genus zero quasi-trees of a ribbon graph are its spanning trees.

Example

Quasi-trees and chord diagrams

The spanning tree expansion of the Tutte polynomial is defined using activity of edges with respect to a spanning tree.

We extend Tutte's definition of activities to edges of a ribbon graph with respect to a quasi-tree.

Proposition

Every quasi-tree \mathbb{Q} corresponds to the ordered chord diagram $C_{\mathbb{Q}}$ with consecutive markings in the positive direction given by the permutation:

$$\sigma(i) = \begin{cases} \sigma_0(i) & i \notin \mathbb{Q} \\ \sigma_2^{-1}(i) & i \in \mathbb{Q} \end{cases}$$

Quasi-trees

Example

Extending Tutte's activites to ribbon graphs

Definition

Fix a total order on the edges of a connected ribbon graph G. An edge e in a quasi-tree \mathbb{Q} is live if the corresponding chord in $C_{\mathbb{Q}}$ does not intersect any lower-ordered chords and otherwise it is dead.

An edge *e* is internal or external, according to $e \in \mathbb{Q}$ or $e \in G - \mathbb{Q}$, respectively.

- For a genus zero ribbon graph, activities using our definition agree with those using Tutte's definition.
- Any spanning tree of a ribbon graph is also a quasi-tree of genus zero. In this case, the activities using our definition are different from those using Tutte's definition.

Bollobás-Riordan-Tutte polynomial for ribbon graphs

Let \mathbb{H} be a spanning ribbon subgraph of \mathbb{G} (i.e. contains all vertices and some edges of \mathbb{G}).

- $v(\mathbb{H}) =$ number of vertices of \mathbb{H} ;
- $e(\mathbb{H}) =$ number of edges of \mathbb{H} ;
- $f(\mathbb{H}) =$ number of faces of \mathbb{H} ;
- $k(\mathbb{H}) =$ number of components of \mathbb{H} ;
- $n(\mathbb{H}) = \text{nullity of } \mathbb{H} = e(\mathbb{H}) v(\mathbb{H}) + k(\mathbb{H});$
- $g(\mathbb{H}) = \text{genus of } \mathbb{H} = k(\mathbb{H}) + n(\mathbb{H}) f(\mathbb{H}).$

Bollobás and Riordan extended the Tutte polynomial to an invariant $C(\mathbb{G}; X, Y, Z) \in \mathbb{Z}[X, Y, Z]$ of ribbon graphs using the following state sum over all spanning subgraphs:

$$C(\mathbb{G}; X, Y, Z) = \sum_{\mathbb{H} \subset \mathbb{G}} (X - 1)^{k(\mathbb{H}) - k(G)} Y^{n(\mathbb{H})} Z^{g(\mathbb{H})}$$

Properties

If G is the underlying graph of \mathbb{G} then

$$C(\mathbb{G};X,Y,1)=T_G(X,1+Y).$$

Proposition (C-Kofman-Stoltzfus)

Let $q(\mathbb{G}; t, Y) = C(\mathbb{G}; 1, Y, tY^{-2})$. Then $q(\mathbb{G}; t, Y)$ is a polynomial in t and Y such that

$$q(\mathbb{G};t,0)=\sum_{j}a_{j}t^{j}$$

where a_j is the number of quasi-trees of genus j. Consequently, $q(\mathbb{G}; 1, 0)$ equals the number of quasi-trees of G.

Main Theorem

Order the edges of $\mathbb{G}.$ Let \mathbb{Q} be a quasi-tree of $\mathbb{G}.$

- Let $ID(\mathbb{Q})$ be dead edges in \mathbb{Q} ;
- Let $IL(\mathbb{Q})$ be the live edges in \mathbb{Q} ;
- Let $EL(\mathbb{Q})$ be the live edges in $\mathbb{G} \mathbb{Q}$;
- Let $\mathcal{D}_{\mathbb{Q}}$ be the spanning subgraph with edges in $ID(\mathbb{Q})$;

• Let $\mathcal{G}_{\mathbb{Q}}$ be the graph whose vertices are components of $\mathcal{D}_{\mathbb{Q}}$, and edges are in $IL(\mathbb{Q})$.

Theorem (C-Kofman-Stoltzfus)

For any connected ribbon graph $\mathbb{G},$

$$C(\mathbb{G}) = \sum_{\mathbb{Q} \subset G} Y^{n(\mathcal{D}_{\mathbb{Q}})} Z^{g(\mathcal{D}_{\mathbb{Q}})} (1+Y)^{|EL(\mathbb{Q})|} T_{\mathcal{G}_{\mathbb{Q}}}(X, 1+YZ)$$

Special cases

Planar Case

If $g(\mathbb{G}) = 0$, \mathbb{G} is a planar graph with underlying graph *G*. Quasi-trees of \mathbb{G} are spanning trees of *G*, and each $\mathcal{G}_{\mathbb{Q}}$ is a tree with $|IL(\mathbb{Q})|$ edges.

So if Y = y - 1 and Z = 1, we recover $T_G(x, y) = \sum_T x^{i(T)} y^{j(T)}$ from the Theorem.

One-vertex case

If ${\mathbb G}$ has a single vertex, all edges are loops, so we get

$$C(\mathbb{G}) = \sum_{\mathbb{Q} \subset \mathbb{G}} Y^{n(\mathcal{D}_{\mathbb{Q}})} Z^{g(\mathcal{D}_{\mathbb{Q}})} (1+Y)^{|EL(\mathbb{Q})|} (1+YZ)^{|IL(\mathbb{Q})|}$$

Idea of proof

 $\rho: E(\mathbb{G}) \to \{0, 1, *\}$ is a partial resolution of \mathbb{G} ; *-edges are unresolved. An unresolved edge *e* is nugatory if $\rho(e) = 0$ or $\rho(e) = 1$ has no quasi-trees.

 $\begin{array}{rcl} \mbox{Binary tree } \mathcal{T} \mbox{ of } & \longleftrightarrow & \mbox{Skein resolution tree of} \\ \mbox{partial resolutions of } \mathbb{G} & & \mbox{a link diagram } D \end{array}$

Leaves of $\mathcal{T} \longrightarrow \mathsf{Quasi-trees} \ \mathbb{Q} \subset \mathbb{G}$

Unresolved edges in $\rho \quad \longleftrightarrow$ Live edges in G wrt \mathbb{Q}

Unresolved edges of a leaf ρ are nugatory, and can be uniquely resolved to get $\mathbb{Q},$ just like crossings of the twisted unknot.

State sum for \mathcal{T} is the state sum for poset of all resolutions of \mathbb{G} and this gives the required expansion.

Example

Q	Activity	Weight
001010	ℓdDdDd	(1 + Y)
001100	ℓdDLdd	X(1+Y)
001111	ℓdDDDD	$Y^2 Z(1 + Y)$
010010	ℓLddDd	X(1+Y)
010100	$\ell LdLdd$	$X^{2}(1+Y)$
010111	ℓLdDDD	$XY^2Z(1+Y)$
011011	ℓLLdDD	Y(1+Y)(X+1+YZ)
011101	ℓLLLdD	XY(1+Y)(X+1+YZ)
011110	ℓLLDDd	Y(1+Y)(X+1+YZ)
111010	LDDdDd	Y(1 + YZ)
111100	LDDLdd	XY(1 + YZ)
111111	LDDDDD	$Y^3Z(1+YZ)$

 $C(\mathbb{G}) = Z^2Y^4 + 2XZY^3 + 4ZY^3 + X^2Y^2 + 3XY^2 + 3XZY^2 + 4ZY^2 + 2Y^2 + 2X^2Y + 6XY + 4Y + X^2 + 2X + 1$

Q	Activity	Weight
001010	ℓdDdDd	(1 + Y)
001100	ℓdDLdd	X(1+Y)
001111	ℓdDDDD	$Y^2Z(1+Y)$
010010	ℓLddDd	X(1+Y)
010100	ℓLdLdd	$X^{2}(1+Y)$
010111	ℓLdDDD	$XY^2Z(1+Y)$
011011	ℓLLdDD	Y(1+Y)(X+1+YZ)
011101	ℓLLLdD	XY(1+Y)(X+1+YZ)
011110	ℓLLDDd	Y(1+Y)(X+1+YZ)
111010	LDDdDd	Y(1 + YZ)
111100	LDDLdd	XY(1+YZ)
111111	LDDDDD	$Y^3Z(1+YZ)$

 $Y^{n(\mathcal{D}_{\mathbb{Q}})} Z^{g(\mathcal{D}_{\mathbb{Q}})} (1+Y)^{|EL(\mathbb{Q})|} T_{\mathcal{G}_{\mathbb{Q}}}(X,1+YZ) = XY(1+Y)(X+1+YZ)$