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1. Introduction and main results

Consider a simple symmetric random walk {S,}>°, starting at the origin 0 on the d-
dimensional integer lattice Z4, i.e. Sg =0, S, = >;_; Xy, n = 1,2,..., where Xy, k =

1,2,... are i.i.d. random variables with distribution
1 :
P(Xlzei):ﬁ, 221,2,...,2d
and {ej, ey, ...e4} is a system of orthogonal unit vectors in Z; and e ; = —e;, j =1,2,...,d.

Define the local time of the walk by
E(z,n) =#{k: 0<k<n, Sy=z}, n=12..., (1.1)
where z is any lattice point of Z;. The maximal local time of the walk is defined as

&(n) := max{(z,n). (1.2)

zZEZ,

Define also the following quantities:

on) = s €(54,0) 13)
Qk,n) :=+#{z: z € Z,, £(z,n) =k}, (1.4)

Ulk,n):=#{j: 0<j<n, {8Sj,00)=k, S;#S, ((=1,2,...,5—1)}
=#{ze€Z;: 0<&(z,n) <&(z,00) = k}. (1.5)

Denote by v(n) = v(n;d) the probability that in the first n — 1 steps the d-dimensional
path does not return to the origin. Then

l=~(1)>~(2)>..>7((n)>..>0. (1.6)

It was proved in [3] that
Theorem A (Dvoretzky and Erdds [3]) For d > 3

lim ~y(n) =y =v(c0;d) >0, (1.7)
and
v < y(n) <+ O0(n'=4?). (1.8)



Consequently
P(£(0,n) =0, £(0,00) > 0) = O (n'~*?) (1.9)

as m — oo.

So ~ is the probability that the d-dimensional simple symmetric random walk never
returns to its starting point.

Let £(z,00) be the total local time at z of the infinite path in Z;. Then for d > 3 (see
Erdés and Taylor [4]) £(0, 00) has geometric distribution:

P(£(0,00) = k) = v(1 — )", k=0,1,2,.. (1.10)

Erdés and Taylor [4] proved the following strong law for the maximal local time:

Theorem B (Erdés and Taylor [4]) For d > 3

im Sy s (1.11)
n—oo logn
where ]
A= yg=———". 1.12
7 log(1— ) (1.12)

Following the proof of Erdés and Taylor, without any new idea, one can prove that

lim n(n) =\

n—oo log n

a.s. (1.13)

Erdés and Taylor 4] also investigated the properties of Q(k,n). They proved
Theorem C (Erdés and Taylor [4]) For d > 3 and for any k= 1,2,. ..

lim L(k’ n)

n—o0 n

= 2(1 —y)"! a.s. (1.14)

Pitt [8] proved (1.14) for general random walk and Hamana [5], [6] proved central limit
theorems for Q(k,n).

In [1] we studied the question whether & can be replaced by a sequence t(n) =t, / o
of positive integers in (1.14). Let

w(n) = (n, B) = Nogn — ABloglogn. (1.15)



Theorem D Let d > 3, u(t) :=~v(1 —~)"t and t,, := [(n, B)], (B > 2), where 1(n, B) is
defined by (1.15). Then we have

Q(t,n)
nyp(t)

U(t,n)
nyp(t)

lim sup

n—00 i n—00 4y

— 1| = lim sup — 1| =0 a.s.

Here in sup,, , t runs through positive integers.
For a set A C Z; the occupation time of A is defined by

E(A,n) = > &(z,n). (1.16)

z€EA

Consider the translates of A, i.e. A+u={z+u: z e A} with u € Z; and define the
maximum occupation time by

=*(A,n) = sup Z(A+u,n). (1.17)

uezy

It was shown in [2]
Theorem E For d > 3 and for any fized finite set A C Z,

= (A
lim 7( ")

= .S. 1.18
n—o00 logn €A a.s ( )

with some positive constant c4, depending on A.

Now we present some more notations. For z € Z; let T, be the first hitting time of z,
ie. T, :=min{i > 1:S; = z} with the convention that 7, = oo if there is no i with S; = z.
Let T' = Ty. In general, for a subset A of Z;, let Ty denote the first time the random walk
visits A, i.e. Ty :=min{i > 1: S; € A} = min,c4 T,. Let P,(-) denote the probability of
the event in the bracket under the condition that the random walk starts from z € Z;. We
denote P(-) = Pg(+). Define

Ve = P(T, = 00). (1.19)

Let S(r) be the surface of the ball of radius r centered at the origin, i.e.
S(r):={z¢€ Z;:|z| =r},
where || - || is the Euclidean norm. Denote
=(z,n) :=Z(S(1) +z,n),
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i.e. the occupation time of the surface of the unit ball centered at z € Z;.
Introduce further
p = Pe1 (Tg(l) < T) (1.20)

In words, p is the probability that the random walk, starting from e; (or any other points
of §(1)), returns to S(1) before reaching 0 (including the case Ts) < T = 00).
In particular it was shown in [2]

=(z, 1
lim - Pz€Za (z,n) _ =K a.s. (1.21)

n—oelogn  —log(p+4)

It is easy to see that Theorem D implies

Consequence 1.1 With probability 1 there exists a random variable ng such that if n > ng
then for all k =1,2... 19 (n, B) there exist

(i) z € 24 such that £(z,n) = k,
(ii) j < n such that £(S;, 00) = k.

It would be interesting to investigate the joint behavior of the local time of a point and
the occupation time of a set, but in general this seems to be a very complicated question so
we will deal only with the following two special cases. We will consider the joint behavior of
the local times of two neighboring points, and the local time of a point and the occupation
time of a ball of radius 1 centered at the point. Concerning the first question one might like to
know whether it is possible that in two neighboring points the local times are simultaneously
around Alogn. More generally, we might ask whether the pairs of possible values of

(&(z,n), £(z + e;,n)) (1.22)
completely fill the lattice points in the set (logn).4 where A is defined as
A={(z,y) € Z4: 0<2z <\ 0<y <AL
The answer for this question turns out to be negative. However we will prove that for
B={y>0,2>0: —(z+y)logly+z) +xlogz +ylogy — (zr+y)loga <1}, (1.23)

where

we have



Theorem 1.1. Let d > 4. For each ¢ > 0, with probability 1 there exists an ng = no(e) such
that if n > ng then

(i) (&(z,n),&(z+ei,n)) € ((1 +¢)logn)B, Vz e Z4, Vi=1,2,...,2d
(ii) for any (k,0) € (1 —¢e)logn)BN Z4 and for arbitrary i € {1,2,...,2d} there exist
random z,,2z, € Z, for which
(€(z1,n),&(z1 +e;,n)) = (k+ 1,0)
(€(z2,n),&(2z2 +€;,n)) = (k, £+ 1).
We will first show that without restriction on the dimension we have

Theorem 1.2. Let d > 3. For each ¢ > 0, with probability 1 there exists an ng = ng(e) such
that if n > ng then

(i) (£(S;,00),£(S; + €;,00)) € ((1+¢)logn)B, Vji=0,1,2,....,n, Vi=1,2,...,2d
(ii) for any (k,0) € ((1 —¢e)logn)BN Z4 and for arbitrary i € {1,2,...,2d} there exists a
random integer j = j(k,{) < n for which
(S(Sja OO),&(SJ + e, OO)) = (k + 1’@'

Concerning the occupation time of the unit ball, Consequence 1.1 and Theorem E suggest
the following

Conjecture 1.1 For any ¢ > 0 with probability 1 there exists a random variable ng = ng(e)
such that if n > ng then for all k = 1,2,...,[(1 — e)klogn] there exists z € Z, such that
=(z,n) = k.

A simple consequence of our Theorem 1.3 is that Conjecture 1.1 is true. As we indicated
above, we are interested in the joint asymptotic behavior of the random sequence

(&(z,n),=(z,n)), z€ 2y

as n — 0o. One might ask again whether this random vector will fill out all the lattice points
of the triangle (logn)C, where

C=A{(r,y)€2Z;: 0<x <\ z<y<k}

As before, it turns out that the above triangle will not be filled. Instead, we will prove the
following theorem.
Define the set D as

D:={y=z2=>0: —ylogy + zlog(2dz) + (y — x)log((y — z)/p) < 1}, (1.24)

where p was defined in (1.20) and its value in terms of v is given by (2.5) below.
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Theorem 1.3. Let d > 4. For each ¢ > 0 with probability 1 there exists an ny = ny(e) such
that if n > ng then

(i) (€(z,n),2(z,n)) € (1 +&)logn)D,  Vz e Zy
(ii) for any (k,0) € ((1 —¢)logn)D N 2, there exists a random z € Z, for which

(&(z,n),=Z(z,n)) = (k, 0+ 1).

Theorem 1.4. Let d > 3. For each ¢ > 0 with probability 1 there exists an ny = ny(e) such
that if n > ng then

(i) (£(S; +€;,00),=(S; +e;,00) € (L+¢)logn)D, Vj=1,2,....,n, Vi=1,2...,2d

(ii) for any (k,0) € (1 —¢e)logn)D N 24 and for arbitrary i € {1,2,...,2d} there ezists a
random integer j = j(k,{) < n for which

(f(S] + €, OO), E(Sj + e, OO)) = (k}, (+ 1).
Remark 1.1 The condition d > 4 in Theorem 1.1 and Theorem 1.3 is needed only for the
convergence of (4.7) while proving parts (i). The proofs of parts (ii) in both theorems work
also for d = 3.
2. Preliminary facts and results

Recall the definition of 7, ~,, T" and T, in Section 1.

Lemma 2.1. Fori=1,2,...,2d

’Yei = ,}/7 (21)
1 —
P(T <T.)=P(T, <T)= 2—7 = a, (2.2)
—
P(T =T, = o0) = % =1-2a. (2.3)

Proof. By symmetry ve, = Ve,, © = 1,2,...,2d. Hence

1=7 = 3 P(S = )1 =70) = 3551 =) = (1= %)



thus we have (2.1). Furthermore observe that

1—7=P(T <00)=P(T <Te,) +P(Te, < T)Pe,(T < 0)
and
l—v=P(T,, <o00)=P(Te, <T)+P(T < T¢,)P(Te, < 00).

Solving this system of equations for P(T,, < T') and P(T < Tg,), we get (2.2), and (2.3)
follows from P(T'=T,, =o0) =1 -P(T' < Tg,) — P(Te, < T).

Lemma 2.2. Fori=1,2,...,2d

P(£(0,00) = k,&(e5,00) = 0) = (1 — 2a) (k Z E) oMk 0=0,1,... (2.4)

Proof. By (2.2), the probability of k£ visits in 0 and ¢ visits in e; in any particular order

is a***. The binomial coefficient in (2.4) is the number of possible orders. Finally, observe

that starting from either of the two points, the probability that the walk does not return

back to the starting point, nor to the other point is 1 — 2. Hence the lemma follows. O
Recall the definition of p in (1.20).

Lemma 2.3.

p:1—m, (2.5)

P(=(0, (1 >( %)H, i=1,2..., (26)

P(£(0,00) =k, 2(0,00) =+ 1) = (i) —p— ﬁ> ptF (2—1d>k (2.7)
(= k=0,1,....¢

Proof. Let Z(A) denote the number of visits in the set A up to the first return to zero.
Clearly

1
P(Z(S(1)) =4, T < 00) = p]*lﬁ, j=1,2,... (2.8)
Summing up (2.8) in j, we get
1
1— P(T < o0) p71 yRmEyTe e 2.9
T Z 2d(1 —p) (2.9)



implying (2.5).
Introduce further

T=> I{S; € S(1), Sl > 1},
j=1

thus 7 is the number of outward excursions from S(1) to S(1), including the last incomplete
one. Hence
E(0,00) =7+ £(0,00).

Since p is the probability that the random walk starting from any point of S(1) returns to
S(1) from outside, while 1/(2d) is the probability of the same return through the origin,
p+1/(2d) is the probability that the random walk, starting from any point of S(1), returns
to S(1) in finite time, (2.6) is immediate. Furthermore, it is easy to see that

P(£(0,00) = k, 7= M 4+ 1) = <k+kM> (1_p_i)pM (;d)k

implying (2.7). O
Recall and define

Ve =P (T, = 0), Yz(n) == P(T, > n), (2.10)
¢ =P(T <T,), ¢z(n) == P(T < min(n, T,)), (2.11)
sx =P(Tx <T), sz(n) = P(T, < min(n,T)). (2.12)

Moreover, put
p(n) := Pe, (Tsy < min(n,T)).

Similarly to Theorem A, we prove

Lemma 2.4.

1—%+%§1—7z(n)§1—%, (2.13)
Gz + % < qz(n) < g, (2.14)
.+ % < s,(n) < s, (2.15)
p+ n(d)/(21—)1 <p(n) <p, (2.16)

and O(1) is uniform in z.



Proof. For the proof of (2.13) see Jain and Pruitt [7].
To prove (2.14) and (2.15), observe that

0<¢—¢(n) =P(T <Tp;n<T <o0) <P(n<T <o00)=n(n)—7,
0<s,—38,(n)=P(I,<T,n<T,<0) <Pn<T,<00)="(n)— 7.

To prove (2.16), introduce b; =e; +e;, j=1,2,...,2d, then we have

2d
0<p—pn)=Pe(n<Tsqy <o) =Y Pe(Si =bj,n<Tsq < o0). (2.17)

j=1

Observe that by (2.13), each term in the above sum can be estimated by

1 O(1
Pel(Sl = bj,n S Tg(l) < OO) = ﬁij(n — 1 S TS(I) < OO) = %,
proving the lemma. O
Lemma 2.5. Fori=1,2,...,2d, k+/{ >0, n > 0 we have
k+7¢
P(e(0) = kg(onm) =0 < (“ o, (219
and fori=1,2,...,2d, £ >0, n > 0 we have
P(¢(enn) = k, Z(en,n) = 0) < [ pt* (i)k (2.19)
(3] Ty = (3] - — l{? p 2d . .

Proof. To show (2.18), recall that by Lemma 2.1, ¢, = Se, = a. The time between
consecutive visits to 0 or e; is less than n, hence using the upper inequalities in (2.14) and
(2.15), it is easy to see that the probability of & visits in 0 and ¢ visits in e; up to time n in
any particular order, is less than o***. Now (2.18) is seen by observing that the number of
particular orders is the binomial coefficient in (2.18).

Similarly, we can get (2.19) by using (2.16). O

3. The basic equations

It follows from Lemma 2.2 and Stirling formula that the asymptotic relation

log P(£(0,00) = [zlogn], {(e;,00) = [ylogn]) ~ —g(x,y)logn, n—oo  (3.1)
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holds for i € {1,2,...,2d}, z > 0, y > 0, where
g(z,y) = —(z +y)log(y + ) + zlogz + ylogy — (z + y) log ov.

It follows that P(£(0,00) = [xlogn], {(e;, 00) = [ylogn]) is of order 1/n if (z,y) satisfies
the basic equation

glx,y)=1, >0,y >0. (3.2)

Observe that g(z,y) is the function defining the set B in (1.23). The next lemma describes
the major properties of the boundary of the set B.

Lemma 3.1.

(i) For the points (x,y) satisfying (3.2) we have

Tmar = Ymaz = /\7 (33)
1

_ 4

(T + Y)max logi’ (3.4)

2c0
when this mazimum occurs then x = y.

(1) If £ = Typaw = A, then y = AN(1 — ) and vica versa.
If v =0, then y = m and vica versa.

(i) For a given x, the equation (3.2) has one solution in y for x < xq, and for x = X and
two solutions for o < x < X\, where

1

* = Tog1/a)

Proof. Differentiating (3.2) as an implicit function of x, y takes its maximum (y’ = 0) at
x = A(1 — ) and the value of this maximum is y = A, which proves the first statements in
(i) and (ii).
Similarly, if we maximize x 4+ y as a function of x (i.e. 14y’ = 0) then we get that this
occurs when 2 = y and the second part of (i) follows.
Solving (3.2) when x = 0 for y, we get the second part of (ii).
Now we turn to the proof of (iii). For given 0 < x < X consider g(z,y) as a function of
y. We have
L
Oy a(z +y)

11
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Figure 1: The set B in the case of the two-point set, d = 3.

and this is equal to zero if y = z(1 — ). It is easy to see that g takes a minimum here and
is decreasing in (0, z(1 — v)) and increasing in (z(1 — ~), \). Moreover,

g 1 1

Ny 1ty

> 0,

hence ¢ is convex from below. We have for 0 < x < A, that this minimum is

gla,a(l-7) =5 <L,

and one can easily see that

< 1lif z <z,
g(x,0) =xlog(l/a){ =1if x = x,
> 1if x > x.

This shows that equation (3.2) has one solution if 0 < x < xy and two solutions if xg < z < A.
For x = A, it can be seen that y = A(1 — ) is the only solution of g(z,y) = 1.
The proof of Lemma 3.1 is complete. O
For further reference introduce the following notations to describe the boundary of B: for
o < x < Aletyy 5(x) < yo 5(x) denote the two solutions and for 0 < = < zg let y s(x) denote

12



the only solution of (3.2). Define y; g(x) = 0 for 0 < x < x¢ and y1 g(A) = y2.8(A) = A(1—7).
Then the set B can be given as

B={0<z<X\ yg)<y<uys()}

For further discussion of properties of the set B see Section 6.
Concerning similar description of the set D belonging to the other problem, it follows
from (2.7) of Lemma 2.3 and Stirling formula that the asymptotic relation

log P(£(0,00) = [zlogn], £(0,00) = [ylogn]) ~ —f(z,y)logn, n—oo  (3.5)
holds for 0 < x <y, where
f(z,y) = —ylogy + xlogz + (y — ) log(y — x) + xlog(2d) + (y — x) log(1/p).

It follows that P(£(0, 00) = [z logn], Z(0,00) = [ylogn]) is of order 1/n if (x,y) satisfies
the basic equation
flz,y) =1, 0<xz<uy. (3.6)
Lemma 3.2.

(i) For the mazimum values of x,y, satisfying (3.6), we have

Tmaxy = ————— = A, 3.7

log(2d(1 = p)) (3.7
1

Ynmax = ——— 7+ — K. 3.8

log(p + 55) (3:8)

(i) If t = Tppax = A\, then y = A/ (1 = p). If Y = Ymax = K, then x = x/(2dp+1). If x =0,
then y = 1/log(1/p).

(iii) For given x the equation (3.6) has one solution in y for 0 < x < 1/log(2d) and for
x =\, and two solutions in y for 1/log(2d) < x < A.

Proof. (i) First consider = as a function of y satisfying (3.6). We seek the maximum, where
the derivative 2/(y) = 0. Differentiating (3.6) and putting 2’ = 0, a simple calculation leads
to

—logy + log(y — x) + log(1/p) =0,
1.e.
y==z/(1-p).

13
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Figure 2: The set D in the case of the unit ball, d = 3.

It can be seen that this is the value of y when z takes its maximum. Substituting this into
(3.6), we get
1

xmax = T = . N )\7
log(2d(1 — p))

verifying (3.7).
Next consider y as a function of x and maximize y subject to (3.6). Again, differentiating
(3.6) with respect to x and putting v’ = 0, we get

—log(y — x) + log x — log(1/p) + log(2d) = 0

from which = y/(1 + 2pd). Substituting in (3.6) we get Ymax = K-

This completes the proof of Lemma 3.2(i) and the first two statements in Lemma 3.2(ii).
An easy calculation shows that if z = 0, then y = 1/log(1/p).

Now we turn to the proof of Lemma 3.2(iii). For given 0 < z < X\ consider f(z,y) as a
function of y. We have

g = log y—

dy Py
and this is equal to zero if y = /(1 — p). It is easy to see that f takes a minimum here and

14



is decreasing if y < x/(1 — p) and increasing if y > z/(1 — p). Moreover,

H? 1 1
oy y—z oy

hence f is convex from below. We have for 0 < x < A, that this minimum is

/ <x 1 fp) — rlog((1 - p)2d)) = £ <1

and
<1if x < 1/log(2d),

f(z,0) = zlog(2d) s =1if x =1/log(2d),
> 1if z > 1/log(2d).

This shows that equation (3.6) has one solution if 0 < z < 1/log(2d) and two solutions if
1/log(2d) < x < A

For x = ), it can be seen that y = \/(1 — p) is the only solution of f(z,y) = 1.

The proof of Lemma 3.2 is complete. O

For further reference once again introduce the following notations to describe the bound-
ary of D: for 1/log(2d) < = < A let y1p(z) < yop(x) denote the two solutions and for
0 <z < 1/log(2d) let yop(z) denote the only solution of (3.6). Define y; p(x) = z for
0 <z <1/log(2d) and y; p(A) = y2p(A) = A/(1 — p). Then the set D can be given as

D={0<z< X\ yip) <y<ynp(x)}

For further discussion of properties of the set D see Section 6.

4. Proof of Theorems, Parts (i)

In this section we prove parts (i) of the theorems in the following order: Theorem 1.2(i),
Theorem 1.1(i), Theorem 1.4(i), Theorem 1.3(i). In the proofs the constant ¢ may vary from
line to line.

Proof of Theorem 1.2(i).
We say that S; (j =0,1,...) is new (cf. [3]) if either j =0, or j > 1 and

Sm #8S;, form=1,2,...,j -1

Let A; be the event that S; is new.
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Consider the reverse random walk starting from S;, i.e. S :=S;_, —S;, r=0,1,...,j
and also the forward random walk S := S;,, —S;, » = 0,1,2,... Then {S;,S},...,S}}
and {S{,SY,...} are independent and so are their respective local times ¢ and £”. One can
easily see that

€(8;,7) =€(0.5) +1, &(S;+ei,j) =& (e, ])

and
§(85,00) —&(8;,7) =&§7(0,00),  &(S; +e;,00) —&(S; +€i,5) = §7(0+ e, 00),
hence by Lemmas 2.2 and 2.5
P(£(S;,00) = k. §(8; +e;,00) = £, A;)

= P(gl(ovj) = 075” <07 OO) =k- l,fl(ei,j) + €’7<eia OO) = é)
l
= Z P(£/(07.7> = O7£I(ei7j) = €1>P(§” (07 OO) =k—-1¢ (eiv OO) ={— gl)

£1=0
< i: oh (k' —1+4- £1>ak1+681 N i: (k' —1+0- él) _ (k' + é) T
¢1=0 e - 61 0,=0 e — 61 E

Let (k,0) ¢ ((1+ ¢)logn)B. Since g(cx,cy) = cg(x,y) for any ¢ > 0, we conclude from
(3.1) that

P(£(S;,00) = k, (S, + e5,00) = £, A;) < —

— nl-i—e

and using this and (1.10)
P(£(S;,00), £(8; + €:,00)) & ((1 +¢)logn)B, A;)
< Z P(g(Sj,oo):k:,f(Sj+e,~,oo):€,Aj)

(k,0)Z((1+¢) logn)B
k<(14e)Alogn
£<(14e)Xlogn

+ Y PESj00)=kA)+ Y. PES;+e00) =1, A))

k>(14¢e)Xlogn £>(14+¢e)Xlogn
clog®n c

k
= nlte +2 Y. (d-9F< nlte/2” (4.1)
k>(14¢e)Xlogn

Hence selecting a subsequence n, = r%¢ we have
P(Uj<n, iy Uity {(6(85,00), £(S; +ei,00)) & ((1 +€) logn,) B})
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= P(Ujzn, Uity {(£(85,00),8(S; + €i,00)) & (1 +¢)logn,)B} N 4;) < #

Borel-Cantelli lemma implies that with probability 1 for all large r and for all j < n,4q,
1 < 2d we have
(6(S5,00), £(S; + €,00)) € (14 &) logn, )B.

It follows that with probability 1 there exists ng such that if n > ngy then
(£(S;,00),£(Sj+€;,00)) € (1 +¢)logn)B

foralli=1,2,...,2d, 7 < n.
This proves (i) of Theorem 1.2. O

Proof of Theorem 1.1(i).
Introduce the following notation:

§<Z> (na OO)) = f(Z, OO) - £(Z7 n) (4'2)

Fix i € {1,2,...,2d} and define the following events for j < n.

B(5,n) :={(£(S;,1),£(S; + ei,n)) & ((1+¢)logn)B}, (4.3)
B*(j,n) :={(£(S;,4),£(S; + e:, 7)) ¢ (1 +¢)logn)B}, (4.4)
C(],?’L) :{Sm#S],Sm%S]+el,m:j+1,,n}, (45)
D(j,n) = {£(8;; (n,00)) > 0} U{L(S; + e, (n, 00)) > 0} (4.6)

Considering again the reverse random walk starting from S;, ie. S. =8S;_, —S;, r =
0,1,...,7 we have

€(8;,7) =€0.) +1,  &(S;j+ei,j) =& (e ),

where ¢’ is the local time of the random walk S'.
By (2.18) of Lemma 2.5 and (3.1), if (k,¢) ¢ ((1 + ) logn)B, then

ko (k41 c
PE(0,5)=k—1,¢(e;,j)=() < —— R
€0.0) =k~ 18 =) < g (M et < o
Hence, as in (4.1), we have
*( ¢
P(B (]7”)) — n1+€/2



Observe that

B(j,n)C(j,n)D(j,n) = B*(j,n)C(j,n)D(j.n).
Furthermore {S], » =0,1,...,j} and {S,,—S;, m = j,j+1,...} are independent. Hence

P(B(j,n)C(j,n)D(j,n)) = P(B*(j,n))P(C(j,n) D((4,1))-

Combining these with Theorem A implies

. . . C
P(B(],ﬂ)C(],ﬂ)D(],n)) S n1+5/2(n _,] + 1)d/2—1’

consequently for d > 4
> D> P(B(j,n)C(j,n)D(j,n)) < co. (4.7)
n=1j=1

Hence with probability 1, there exists ng such that for n > ng the event B(j,n) UC(j,n) U
D(j,n) occurs. We may assume that ng satisfies also the requirement in Theorem 1.2(i). If

B(j,n) occurs, then
(€(S;,n),&(Sj+ei,n)) € (1 +¢)logn)B.

If D(j,n) occurs, then
(£(8;,n),&(S; +e;,n)) = (£(8;,00),£(8; + €;,00)) € (1 +¢)logn)B

by Theorem 1.2(i).

Now consider z € Z; such that {(z,n)+&(z+e;,n) > 0, but arbitrary otherwise and let L
be the time of the last visit to {z,z+e;} before n, i.e. L :=max{m <n: S,, € {z,z+e;}}.
Then B(L,n)U C(L,n)U D(L,n) occurs for n > ngy. Since C(L,n) cannot occur, we have
that B(L,n) U D(L,n) occurs. If Sy, = z, this implies

(€(SL,n),&(SL + e, n)) = (§(z,1), (2 + e;,n)) € ((1+¢)logn)B.

If S;, = z + e;, then applying the above procedure using the unit vector —e; we get that
(&(Sp,n),&(SL —ei,n)) = (E(z+e;,n),&(z,n)) € ((1+¢)logn)B.

By symmetry of the set B this implies also
(£(z,n),&(z+€;)) € (1 +¢)logn)B.
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Since ¢ € {1,2,...,2d} is arbitrary, this completes the proof of Theorem 1.1(i). O

Proof of Theorem 1.4(i).

The proof is similar to that of Theorem 1.2(i). Let z € Z; and consider the unit ball
centered at z. Let now A; be the event that the random walk hits this unit ball first
at time j. Under this condition (£(z,00),=(z,00)) has the (unconditional) distribution of
(€(0,00),Z2(0,00)). Hence if (k,¢) ¢ ((1 4 €)logn)D, then by using (3.5)

P(¢(2, 00) = k,Z(z,00) = £, A;) < —

- n1+€ :

The same way as in the proof of Theorem 1.2(i) we can show the following estimation, with
the modification that whenever we have a summation by ¢, A should be replaced by s and
instead of using (1.10) we apply (2.6).

P((£(2,00),Z(z,0)) & ((1+2)logn)D), 4;) < —¢

= lre/2
For n, as in the proof of Theorem 1.2(i), one gets similarly

P (Ujcn, o U2, {(£(S; + €i,00), E(S; + €5, 00)) & ((1+¢)logn,)B})

= P(Ujcn, 1 Uiy {(€(z + €,00),E(z + e;,00)) & (1 +¢) logn,)B} N A;) < 5/2
and we can complete the proof by using Borel-Cantelli lemma. O

Proof of Theorem 1.3(i).
The proof is similar to that of Theorem 1.1(i).
Introduce the following notation:

=(z, (n,00)) := =(z,00) — =(z, n). (4.8)

Define I' =T, := {e; + S(1)}. For i € {1,...,2d} introduce, as before, the following events
for j < mn.

B(j,n) == {(§(S; +ei,n),=(S; +e;,n)) ¢ (1 +¢)logn)D}, (4.9)
B*(j,n) :=={(&(S; +e;,7),E(S; +ei,4)) ¢ (1 +¢)logn)D}, (4.10)
Cj,n) ={Sné¢S;+I',m=j+1,....,n}, (4.11)
D(j,n) :={=2(S; +e;, (n,00)) > 0}. (4.12)



Considering again the reverse random walk starting from S;, ie. S) =S;_, —S;, r =
0,1,...,7 we remark

§(S;+eig) =Eled),  E(S;+eni)=E(en)) - L,

where =’ is the occupation time of the unit ball of the random walk S’.
>From this we can follow the proof of Theorem 1.1(i), using (2.19) and (3.5) instead of
(2.18) and (3.1) and applying Theorem 1.4(i) instead of Theorem 1.2(i). O

5. Proof of Theorems, Parts (ii)

In this Section we prove parts (ii) of the Theorems.
Proof of Theorem 1.1(ii) and Theorem 1.2(ii).

Without loss of generality we give the proof for i = 1. Define the two-point set T :=
{0,e1}. We say that S; (7 =1,2,3...) is T-new if either j =1, or j > 2 and

Sn¢S;+7T, (m=1,2...,j—1)

Lemma 5.1. Let (,, denote the number of Y-new points up to time n. Then

lim C—" =1—-2a a.s.
n—oo 1

Proof. Define
g {1 if S; is YT—new

J 0 otherwise

Then ¢, =37, Z; and hence

j=114=1 j=1 J=li=1
n j—1

<n-+ 22 ZP(ZZ =1)P(Z;_;=1)
j=1i=1
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Considering the reverse random walk from S; to Sy = 0, we see that the event {Z;, = 1}
is equivalent to the event that the reversed random walk starting from any point of T does
not return to T up to time 7. Using Lemma 2.1 and 2.4 we get

P(Zi=1)=1—qe, (i) — 56, (1) = 1 — 20 + O(i'~¥?),

Hence .
E(¢}) <n+2 Z Z (1 — 20+ O(z’l—d/Z)) (1 —2a+0((j — Z‘)l—d/Q))
=n(n—1)(1—-20)*+0(n*?),
thus

By Chebyshev’s inequality

P(I¢u—n (1 —2a) >5n)§0<%>.

Considering the subsequence n; = k3, and using Borel-Cantelli lemma and the monotonicity
of (,,, we obtain the lemma. O

Lemma 5.2. For each 6 > 0, there exist a subsequence n, and ro such that if r > ro then
for any (k,0) € (1 —0)logn,)B N Z, there exists a random integer j, = j,.(k, ) < n, for
which

(S(Sjm n?")v g(Sjr + elanr)) = (f(sjm OO)7§(Sjr + ey, OO)) = (k + 1’@‘

Proof. Let {a,} and {b,} (a,logn < b, < n) be two sequences to be chosen later. Define
¢y = min{j > b, : S;is T—new},

0, =min{j > 0,,_1 + b, : SjisT—new, } m=2,3,...

and let ¢/, be the number of 6,, points up to time n — b,. Obviously (!, (b, + 1) > (,, hence
¢! > (u/(b,+1) and it follows from Lemma 5.1 that for ¢ < 1 —2a, we have with probability
1 that ¢! > u, := [en/(b, + 1)] except for finitely many n.

For 1 <i <, let

ph=0,  pi=min{j>p, :Se., €Y}, h=12,...
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For a fixed pair of integers (k, ¢) define the following events:

Ai ={&(S0,.0; + Piys) = k+1,E(So, + €1,0; + piyy) = £,

ph—ph 1 <an, h=1,... k+0,S;¢Se,+ Y, 5=0;+pi,+1,....0,+b,},
B;={S; €Sy, + 7T, j>0;+b,},
Cp=AB) + A AyBy + A/ AyAsBs + ...+ Ay ... Ay, _1 A, By,

Note that if (k,¢) € ((1 — §)logn)B, then k + ¢ < clogn for some constant ¢, hence
P = Poy < an, h = 1,...,k+ ¢ implies p},, < (k+ 0)a, < ca,logn < b, and so the
events A; are well defined and are independent, since A; depends only on the part of random
walk between 6; and 60,,;. More precisely, the events Ay,..., A; 1, A;B; are independent.
Moreover, P(A;) = P(A;) and P(A;B;) = P(A1B;), i = 2,3, ... Hence we have

P(C.) = P(4sBr) 3 (1~ P(4y) = B - (1= Pan)™.

— P(AiB1) . pwa
PO <1 B Y L —upay
(C) P(Ay)

P(AlBl) = P(D N {SJ Y, J=prae+ 1, prie+2,.. }) = (1 — QQ)P(D),
P(A)=PDN{S; &Y, j=prre+1,....0,}) = (1 =2a+ 00 "*)P(D), (5.1)

where
p0:0, ph:min{j>ph_1:Sj€T}, h:1,2,...,

D = {£(0, prye) = k, &(e1, proe) = Lo pn — pr1 < an, h=1,... k +(}.

In (5.1) we used that by Lemmas 2.1, 2.4 and remembering that ¢o, = se, = a, we have

< P(D)(1 = g, (by — (k + 0)an) — Se, (by — (k + €)ay)) = P(D)(1 — 2a 4+ O(b:~¥?)).

Consequently,

P(A,B,) 1—d
WD) g opla),
P(A) ()

therefore
P(C_n) < O(b}lfdﬁ) + efcnP(Al)/bn'

22



5/4

: 2
Choosing b, = n®?, a, = n%/*, we prove

P(A) > (5.2)

nl=96"

Using (2.14) and (2.15) of Lemma 2.4 for z = e; we get

P 2 (1-20)(* | ) (o o) 2 o]

since if (k,¢) € (logn)B, then k + ¢ = O(logn). Now (5.2) follows from Stirling formula,
similarly to (3.1).

Using (5.2) we can verify that 3, P(C,,,) < oo for n, = r? with pé(d — 2) > 4.

By Borel-Cantelli lemma, with probability 1, C), occurs for all but finitely many . This

completes the proof of Lemma 5.2. O
On choosing § = €/2, we can see for n, <n < n,4

(1 —¢)logn)B C ((1 —¢/2)logn,)B

for large enough r and since £(S;,,n) and £(S;, + e1,n) do not change for n > n,, we have
the Theorem 1.2(ii) and the first statement of Theorem 1.1(ii). The second statement in this
Theorem follows by symmetry. O

Proof of Theorem 1.3(ii) and Theorem 1.4(ii).

The proof in this subsection is almost the same as in the previous one, so we skip some
details. Without loss of generality, the proof is given for + = 1. Let I' = I'; as defined in the
proof of Theorem 1.3(i), i.e. I' is the unit ball centered at e;. S; (j = 1,2,3...) is called
[-new if either j =1, or j > 2 and

Sm&S;+0, (m=1,2,...,5—1).

Lemma 5.3. Let v, denote the number of I'-new points up to time n. Then

v, 1
lim 2 =1—p— — .S.
Jm =1 gy s

Proof. Define
7 _ {1 if S; is I'—new

J 0 otherwise

Then v, = E;‘:l Zj.
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Considering the reverse random walk from S; to Sy = 0, we see that the event {Z;, = 1}
is equivalent to the event that the reversed random walk starting from any point of S(1)
does not return to S(1) up to time i. Using Lemma 2.4 we get

4 1 1 L

The rest of the argument is identical with that of Lemma 5.1.

Lemma 5.4. For each 6 > 0, there exist a subsequence n, and ro such that if r > ro then
for any (k,0) € (1 —6)logn,)D N Z, there exists a random integer j, = j.(k,€) < n, for
which

(S(Sjr +er, n?")v E(Sjr t+er, nT’)) = (f(S]r + eq, OO)’ E(Sjr t+er, OO)) = (kv t+ 1)'
Proof. Let {a,} and {b,} (a,logn < b, < n) be two sequences to be chosen later. Define
¢y = min{j > b, : SjisI'—new},

0, = min{j > 0,,_1 + b, : Sjis['—new}, m=23,...

and let v/, be the number of 6,, points up to time n — b,. Obviously v/, (b, + 1) > v, hence
vl > v,/(b, + 1) and it follows from Lemma 5.3 that for ¢ < 1 —p — we have with
probability 1 that v, > w, := cn/(b, + 1) except for finitely many n.

Let

L
2d’

ph=0,  p,=min{j>p, | :Sp.; €T}, h=12...
For a fixed pair of integers (k, ¢) define the following events:

A; = {&(Sp, +e1,0; + p) = k,E(Sp, +e1,0; + py) =L+ 1,

ph—ph < an, h=1,...0,8; €Sy, +T,j=0;+p.+1,....0; +b,},
B;={S; €8Ss, +T,j>0;+b,},
Cp=AB) + A ABy + A{AyA3By + ...+ A, ... A, _| A, B.,.

Similarly to the proof of Lemma 5.2, P(A4;) = P(4;) and P(4;B;) = P(A1By), i =
2,3,...and

P(C.) = (i) 3 (1= P(4y) = et - (1 Pan)™,
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P(A4iB1)  _..pay
-~ - 7 _'_ e n 1
B P (A1)

By Lemma 2.4
P(A1B) 1—d
SO o),
P(4) )
therefore
P(C_n) < O(byll—d/Z) + e—cnP(Al)/bn'
Choosing b, = n%/?, a,, = n®/*, we can prove similarly to (5.2)

1
ni-o

P(A;) >

and verify that 3, P(C,,) < oo for n, = r? with pé(d — 2) > 4.

By Borel-Cantelli lemma, with probability 1, C), occurs for all but finitely many . This
completes the proof of Lemma 5.4. O

On choosing § = /2, we can see for n, <n < n,4;

(1 —¢)logn)D C ((1 —&/2)logn,)D
for large enough r and since £(S;, + e, n) and =(S;, + e;,n) do not change for n > n,, we
have the statements (ii) of both Theorems 1.3 and 1.4. O
6. Further discussions

Observe that the following points are on the curve g(z,y) =1 (see Figure 1):

(o #) <; 0)
"log(1/a) )7 \log(1/a) ")

()‘7)‘(1_’7))7 ()‘(1_'7)’)‘)7

(st Teatr)
2log(1/(2))" 2log(1/(2a)) ) -
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In the following discussion we are having almost sure statements, which we will not be
emphasize over and over again.
Our Theorem 1.1 shows that there are points z, with

logn
{(zp,n) =0, and  {(z,+e;,n)~ m-
On the other hand, if for a point z,,
logn
" 1 T 71/\
Elam) > (14 2) s

then for all of its neighbors we have &(z, + e;,n) > clogn for some ¢ > 0. Moreover,
if £(z,,n) ~ Alogn then for all of its neighbors £(z, + e;,n) ~ A(1 — ~)logn. Roughly
speaking if a point has nearly maximal local time, it essentially determines the local time of
its neighbors, and hence the occupation time of the surface of the unit ball around it.

For the maximal occupation time of neighboring pairs we can obtain

lim SupzeZd<§(Z> Tl) + £(Z + €, n)) _ 1
n—00 logn log 5

and for z,, where the sup is attained, we have, as n — oo,

logn
§(zn,n) ~ &(Zy +€5,m) ~ @-

It is easy to calculate the maximal local time difference between two neighboring points.

lim SupzeZd<§(Z> Tl) - £(Z + €, n)) _ 1
n—oo logn log 1+\/21074042 )

and for z, where the sup is attained, we have, as n — oo,

14+ v1—4a? logn £z + ) 1 — 1 —4a? logn
’ Zy, T €5, 1)~ .
2v/1 — 402 log 1+\/21074a2 2v/1 — 42 log 1+v1—4a?

2a
Considering now the joint behavior of the local time of a point and the occupation time
of the surface of the unit ball around it, observe that the following points are on the curve
f(z,y) =1 (see Figure 2):

(O’ log(ll/P)> ’ <log22d)’ 1og(12d)> ; <2d;Jr 1#) : <)\, %p) _
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As a conclusion of Theorem 1.3 we have that there are points z, with

logn

&(zp,n) =0 and =(Zp,n) ~ —————.
(701 (#0) ™ Tog(1/p)
On the other hand, if for a point z,

logn
log(1/p)’

then for its center we have £(z,,n) > clogn for some ¢ > 0. Moreover, if £(z,,n) ~ Alogn,
then for the unit ball

=(zn,n) > (1+¢)

_ Alogn
E(zp,n) ~ .
l1—p
Roughly speaking if a point has nearly maximal local time, it essentially determines the
occupation time of the surface of the unit ball around it.

Observe that from (2.5) it follows that A/(1 — p) = 2dA(1 — ), hence we may conclude
that for a ball having maximal local time at the center, the occupation time of the surface
is 2d times the "deterministic" local time of a point having a neighbor with maximal local
time. Consequently, all surface points of a unit ball having maximal local time at the center,
have approximately the same local time. Moreover, if the occupation time of the surface of
a unit ball is around the maximal value, i.e. Z(z,,n) ~ klogn, then for the local time of its
center we have

klogn
§@nn) ™~ S 1

Finally we conclude that even though it is natural that we can find unit balls having the
same occupation time of the surface as the local time of its center, the fact that it is also
possible when this common value is fairly big is quite surprising. Namely it is possible that

logn

&(zn,n) ~ Z(2p,n) ~ Toz(2d)’

With a little extra computation one can easily calculate (asymptotically) the maximal
weight of the unit ball;

w(z,n) :=&(z,n)+Z(z,n), wn):= zs;g) (&(z,n) + Z(z,n)).

This was already done in [2]. However from Theorem 1.3 we get the following observation as
well: for d > 4 if we know that either one of the three quantities of £(z,n), Z(z,n) or w(z,n)
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is (asymptotically) maximal, then this maximal value uniquely determines the values of the
other two (asymptotically). For completeness here are the numerical results;

Whenever w(z,,n) ~ C'logn, then

C 1+A
&(zn,n) 5 4108 and  =(z,,n) CQ+A ogn,
where
A = dp® + \/d2p* + 2dp2.
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