
TRANSIENT NN RANDOM WALK ON THE LINE

Endre Csáki1

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B.
127, H-1364, Hungary. E-mail address: csaki@renyi.hu

Antónia Földes2

Department of Mathematics, College of Staten Island, CUNY, 2800 Victory Blvd., Staten
Island, New York 10314, U.S.A. E-mail address: foldes@mail.csi.cuny.edu

Pál Révész1

Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner
Hauptstrasse 8-10/107 A-1040 Vienna, Austria. E-mail address: reveszp@renyi.hu

Abstract: We prove strong theorems for the local time at in�nity of a nearest neighbor
transient random walk. First, laws of the iterated logarithm are given for the large values of
the local time. Then we investigate the length of intervals over which the walk runs through
(always from left to right) without ever returning.

AMS 2000 Subject Classi�cation: Primary 60G50; Secondary 60F15, 60J55.

Keywords: transient random walk, local time, strong theorems.

Running head: Transient NN random walk.

1Research supported by the Hungarian National Foundation for Scientific Research, Grant No. K 61052

and K 67961.
2Research supported by a PSC CUNY Grant, No. 68030-0037.

1



1. Introduction

Let X0 = 0, X1, X2, . . . be a Markov chain with

Ei := P(Xn+1 = i + 1 | Xn = i) = 1−P(Xn+1 = i− 1 | Xn = i) (1.1)

=

{
1 if i = 0
1/2 + pi if i = 1, 2, . . . ,

where 0 ≤ pi < 1/2, i = 1, 2, . . .. This sequence {Xi} describes the motion of a particle
which starts at zero, moves over the nonnegative integers and going away from 0 with a larger
probability than to the direction of 0. We will be interested in the case when {pi, i = 1, 2...}
goes to zero. That is to say 0 has a repelling power which becomes small if the particle is
far away from 0. We intend to characterize the local time of this motion.

A slightly di�erent but symmetric variation of the same motion can be de�ned as follows.
Let X∗

0 = 0, X∗
1 , X

∗
2 , . . . be a Markov chain with

E∗
i := P(X∗

n+1 = i + 1 | X∗
n = i) = 1−P(X∗

n+1 = i− 1 | X∗
n = i) =

=


1/2 if i = 0,
1/2 + pi if i = 1, 2, . . . ,
1/2− pi if i = −1,−2, . . .

Our results can be rephrased with the obvious modi�cation for this walk as well. However
to be in line with the existing literature we will use the de�nition in (1.1).

The properties of this model, often called birth and death chain, connections with or-
thogonal polynomials in particular, has been treated extensively in the literature. See e.g.
the classical paper by Karlin and McGregor [10], or more recent papers by Coolen-Schrijner
and Van Doorn [3] and Dette [5].

As it will turn out in this paper, the properties of the walk and its local time is very
sensitive even for small changes in {pi}-s. There is a well-known result in the literature
(cf. e.g. Chung [2]) characterizing those sequences {pi} for which {Xi} is transient (resp.
recurrent).
Theorem A: ([2], page 74) Let Xn be a Markov chain with transition probabilities given in

(1.1). De�ne

Ui :=
1− Ei

Ei

=
1/2− pi

1/2 + pi

(1.2)

Then Xn is transient if and only if

∞∑
k=1

k∏
i=1

Ui < ∞.
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This criteria however does not reveal explicitly what are the transient/reccurent type of
{pi} sequences. Lamperti [12], [14] proved a more general theorem about recurrence and
transience of real nonnegative processes (not necessarily Markov chains). Here we spell out
his result in our setup only, which easily follows from Theorem A as well.

Corollary: If for all i large enough,

pi ≤
1

4i
+ O

(
1

i1+δ

)
δ > 0, (1.3)

then {Xi} is recurrent. If instead, for some θ > 1

pi ≥
θ

4i
(1.4)

for i large enough, then {Xi} is transient.

As we proceed to �nd the necessary tools for getting results about the local time, as a
byproduct, we will get a much sharper version of this Corollary.

In this paper we concentrate only on the transient case.
There are many results in the literature about the limiting behavior of {Xn}, depending

on the sequence {pi}. Lamperti [13] determined the limiting distribution of Xn.

Theorem B: ([13]) If limi→∞ ipi = B/4 > 0, then

lim
n→∞

P

(
Xn√

n
< x

)
=

1

2B/2−1/2Γ(B/2 + 1/2)

∫ x

0
uBe−u2/2 du.

In fact, Lamperti [13] (see also Rosenkrantz [16]) proved weak convergence of Xn/
√

n
to a Bessel process as well. We intend to give further connections (strong invariance, etc.)
between Xn and Bessel process in a subsequent paper.

The law of the iterated logarithm for Xn was given by Brézis et al. [1], Székely [18],
Gallardo [7], Voit [19]. Their somewhat more general results specialized in our setup, reads
as follows.

Theorem C: ([1], [18], [7], [19])
If limi→∞ ipi = c > 0, then

lim sup
n→∞

Xn√
2n log log n

= 1 a.s.

Voit [20] has proved a law of large numbers for certain Markov chains, which we quote
in our setup only.
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Theorem D: ([20]) If limi→∞ iαpi = c > 0 for some 0 < α < 1, then

lim
n→∞

Xn

n1/(1+α)
= 2c(1 + α) a.s.

Our main concern in this paper is to study the local time of {Xn}, de�ned by

ξ(x, n) := #{k : 0 ≤ k ≤ n, Xk = x}, x = 0, 1, 2, . . . , (1.5)

and
ξ(x,∞) := lim

n→∞
ξ(x, n). (1.6)

2. Lemmas and Notations

For Ui de�ned in (1.2) we get by elementary calculation that
Fact 1.

Ui =
1− Ei

Ei

=
1/2− pi

1/2 + pi

= 1− 4pi + O(p2
i )

= exp(−4pi + O(p2
i )) (i = 0,±1,±2, . . .). (2.1)

Introduce the notation

D(m,n) :=



0 if n = m,
1 if n = m + 1,

1 +
n−m−1∑

j=1

j∏
i=1

Um+i =

1 +
n−m−1∑

j=1

exp

−(1 + om(1))4
m+j∑

i=m+1

pi

 if n ≥ m + 2.

Denote
lim

n→∞
D(m,n) =: D(m,∞).

Lemma 2.1. If pi ↓ 0 then for m large enough

D(m,∞) ≥ C

pm

,

where C is an absolute constant. Consequently,

lim
m→∞

D(m,∞) = +∞.
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Proof: Let
1

pm

≤ j ≤ 2

pm

, then from (2.1) for m big enough we have

m+j∑
i=m

(pi + Cp2
i ) ≤

2

pm

(pm + Cp2
m) ≤ 2(1 + Cpm) ≤ 2(1 + C).

Consequently

exp

−m+j∑
i=m

(pi + Cp2
i )

 ≥ exp(−2(1 + C))

and

D(m,∞) ≥ 1 +
∞∑

j=0

exp

−m+j∑
i=m

(pi + Cp2
i )


≥ 1 +

[ 2
pm

]∑
j=[ 1

pm
]

exp(−2(1 + C)) ≥ 1 +
1

pm

exp(−2(1 + C)).

2

For 0 ≤ a ≤ b ≤ c de�ne

p(a, b, c) :=

= P(min{j : j > m, Xj = a} < min{j : j > m, Xj = c} | Xm = b),

i.e. p(a, b, c) is the probability that a particle starting from b hits a before c.

Lemma 2.2. For 0 ≤ a ≤ b ≤ c

p(a, b, c) = 1− D(a, b)

D(a, c)
.

Especially

p(0, 1, n) = 1− 1

D(0, n)
, p(n, n + 1,∞) = 1− 1

D(n,∞)
. (2.2)
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Proof: The proof of this lemma is fairly standard, we give it for completeness. Clearly we
have

p(a, a, c) = 1,

p(a, c, c) = 0,

p(a, b, c) = Ebp(a, b + 1, c) + (1− Eb)p(a, b− 1, c).

Consequently

p(a, b + 1, c) =
1

Eb

p(a, b, c)− 1− Eb

Eb

p(a, b− 1, c)

and

p(a, b + 1, c)− p(a, b, c) =
1− Eb

Eb

(p(a, b, c)− p(a, b− 1, c)) =

= Ub(p(a, b, c)− p(a, b− 1, c)).

By iteration we get

p(a, b + 1, c)− p(a, b, c) = (2.3)

= UbUb−1(p(a, b− 1, c)− p(a, b− 2, c))

= . . . = UbUb−1 · · ·Ua+1(p(a, a + 1, c)− p(a, a, c)) =

= UbUb−1 · · ·Ua+1(p(a, a + 1, c)− 1).

Starting with the trivial identity

p(a, a + 1, c)− p(a, a, c) = p(a, a + 1, c)− 1

and adding to it the above equations for b = a + 1, . . . , c− 1 we get

−1 = p(a, c, c)− p(a, a, c) = D(a, c)(p(a, a + 1, c)− 1),

i.e.

p(a, a + 1, c) = 1− 1

D(a, c)
. (2.4)

Hence (2.3) and (2.4) imply
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p(a, b + 1, c)− p(a, b, c) = − 1

D(a, c)
UbUb−1 · · ·Ua+1.

Adding these equations we obtain

p(a, b + 1, c)− 1 = p(a, b + 1, c)− p(a, a, c) =

= − 1

D(a, c)
(1 + Ua+1 + Ua+1Ua+2 + · · ·+ Ua+1Ua+2 · · ·Ub) =

= −D(a, b + 1)

D(a, c)
.

Hence we have the lemma. 2

Introduce the following notations:

λ(0, i) = 1,

λ(1, i) = i,

λ(2, i) = λ(1, i) log i, . . . ,

λ(k, i) = λ(k − 1, i) logk−1 i (k = 3, 4, . . .),

where

log0 i = i,

log1 i = log i, . . . ,

logk i = log logk−1 i,

and

Λ(0, i) = 0,

Λ(K, i) =
K∑

k=1

1

λ(k, i)
, (K = 1, 2, . . .)

Λ(K, i, B) = Λ(K − 1, i) +
B

λ(K, i)
(B > 0).

Note that
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Λ(1, i, B) =
B

i
,

Λ(2, i, B) =
1

i
+

B

i log i
,

Λ(3, i, B) =
1

i
+

1

i log i
+

B

i log i log log i
.

For some K = 1, 2, . . . , B > 0 fixed, de�ne

i0 = min
{
i :

1

4
Λ(K, i, B) <

1

2

}
and let

pi =

{
pi0 , if 1 ≤ i ≤ i0
1
4
Λ(K, i, B) if i > i0.

(2.5)

Now we are interested in the case {pi} above. In fact, in the future for convenience, when
we say that

pi =
1

4
Λ(K, i, B)

we actually mean that pi is de�ned by (2.5).

Lemma 2.3. Let pi =
1

4
Λ(K, i, B). Then

D(0,∞)

{
= ∞ if B ≤ 1,
< ∞ if B > 1,

(2.6)

p(0, 1,∞)

{
= 1 if B ≤ 1,
< 1 if B > 1.

(2.7)

For n ≥ m + 2, B 6= 1 and m big enough

D(m,n) = (1 + om(1))λ(K − 1, m)(logK−1 m)B × (2.8)

× 1

B − 1

(
1

(logK−1 m)B−1
− 1

(logK−1 n)B−1

)
.

If B > 1,

D(m,∞) = (1 + om(1))
λ(K, m)

B − 1
, (2.9)
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p(m, m + 1,∞) = 1− (1 + om(1))
(B − 1)

λ(K, m)
. (2.10)

Proof: To prove (2.8), observe that from (2.1) we have for n ≥ m + 2

D(m, n) = 1 +
n−m−1∑

j=1

j∏
i=1

Um+i (2.11)

= 1 +
n−m−1∑

j=1

exp

− m+j∑
i=m+1

(Λ(K, i, B))

 exp

O(1)
m+j∑

i=m+1

Λ2(K, i, B)


= 1 + (1 + om(1))

n−m−1∑
j=1

exp

− m+j∑
i=m+1

Λ(K, i, B)


=: 1 + (1 + om(1))A(m,n,K).

Now we give a lower bound for A(m,n,K).

A(m, n,K) ≥
n−m−1∑

j=1

exp
(
−
∫ m+j

m
Λ(K, x,B) dx

)
(2.12)

=
n−m−1∑

j=1

λ(K − 1, m)(logK−1 m)B

λ(K − 1, m + j)(logK−1(m + j))B

= λ(K − 1, m)(logK−1 m)B
n−1∑

`=m+1

1

λ(K − 1, `)(logK−1 `)B

≥ λ(K − 1, m)(logK−1 m)B
∫ n

m+1

1

λ(K − 1, x)(logK−1 x)B
dx

= λ(K − 1, m)(logK−1 m)B

(
(logK−1 m)1−B − (logK−1 n)1−B

B − 1

)
.

It is easy to see that the proof of the upper bound goes the same way, resulting the same
expression as in (2.12) with m replaced by m + 1 which combined with (2.11) proves (2.8).
The proof of (2.6) is similar, and the rest of the lemma follows from these two. 2
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Consequence: If for any K = 1, 2...

pi =
Λ(K, i, B)

4
,

then the Markov chain is recurrent if B ≤ 1 and transient if B > 1.

Now we would like to consider the case when pi is essentially
B

4iα
, which should be

understood in the same way as it was de�ned in (2.5). Namely, let

i0 = min
{
i :

B

4iα
<

1

2

}
and let

pi =

pi0 , if 1 ≤ i ≤ i0
B

4iα
if i > i0.

(2.13)

Lemma 2.4. In case pi =
B

4iα
(0 < α < 1) we have

D(m,∞) = (1 + om(1))
mα

B
, (2.14)

1− p(m, m + 1,∞) = (1 + om(1))
B

mα
. (2.15)

Proof: Consider the case 0 < α < 1/2 �rst. By (2.1)

j∏
i=1

Um+i ≤ exp

−B
m+j∑

ν=m+1

ν−α +
m+j∑

ν=m+1

Cν−2α

 =

≤ (1 + om(1)) exp
( −B

1− α

[
(m + j)1−α − (m)1−α

]
+

C

1− 2α

[
(m + j)1−2α − (m)1−2α

])
.

Consequently,

D(m, n)

≤ (1 + om(1)) exp

(
Bm1−α

1− α
− Cm1−2α

1− 2α

)
n∑

k=m+1

exp(

(
−Bk1−α

1− α
+

Ck1−2α

1− 2α

)

≤ (1 + om(1)) exp

(
Bm1−α

1− α
− Cm1−2α

1− 2α

)∫ n

m+1
exp

(
−Bx1−α

1− α
(1− C

1− α

1− 2α
x−α)

)
dx

≤ (1 + om(1)) exp

(
B

m1−α

1− α
− Cm1−2α

1− 2α

)∫ n

m+1
exp

(
−Bx1−α

1− α
hm

)
dx,
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where

hm = 1− C
1− α

1− 2α
(m + 1)−α.

In the calculation above C is a positive constant the value of which is not important. In
the future we will use C, C∗ or C1, C2 . . . for which this remark applies, and their values
might change from line to line. Using substitution and the asymptotic representation of the
incomplete Gamma function (see e.g. Gradsteyn and Ryzhik [8] page 942, formula (8.357))

Γ(β, x) =
∫ ∞

x
tβ−1e−t dt = xβ−1e−x

(
1 +

O(1)

x

)
as x →∞

we conclude that as m →∞

D(m,∞) ≤
(
1 + O(

1

m1−α
)
)

mα

Bhm

exp

(
Bm1−α

1− α
− Cm1−2α

1− 2α

)
exp

(
−hmBm1−α

1− α

)

=
(
1 + O(

1

m1−α
)
)

mα

B
.

A similar calculation (which we omit) gives the same lower bound. The case of α = 1/2 goes
along the same lines with obvious modi�cations. On the other hand, the case 1/2 < α < 1
can be worked out similarly, but it is obvious with less precise calculations as well. 2

Lemma 2.5. In case pi =
B

4(log i)α
with α > 0, there exist 0 < K1 < K2 such that

K1(log m)α ≤ D(m,∞) ≤ K2(log m)α, (2.16)

1− p(m, m + 1,∞) =
O(1)

(log m)α
. (2.17)

Proof: First we give the upper bound. For m ≥ m0

m+j∑
i=m

(
B

(log i)α
− C

(log i)2α

)
=

m+j∑
i=m

B

(log i)α

(
1− C∗

(log i)α

)

≥
m+j∑
i=m

B(1− ε)

(log i)α
=: A(m, j, ε).

Then for
`(log m)α ≤ j < (` + 1)(log m)α (` = 0, 1, 2, . . .)

11



we have

A(m, j, ε) ≥ B(1− ε)`(log m)α

(log[m + (` + 1)(log m)α])α
=: H(m, `, α).

It is easy to see now, that if (` + 1)(log m)α ≤ m then for an appropriate C1

H(m, `, α) ≥ B(1− ε)`(log m)α

(log(2m))α
≥ C1`.

On the other hand, if (` + 1)(log m)α ≥ m, then for an appropriate C2

H(m, `, α) ≥ B(1− ε)`(log m)α

(log(2(` + 1)(log m)α)α
≥ C2`

1/(2α).

Then with N = N(α) := [ m
(log m)α ]− 1.

D(m,∞) ≤
N∑

`=0

e−C1` (log m)α +
∞∑

`=N

e−C2`
1
2α

(log m)α = O(1)(log m)α.

The lower bound follows from Lemma 2.1. 2

3 Local time

We intend to study the limit properties of the local time ξ(R,∞) in case of transient random
walks. To this end we also de�ne the number of upcrossings by

ξ(R, n, ↑) := #{k : 0 ≤ k ≤ n, Xk = R, Xk+1 = R + 1}. (3.1)

ξ(R,∞, ↑) := lim
n→∞

ξ(R, n, ↑). (3.2)

Lemma 3.1. For R = 0, 1, 2, . . .

P(ξ(R,∞) = L) =
1 + 2pR

2D(R,∞)

(
1− 1 + 2pR

2D(R,∞)

)L−1

, L = 1, 2, . . . (3.3)

Moreover, the sequence

ξ(R,∞, ↑), R = 0, 1, 2, . . .

is a Markov chain and

P(ξ(R,∞, ↑) = L) =
1

D(R,∞)

(
1− 1

D(R,∞)

)L−1

, L = 1, 2, . . . (3.4)
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Proof: Clearly we have for L = 1, 2, . . .

P(ξ(R,∞) = L) =
(

1

2
+ pR

)
(1− p(R,R + 1,∞))×

×
L−1∑
j=0

(
L− 1

j

)(
1

2
− pR

)j ((1

2
+ pR

)
p(R,R + 1,∞)

)L−j−1

=

=
(

1

2
+ pR

)
(1− p(R,R + 1,∞))×

×
(
1−

(
1

2
+ pR

)
(1− p(R,R + 1,∞))

)L−1

,

implying (3.3) by (2.2).
The other statements of the Lemma are obvious. 2

Theorem 3.1. If pR → 0, as R →∞, then

lim
R→∞

P

(
ξ(R,∞)

2D(R,∞)
> x

)
= lim

R→∞
P

(
ξ(R,∞, ↑)
D(R,∞)

> x

)
= e−x,

that is to say,
ξ(R,∞)

2D(R,∞)
and

ξ(R,∞, ↑)
D(R,∞)

have exponential limiting distributions.

The proof is a trivial consequence of Lemma 3.1.

Theorem 3.2. Assume that pR → 0 as R →∞. Then with probability 1 we have

ξ(R,∞) ≤ 2(1 + ε)D(R,∞) log R (3.5)

for any ε > 0 if R is large enough.

Moreover,

ξ(R,∞) ≥ MD(R,∞) i.o. a.s. (3.6)

for any M > 0.

In case pR =
Λ(K, R,B)

4
with B > 1, instead of (3.5) and (3.6) we have the much sharper

Theorem 3.3. For pR =
Λ(K, R,B)

4
, B > 1, we have

lim sup
R→∞

ξ(R,∞)

2D(R,∞) log log R
≤ 1. (3.7)
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and

lim sup
R→∞

ξ(R,∞)

2D(R,∞) logK+1 R
≥ 1. (3.8)

Especially in case pR =
Λ(1, R, B)

4
=

B

4R
, B > 1, being D(R,∞) =

R

B − 1
, we have

lim sup
R→∞

(B − 1)ξ(R,∞)

2R log log R
= lim sup

R→∞

(B − 1)ξ(R,∞, ↑)
R log log R

= 1. (3.9)

Consequences:

• If pR =
1

4
Λ(K, R,B), (B > 1) then for any ε > 0

ξ(R,∞) ≤ 2(1 + ε)

B − 1
λ(K, R) log log R a.s. (3.10)

if R is large enough

ξ(R,∞) ≥ 2(1− ε)

B − 1
λ(K,R) logK+1 R i.o. a.s. (3.11)

and

lim
R→∞

P

(
B − 1

2λ(K, R)
ξ(R,∞) > x

)
= e−x. (3.12)

• If pR =
B

4Rα
(0 < α < 1), then

ξ(R,∞) ≤ 2

B
(1 + ε)Rα log R a.s., (3.13)

ξ(R,∞) ≥ MRα i.o. a.s. (3.14)

for any M > 0 and

lim
R→∞

P

(
B ξ(R,∞)

2Rα
> x

)
= e−x. (3.15)
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• If pR =
B

4(log R)α
(α > 0), then

ξ(R,∞) ≤ O(1)(log R)1+α a.s., (3.16)

ξ(R,∞) ≥ M(log R)α i.o. a.s. (3.17)

for any M > 0.

Proof of Theorem 3.2: (3.5) follows from Lemma 3.1. On the other hand, (3.3) also
implies that for any M > 0

lim inf
R→∞

P (ξ(R,∞) ≥ MD(R,∞)) > 0.

Now to �nish our proof we need to apply the zero-one law (in a non-independent setup)
exactly in the same way as in Doob [6] page 103, observing that the conditional probability of
our tail event given the �rst n steps of our walk is the same as its unconditional probability,
that is for any n = 1, 2, . . .

P (ξ(R,∞) ≥ MD(R,∞) i.o. | X1, X2, ...Xn) = P (ξ(R,∞) ≥ MD(R,∞) i.o.) .

which, in turn, implies (3.6).

Proof of Theorem 3.3:

To prove (3.7), we need a few lemmas. Recall the de�nition of the upcrossing in (3.1).
For large values of the local time and upcrossing we have the following invariance principle.

Lemma 3.2. As R →∞

ξ(R,∞)− 2ξ(R,∞, ↑) = O((D(R,∞) log R)1/2+ε + pRD(R,∞) log R) a.s. (3.18)

Proof: Under the condition ξ(R,∞) = L, ξ(R,∞, ↑) − 1 has binomial distribution with
parameters (L− 1, 1/2 + pR). According to Hoe�ding inequality,

P
(∣∣∣∣ξ(R,∞, ↑)− 1−

(
1

2
+ pR

)
(L− 1)

∣∣∣∣ ≥ u(L− 1)1/2
)
≤ e−Cu2

with some C > 0, from which as L →∞,

ξ(R,∞, ↑)− L

2
= O(L1/2+ε + LpR) a.s.

Putting L = ξ(R,∞), we get (3.18) from (3.5).
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Lemma 3.3. Let

γR =
(

1

2
+ pR

)
p(R,R + 1,∞),

and

cR =
γR

1− γR

.

Then

ζ(R) :=
ξ(R,∞, ↑)
c1 · · · cR

, R = 1, 2, . . .

is a submartingale.

Proof: Let TR be the �rst hitting time of R by {Xn}, e.g. TR = min{n : Xn = R}. Then
we have

PR(ξ(R, TR−1, ↑) = j, TR−1 < ∞) =
(

1

2
− pR

)
γj

R, j = 0, 1, . . . , (3.19)

PR(ξ(R,∞, ↑) = j, TR−1 = ∞) =
(

1

2
+ pR − γR

)
γj−1

R , j = 1, 2, . . . (3.20)

Observe that

ξ(R,∞, ↑) =
ξ(R−1,∞,↑)−1∑

m=1

ξm + ξ̃,

where ξm, m = 1, 2... has distribution (3.19) and ξ̃ has distribution (3.20). Then

E(eλξ(R,∞,↑), ξ(R− 1,∞, ↑) = i) = (E(eλξ1))i−1E(eλξ̃) (3.21)

=

(
1
2

+ pR − γR

)
eλ
(

1
2
− pR

)i−1

(1− γReλ)i
,

hence

E(eλξ(R,∞,↑) | ξ(R− 1,∞, ↑) = i) = eλ

(
1− γR

1− γReλ

)i

,

from which
E(ξ(R,∞, ↑) | ξ(R− 1,∞, ↑)) = cRξ(R− 1,∞, ↑) + 1, (3.22)

which easily implies the lemma. 2

Now we prove the upper bound, i.e.

lim sup
R→∞

ξ(R,∞, ↑)
D(R,∞) log log R

≤ 1 a.s., (3.23)
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which also implies (3.7) by Lemma 3.2.
With an easy calculation we get from (3.21) that

E(eλξ(R,∞,↑)) =
eλ

D(R,∞)− eλ(D(R,∞)− 1)
. (3.24)

Using that ζ(R) is submartingale, from (3.24) we have with Rk = [exp(k/ log k)], Ck =
c1c2 . . . cRk

,
uk = (1 + ε)D(Rk,∞) log log Rk,

P

(
max

Rk≤R<Rk+1

ζ(R) ≥ uk+1

Ck+1

)
≤ exp(−λuk+1/Ck+1)E(exp(λζ(Rk+1)))

=
exp(λ/Ck+1)(1− uk+1)

D(Rk+1,∞)− exp(λ/Ck+1)(D(Rk+1,∞)− 1)
.

It can be seen that the optimal choice for λ is given by

exp(λ/Ck+1) =
(uk+1 − 1)D(Rk+1,∞)

uk+1(D(Rk+1,∞)− 1)
,

and we get �nally

P

(
max

Rk≤R<Rk+1

ζ(R) ≥ uk+1

Ck+1

)
=

O(1) log log Rk+1

(log Rk+1)1+ε
.

Hence by Borel-Cantelli lemma for large k and Rk ≤ R < Rk+1 we have

ζ(R) ≤ (1 + ε)D(R,∞) log log R

c1 · · · cRcR+1 · · · cRk+1

,

i.e.

ξ(R,∞, ↑) ≤ (1 + ε)D(R,∞) log log R

cR+1 · · · cRk+1

.

If pR = Λ(K, R,B)/4, then (cf. (2.9))

D(R,∞) ∼ λ(K,R)

B − 1

17



and

cR ∼
1 + 2pR − 1/D(R,∞)

1− 2pR + 1/D(R,∞)
∼ exp(4pR − 2/D(R,∞)) ∼ exp

(
Λ(K, R,B)− 2(B − 1)

λ(K, R)

)
.

If K = 1, then

Λ(1, R, B)− 2(B − 1)

λ(1, R)
∼ 2−B

R
, B 6= 2

and

Λ(1, R, 2)− 2

λ(1, R)
=

o(1)

R
,

and if K > 1, then

Λ(K,R,B)− 2(B − 1)

λ(K, R)
∼ 1

R
.

Hence for large k and Rk ≤ R ≤ Rk+1 we have

cR+1 · · · cRk+1
∼ exp

(
C log

Rk+1

R

)
with some constant C if K = 1, B 6= 2 or K > 1 and C = o(1) if K = 1, B = 2. In view of
limk→∞Rk+1/Rk = 1, for any ε > 0, one can choose k large enough such that

cR+1 · · · cRk+1
≥ 1− ε,

i.e.

ξ(R,∞, ↑) ≤ (1 + ε)D(R,∞) log log R

1− ε
.

Since ε > 0 is arbitrary, (3.23) follows.
To prove the lower bound (3.8), consider an increasing sequence of sites Rk to be deter-

mined later. Let
τk = min{n : Xn = Rk},

the time of the �rst visit at the site Rk, and de�ne

Z(k) := ξ(Rk, τk+1).

Observe that {Z(k), k = 1, 2...} are independent. Following the proof of Lemma 3.1 we can
conclude that

P(Z(k) ≥ L) = (1 + oRk
(1))×

×
[(

1− 1

2
(1− p(Rk, Rk + 1, Rk+1))

)
(1 + O((1− p(Rk, Rk + 1, Rk+1))pRk

))
]L−1

.(3.25)
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Based on (2.8) it is easy to calculate that

D(Rk, Rk+1) = (1 + oRk
(1))

λ(K − 1, Rk)

B − 1
logK−1 Rk

(
1−

(
logK−1 Rk

logK−1 Rk+1

))
=

= (1 + oRk
(1))

λ(K, Rk)

B − 1

(
1−

(
logK−1 Rk

logK−1 Rk+1

))
. (3.26)

De�ne the sequence Rk by
logK Rk := k log Q

with some Q > 1 (we intentionally forget about the technicalities arising from the fact that
the sites should be integers). It is easy to see that with this choice of Rk

logK−1 Rk

logK−1 Rk+1

=
1

Q
.

Let

L(k) = 2
λ(K, Rk)

B − 1

Q− 1

Q
logK+1 Rk.

From (2.4) we get that

P(Z(k) ≥ L(k)) ∼ exp(− logK+1 Rk) =
1

logK Rk

=
1

k log Q
.

Applying Borel-Cantelli lemma and then letting Q →∞, we get (3.8). 2

Our next issue was to investigate how small could be the local time of our process. More
precisely we wanted to know whether it is true that in the transient case there are always
in�nitely many sites with local time equal to 1. In fact we managed to prove in some sense
much more, and in some sense much less. Namely, we prove the following two theorems.
De�ne for N ≥ 2

f(N, R) = f(N, R, ε) =
1

log 2

 N∑
j=2

logj R + ε logN R


and

g(N, R) = f(N, R, 0).

Theorem 3.4. Let pR =
Λ(1, R, B)

4
with B > 1 and N ≥ 2. Then
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• with probability 1 there exist in�nitely many R for which

ξ(R + j,∞) = 1

for each j = 0, 1, 2, . . . , [g(N, R)].

• with probability 1 for any ε > 0 and R large enough there exists an S

R ≤ S ≤ f(N, R, ε)

such that

ξ(S,∞) > 1.

Let

f ∗(R, ε) =
(1 + ε)(1− α) log R

log 2
and g∗(R) = f ∗(R, 0)

Theorem 3.5. Let pR =
B

4Rα
(0 < α < 1). Then

• with probability 1 there exists in�nitely many R for which

ξ(R + j,∞) = 1

for each j = 0, 1, 2, . . . , g∗(R).

• with probability 1 for each R large enough and ε > 0 there exists an S,

R ≤ S ≤ f ∗(R, ε)

such that

ξ(S,∞) > 1.
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Furthermore, we conjecture that for pi ≥ B/(4i), where B > 1, with probability 1 there
are always in�nitely many sites with local time 1. On the other hand, recently James et al.
[9] proved that for pi ∼ Λ(2, i, B) with B > 1 with probability 1 there are only �nitely many
cutpoints, hence �nitely many points with local time 1. We note that it can be seen with a
similar argument that this is the case for pi ∼ Λ(K, i, B) for all K ≥ 2 as well.

Proof of Theorem 3.4: At first we prove the second statement. Recall the notation of
λ(N, R) and observe that

R2g(N,R) = λ(N, R) and R2f(N,R) = λ(N − 1, R)(logN−1 R)1+ε. (3.27)

Now the proof of the second statement is a trivial consequence of

Lemma 3.4. For every N ≥ 2 integer as R →∞

P


f(N,R)⋂

j=1

{ξ(R + j,∞) = 1}

 =

=
f(N,R)∏

j=1

(
1

2
+

B

4(R + j)

)
(1− p(R + f(N, R), R + f(N, R) + 1,∞)) =

= (1 + oR(1))
1

2f(N,R)

B − 1

R
= (1 + oR(1))

B − 1

λ(N − 1, R)(logN−1 R)1+ε
.

Proof: Obvious by (2.10). 2

The proof of the �rst statement of the theorem is based on the following

Lemma 3.5. For every N ≥ 2 integer as R →∞

P


g(N,R)⋂

j=1

{ξ(R + j,∞) = 1}

 =
O(1)

λ(N, R)
, (3.28)

P := P(N, R, S) := (3.29)

= P


g(N,R)⋂

j=1

{ξ(R + j,∞) = 1} ∩
g(N,S)⋂

j=1

{ξ(S + j,∞) = 1}

 ≤

≤



(1 + oR(1))(B − 1)2

λ(N, R)λ(N, S −R)
if S ≥ R + g(N, R),

O(1)2R

2S+g(S,N)

B − 1

S + g(N, S)
if R < S < R + g(N, R).
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Proof: (3.28) follows from Lemma 3.1 and (3.27). In case R < S < R + g(N, R) we have

P =
S+g(N,S)∏

i=R

(
1

2
+

B

4i

)
(1− p(S + g(N, S), S + g(N, S) + 1,∞)) ≤

≤ O(1)
1

2S+g(N,S)−R

B − 1

S + g(N, S)
.

In case S > R + g(N, R) we have

P = (1 + oR(1))
1

2g(N,R)
(1− p(R,R + 1, S))

1

2g(N,S)
(1− p(S, S + 1,∞)) =

= (1 + oR(1))
1

2g(N,R) 2g(N,S)

B − 1

RB

1

R1−B − S1−B

B − 1

S
=

= (1 + oR(1))
1

2g(N,R) 2g(N,S)

(B − 1)2

R

SB−2

SB−1 −RB−1
≤

≤ (1 + oR(1))
1

2g(N,R) 2g(N,S−R)

(B − 1)2

R

1

(S −R)
≤

≤ (1 + oR(1))
(B − 1)2

λ(N, R)λ(N, S −R)
.

Hence we have the second statement of the lemma. 2

Now we turn to the proof of the �rst statement of the theorem. Let

A(R) =
g(N,R)⋂

j=1

{ξ(R + j,∞) = 1}.

Then by (3.28)

T∑
R=1

P(A(R)) = O(1) logN T (3.30)

and

T∑
R=1

T∑
S=R+1

P(A(R)A(S)) =

=
T∑

R=1

R+g(N,R)∑
S=R+1

P(A(R)A(S)) +
T∑

R=1

T∑
S=R+g(N,R)+1

P(A(R)A(S)) =: I + II.
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By (3.29) we have

I ≤ O(1)
T∑

R=1

R+g(N,R)∑
S=R+1

2R

2S+g(N,S)

1

S + g(N, S)
≤ (3.31)

≤ O(1)
T∑

R=1

1

(R + g(N, R))2g(N,R)

g(N,R)∑
j=1

1

2j
≤

≤ O(1)
T∑

R=1

1

R2g(N,R)
≤ O(1)

T∑
R=1

1

λ(N, R)
≤ O(1)(logN T )

and

II ≤ O(1)
T∑

R=1

T∑
S=R+g(N,R)+1

1

λ(N, R)

1

λ(N, S −R)
≤ (3.32)

≤ O(1)(logN T )2.

By (3.28) and (3.29)

T∑
R=1

T∑
S=R+1

P(A(R)A(S)) ≤ O(1)(logN T )2. (3.33)

(3.30), (3.33) and the Kochen-Stone Borel�Cantelli lemma (see e.g. Spitzer [17], page
317) imply the �rst statement with positive probability. Now to �nish our proof we need to
apply the zero-one law (again in a non-independent set up) as in the proof of Theorem 3.2,
observing that for any n = 1, 2, . . .

P(A(R) i.o. | X1, X2, ...Xn) = P(A(R) i.o.).

2

Proof of Theorem 3.5: The proof goes along the same line as the proof of Theorem 3.4.
The only point which needs a little di�erent approach is the the proof the counterpart of
Lemma 3.5. Namely, in the proof of this lemma we need an upper bound for 1−p(R,R+1, S),
which is equivalent of getting a lower bound for D(R,S). Observe that in Lemma 2.4 we have
an asymptotic formula for D(R,∞). Now to get a lower bound for D(R,S) we need a
less precise calculation (the statement of Theorem 3.5 does not depend on B, which was
important in Lemma 2.4). It is enough to observe that

Ui ≥ C exp
(
−B∗

iα

)
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with an appropriate choice of C and B∗ > B. After this observation, with some tedious
calculation somewhat similar to Lemma 2.4, we get that

D(R,S) ≥ CRα

(
1−

(
S

R

)α

exp
(
C1(R

1−α − S1−α)
))

. (3.34)

It is easy to see
D(R,S) ≥ C2R

α

if S ≥ R + Rα/ log R. On the other hand, if R < S < R + Rα/ log R then it can be seen that

D(R,S) > C3(S −R)

and this is enough to carry through the argument in Lemma 3.5. We omit the details. 2
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