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Department of Mathematics
City University of New York

2800 Victory Blvd.
Staten Island, New York 10314

U.S.A.
afoldes@mail.csi.cuny.edu

Dedicated to Endre Csáki and Pál Révész

on the occasion of their 70-th birthday

Abstract: Some topics of our twenty some years of joint work is discussed. Just to name
a few; joint behavior of the maximum of the Wiener process and its location, global and
local almost sure limit theorems, strong approximation of the planar local time difference, a
general Strassen type theorem, maximal local time on subsets.

AMS 2000 Subject Classification: Primary 60J15, Secondary 60F15, 60J55.

Keywords: local time, simple random walk, Wiener process, strong theorems.

Research of the author is supported by a PSC CUNY grant, No. 66494-0035

1



1. Introduction.

Endre Csáki and Pál Révész are two of the most influential probabilists of our time. Their
books and papers are source of inspiration for generations of mathematicians. I have been
privileged to know them and learn from them for more than three decades. I wrote my first
joint paper ever with Pál Révész ([?]) in 1974, the first joint paper with Endre Csáki ([?])
in 1976 . They wrote their first joint paper ([?]) in 1979. The first time the three of us had
a paper together was in 1983, when we wrote a paper with Miklós Csörgő ([?]) a long time
friend and collaborator of Pál Révész. Since that time various subgroups of the four of us
wrote many papers together. I cherish this collaboration and friendship as the highlight of
my professional life. It would be almost impossible to discuss all of these papers here, and
fortunately most of them were discussed in two wonderful survey papers written by Miklós
Csörgő ([?]), ([?]) in the occasion of Endre Csáki and Pál Révész 65th birthday. For a broad
survey of their great achievements since 1979 see Miklós Csörgő’s paper in this volume.

In this note I try to accomplish a much smaller goal, namely to give a short overview
of the few papers which were written solely by the three of us, Endre Csáki, Pál Révész
and myself.(c.f. ([?],... ,[?]). These papers, written between 1987 and 2004, are very loosely
connected and most of them are very close to my heart. A section is devoted to each in the
sequel in their chronological order, and titled accordingly.

2. On the maximum of a Wiener Process

and Its Location

I will describe the results of this paper rather briefly as it is very nicely summarized in the
”Bible” as young probabilists often refer to Pál Révész’s book ([?]). The joint behavior
of two stochastic processes is always fascinating. The first ever integral test for the joint
behavior of two random processes was given by Endre Csáki in 1978 ([?]) for the joint
behavior of the maximum and the minimum of the Wiener process. While the behavior of
maximum and the location of the maximum separately, has been well understood, we were
interested in their joint behavior. Let M(t) = max0≤s≤t |W (s)| where {W (t), t ≥ 0} is a
Wiener process, and define ν(t) to be the location of the maximum of the absolute value of
W (.), i.e. |W (ν(t))| = M(t). While the laws of the iterated logarithm easily imply that with
probability one if t is big enough

ν(t) ≥ (1− ε)
π2

16

t

(log log t)2
(2.1)
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we wanted to know whether the lower bound in (??) can be attained. Our next question was,
that if ν(t) is almost as small as the above theorem permits then is it possible for M(t) to be
as big as the law of the iterated logarithm permits. The answer to both of these questions
turned out to be negative. We also wanted to know how small can ν(t) be if M(t) is as small
as possible. These questions were separately answered in the paper. I will only quote the
main comprehensive result containing the answers to the above questions and also the law
and other law of iterated logarithm.

Theorem 2.1. Let

a(t) =
(log log t)2

t
ν(t), b(t) =

(
log log t

t

)1/2

M(t)(2.2)

K =





(x, y) : x ≥ π2

4
, x1/2


1−

(
1− π2

4x

)1/2



1/2

≤ y ≤ x1/2


1 +

(
1− π2

4x

)1/2



1/2




=

{
(x, y) : x > 0, y > 0,

y2

2x
+

π2

8y2
≤ 1

}
.(2.3)

Then the set of limit points of the net (a(t), b(t)) (as t →∞ ) is K with probability 1.

One more interesting consequence of the above theorem is an exact lim inf result for
t− ϕ(t) where ϕ(t) is the longest flat interval of {M(s), 0 ≤ s ≤ t}, i.e., ϕ(t) is the largest
positive number for which there exists a positive number α such that

0 < α < α + ϕ(t) < t and M(α) = M(α + ϕ(t)).

However to get the lim inf behavior of ϕ(t) itself was a very interesting problem as well. We
proved that

Theorem 2.2.

lim inf
t→∞

log log t

t
ϕ(t) = β

where β is the root of the equation

∞∑

k=1

βk

k!(2k − 1)
= 1.

Let me remark here, that this result tells us that the lim inf of the longest flat interval of
M(t) is the same as that of M+(t)(= sups≤t W (s)) which was established in the celebrated
Csáki, Erdős and Révész paper ([?]).
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I would like to mention now a few papers which are strongly related to this topic. Inves-
tigating how big could ν(t) and M(t) be simultaneously Chen ([?]) proved that the set of
limit points of (

ν(t)

t
,

M(t)

2t log log t

)

as t →∞ is almost surely

K∗ = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x ≥ y2}.
Some of the above results were extended for d-dimensional Brownian motion by Zao and Lin
([?]). The lim inf of the difference of the location of the maximum and the minimum of the
Brownian motion (not the reflected one) was elegantly treated by Zhan Shi ([?]), and a joint
integral test for the location of the maximum and the minimum is given in a forthcoming
paper of Randjiou ([?]).

3. On almost sure local and global

central limit theorems

At the beginning of the nineties there was a lot of activity and interest in the field of almost
sure central limit theorems. Lacey and Philipp ([?]) proved the following nice theorem:
Let {Xi}∞i=1 be i.i.d. random variables with E(Xi) = 0, E(X2

i ) = σ2 < ∞, then

lim
n→∞

1

log n

n∑

k=1

I{Sk ≤ xσk1/2}
k

= Φ(x) a.s.(3.1)

where Φ(x) is the standard normal distribution function.
However about 40 years earlier Chung and Erdös ([?]) proved the following beautiful result.
Let {Xi}∞i=1 be i.i.d. random variables with E(Xi) = 0. Assume that every integer a is a
possible value of Sk for all sufficiently large k. Then

lim
n→∞

1

log Mn

n∑

k=1

I{Sk = a}
Mk

= 1 a.s.(3.2)

where Mk =
∑k

i=1 P (Si = a). If we spell out this theorem in the case when E(X2
i ) = σ2 < ∞,

and a = 0 we have Mk ∼ σ−1(2k/π)1/2, hence we get that

lim
n→∞

1

log n

n∑

k=1

I{Sk = 0}
k1/2

=
2ϕ(0)

σ
. a.s.(3.3)
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where ϕ(.) is the standard normal density function.
We will refer to (??) and (??) as global and local almost sure central limit theorem

respectively. Our goal was to understand the connection between these two theorems by
stating and proving a general result which contains both of them. Namely we considered the
limit behavior of the logarithmic average

1

log n

n∑

k=1

I{ak ≤ Sk < bk}
kP(ak ≤ Sk < bk)

(3.4)

with −∞ ≤ ak ≤ 0 ≤ bk ≤ ∞, where the terms in the sum above are defined to be 1 if their
denominator happens to be 0. More precisely let {Xi}∞i=1 be a sequence of i.i.d. random
variables with partial sums Sn =

∑n
k=1 Xk, and let {ak}∞k=1 and {bk}∞k=1 be two sequences of

real numbers and put

pk = P(ak ≤ S(k) < bk)(3.5)

and

αk =

{
I{ak≤Sk<bk}

pk
if pk 6= 0

1 if pk = 0.

So we need to investigate

µn =
n∑

k=1

αk

k
.(3.6)

We considered three different cases, continuous, lattice valued and general type of distri-
butions. By being lattice valued, we will mean taking the values {h + j}∞j=−∞ for some
0 ≤ h < 1 with maximal span 1 (that is to say g.c.d.{j : P(X1 = h+ j) > 0} = 1.) We made
two type of assumptions as follows:

Condition A :
∑

{1≤k≤n,pk 6=0}

1

k2pk

= O(log n), as n →∞.(3.7)

Condition B :
∑

{1≤k≤n,pk 6=0}

log k

k3/2pk

= O(log n), as n →∞.(3.8)

where pn was defined by (??).

Theorem 3.1. Let −∞ ≤ ak ≤ 0 ≤ bk ≤ ∞ and let {Xi}∞i=1 be a sequence of i.i.d. ran-
dom variables with E|Xi|3 < ∞ and E(Xi) = 0. Let the random variables Xi, i = 1, 2...
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have bounded density or be lattice valued, satisfying condition A, or be arbitrary and satisfy
condition B. Then

lim
n→∞

µn

log n
= 1. a.s.(3.9)

The starting point to prove the above theorem is the following extremely simple lemma.

Lemma 3.1. Assume that ξ1, ξ2... are random variables with E(Xi) = 1, i = 1, 2, .... Then

lim
n→∞

1

log n
E

(
n∑

1

ξk

k

)
= 1.

If, furthermore ξk ≥ 0, k = 1, 2, ..., and

Var

(
n∑

1

ξk

k

)
≤ C log n(3.10)

with some C > 0, then

lim
n→∞

1

log n

n∑

1

ξk

k
= 1 a.s.

However to show that the condition in (??) holds is a very delicate job. In the years following
this paper we had a few more results on this topic where refined applications of this covariance
calculation were needed time and again. Very elegant general results were given by Berkes
and Csáki ([?]), which is also a great source of literature on almost sure central limit theorems.

4. Random walk with alternating excursions.

This was a paper full of fun. Started like a game, ended as a paper. Here is the setup. We
consider a simple symmetric random walk. Looking at the consecutive excursion we modify
it in such a way, that, by flipping the excursions when necessary, we ensure that every second
excursion should be positive, and the rest of them should be negative. More precisely, let
X1, X2, ... be i.i.d. r. v.-s with P(Xi = 1) = P(Xi = −1) = 1/2. Then Sn =

∑n
i=1 Xi, is an

ordinary simple symmetric random walk, or briefly SSRW. Let

ρ0 = 0, ρk = min{i : i > ρk−1, Si = 0}, k = 1, 2, ....

S∗n = Sn if 0 ≤ n ≤ ρ1
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and
S∗n = (−1)kX1|Sn| if ρk ≤ n ≤ ρk+1, k = 1, 2, ....

We will call S∗n a random walk with alternating excursions, or briefly RWAE.
We posed the following question: in what sense are these two types of walks different, and
in what sense are they the same. Here are our answers in a nutshell.

Number of paths: In 2n steps the SSRW has 22n paths, while the RWAE has 2

(
2n
n

)
paths.

Distributions: are the same;

P(Sn = k) = P(S∗n = k), n = 0, 1, 2...k = 0, ±1,±2, ...

Joint distributions: usually do not match e.g.

P(S1 = 1, S3 = 1) = 1/4 and P(S∗1 = 1, S∗3 = 1) = 1/8

Maximum: Put ν2n = max0≤i≤ρ2n Si and ν∗2n = max0≤i≤ρ2n S∗i . Then

P(ν2n < k) =
(
1− 1

2k

)2n

and P(ν∗2n < k) =
(
1− 1

k

)n

,

but on the other hand

lim
n→∞P

(
ν2n

n
< x

)
= lim

n→∞P
(

ν∗2n

n
< x

)
= e−1/x.

Local time: Let

ξ(k, n) = #{i; 0 < i ≤ n, Si = k} and ξ∗(k, n) = #{i; 0 < i ≤ n, Si = k}.

Then
P(ξ(0, n) = j) = P(ξ∗(0, n) = j),

but in general ξ(i, n) and ξ∗(i, n) have different distributions. However,

P

(
lim

n→∞
ξ∗(k, n)

ξ(k, n)
= 1

)
= 1,

and
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lim
n→∞P

(
ξ∗(k, n)√

n

)
= lim

n→∞P

(
ξ(k, n)√

n

)
= 2Φ(x)− 1.

Arcsine law: Let µn = #{i : 1 ≤ i ≤ n, Si > 0} and µ∗n = #{i : 1 ≤ i ≤ n, S∗i > 0}.
For 0 ≤ a ≤ b ≤ 1 we have, for the excursion endpoints and even excursion endpoints
respectively:

lim
k→∞

P

(
a <

µρk

ρk

< b

)
=

∫ b

a

1

π

1

(x(1− x))1/2
dx,

lim
k→∞

P

(
a <

µ∗ρ2k

ρ2k

< b

)
=

∫ b

a

1

π

1

(x(1− x))1/2
dx.

Using another representation of the RWAE, it turns out that we have
Lemma: For any ε > 0 we have as n →∞

|S∗n − Sn| = O(n1/4+ε) a.s.

As a consequence of this lemma one concludes that

• Donsker’s theorem holds for the RWAE,

• Arcsine law holds for the RWAE (for each n not only for excursion endpoints).

Finally, one can prove the following strong approximation.

Theorem 4.1. On an appropriate probability space one can define an {S∗n}∞n=1 and a stan-
dard Wiener process {W (t), t ≥ 0} such that for any ε > 0, as n →∞,

S∗n −W (n) = o(n1/4+ε) a.s..

Conclusion: The deterministic changes we made, do not make an essential difference. So
the obvious question is: how about changing the SSRW some other way. E.g., making
approximately

√
n deterministic changes according to some other rule. Is it possible to make

more than
√

n changes?
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5. Strassen theorems for a class of iterated processes.

In the middle of the nineties the investigation of iterated processes became very popular.
Just to mention a few of these papers, it started with the work of Burdzy ([?]) and it was
followed Arcones ([?]), Hu and Shi ([?]), Csáki, Csörgő, Földes, and Révész ([?]) and Khosh-
nevisan and Lewis ([?]). In ([?]) we proved a very general Strassen theorem for the properly
normalized vector (W1(yAW2(xT )),W2(xT )) where W1(.),W2(.) is a pair of independent
Wiener processes and A is an operator on C0[0, 1] satisfying certain conditions. I only quote
a very simple case of this result which is needed here. Define Mf (x) = max0≤y≤x f(y).

Let S be the Strassen class of functions, i.e., S ⊂ C[0, 1] is the class of absolutely
continuous functions (with respect to the Lebesgue measure) on [0, 1] for which

f(0) = 0 and
∫ 1

0
ḟ 2(x)dx ≤ 1.(5.1)

The set of R2 valued, absolutely continuous functions

{(g(y), h(x)), 0 ≤ y ≤ 1, 0 ≤ x ≤ 1}(5.2)

for which g(0) = h(0) = 0 and

∫ 1

0
ġ2(y)dy +

∫ 1

0
ḣ2(x)dx ≤ 1(5.3)

will be called Strassen class S2. In [?] we proved

Theorem 5.1. Let W1(·) and W2(·) be two independent standard Wiener processes starting
from zero. For 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the limit set of the vector

(
W1(yMW2(xT ))

T 1/4(2 log log T )3/4
,

W2(xT )

(2T log log T )1/2

)
(5.4)

is (g(yMh(x)), h(x)), where (g, h) ∈ S2.

We called the above theorem composite Strassen theorem because of the composite struc-
ture of (g(yMh(x)). In this paper, inspired by the work of Marcus and Rosen ([?]) and Bertoin
([?]), we wanted to explore whether we can prove a direct Strassen theorem where the class is
described in terms of one function only. First we need a generalization of the usual Strassen
class:
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Let A ⊂ C[0, 1] denote the set of functions f(x), 0 ≤ x ≤ 1, f(0) = 0 and absolutely
continuous with respect to the Lebesgue measure. Define

D(γ) = {f : f ∈ A,
∫ 1

0
|ḟ(x)|γ dx ≤ 1}.(5.5)

Observe that D2 = S.
We proved

Theorem 5.2. Let W1 and W2 be two independent standard Wiener processes. Consider

ut(x) =
W1(max0≤s≤xt W2(s))

25/43−3/4t1/4(log log t)3/4
, 0 ≤ x ≤ 1.(5.6)

Then the set of functions {ut(·) : 1 ≤ t < ∞} is relatively compact in C[0,1] and the set of
its limit points, as t →∞, is D(4/3) a.s.

Clearly, this theorem states that the composite Strassen class in Theorem 5.1 and the direct
Strassen class in Theorem 5.2 are equivalent. In fact the core of the proof of Theorem 5.2
is to show this equivalence which we established in a slightly more general form as follows.
Put

F (β) =

{
f : f ∈ A,

∫ 1

0
|ḟ(x)|2β/(1+β) dx ≤ ββ/(1+β)

1 + β

}
(5.7)

and

G(β) =
{
f : f = g ◦ h, g, h ∈ A, h is nondecreasing and

∫ 1

0
(|ġ(x)|2 + |ḣ(x)|β) dx ≤ 1

}
.

Lemma 5.1. For β ≥ 1, the classes F (β) and G(β) are identical.

From the many consequences of the above result I only want to mention the simplest
one, namely that in Theorem 5.2 one can replace max0≤s≤xt W2(s)) with L2(xt), where L2(.)
is the local time at zero of the process W2(.), which is based on the well-known equivalence
in distribution of the maximum and the local time process, established by P. Lévy. This
observation suggested that similar direct Strassen results can be proved for an iterated
process where the inside process is replaced by the local time of a more general process like
a Lévy process. In fact we went one step further in formulating a Strassen theorem for a
class of stochastic processes satisfying two natural conditions. The first condition requires
that the ordinary LIL should hold for certain linear combinations, while the second condition
controls the increment behavior of the process.
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Theorem 5.3. Let {X(t), t ≥ 0} be a stochastic process with continuous sample paths and
the following two properties:
Property 1

lim sup
t→∞

∑d
i=1 ci(X(it)−X((i− 1)t))

χ(t)
= 1 a.s.,(5.8)

lim inf
t→∞

∑d
i=1 ci(X(it)−X((i− 1)t))

χ(t)
= −1 a.s.(5.9)

with some χ(t) ↗∞, provided that
∑d

i=1 |ci|q = 1, q > 1, d = 1, 2, ...
Property 2 For 0 < c ≤ 1

lim sup
T→∞

sup
0≤t≤T−cT

sup
0≤s≤cT

|X(t + s)−X(t)|
χ(T )

≤ A = A(c) a.s.(5.10)

where limc↘0 A(c) = 0.
Let

η(x) = ηt(x) =
X(xt)

χ(t)
(0 ≤ x ≤ 1.)(5.11)

Then the set
{ηt(x), 0 ≤ x ≤ 1} (t →∞)(5.12)

is relatively compact in C[0,1] and its set of limit points is D(p) almost surely, where 1/p +
1/q = 1.

As an application of Theorem 5.3 we proved

Theorem 5.4. Consider a symmetric Lévy process {Z(t), t ∈ R+} for which the conditions
of Theorem B hold. Denote its local time process at zero by Lt. Let Y (t) = W (Lt) where
W (·) is a standard Wiener process, independent from Z(·) (and hence also from L.). The
set of functions

ft(x) =
Y (xt)

G(t)
, 0 ≤ x ≤ 1,(5.13)

with

G(t) = Kβ log log t

(
κ

(
log log t

t

))1/2

,(5.14)

Kβ =
21/2β

(β + 1)(β+1)/(2β)(β − 1)(β−1)/(2β)
(5.15)
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is relatively compact in C[0,1] and the set of its limit points, as t → ∞, is D( 2β
β+1

) almost
surely.

This theorem was generalized in Eisenbaum and Földes ([?]) where, instead of the Lévy
process and its local time, we considered symmetric stable processes and their additive
functionals.

6. A strong invariance principle for the local time

difference of a simple symmetric planar random walk.

This story started with Dobrushin’s paper ([?]) in 1955. For us it began about 20 years
ago with the couple of papers Csörgő and Révész ([?]) and Csáki and Földes ([?]), and
resulted a long series of papers by various subgroups of us and others. For the interested
reader a long list of references of the related papers is in Földes ([?]), where the whole topic
was extensively discussed. The above mentioned two papers are dealing with the local time
difference of Brownian motion and the simple symmetric walk on the line. Then the topic
started to grow and the four of us together wrote two papers on the strong approximation
of the Brownian local time by a Wiener process ([?]), and on the strong approximation of
additive functionals ([?]). Our first venture into higher dimension was the paper in the title.
All of these papers helped us to discover a general method of strong approximation for a
pair of processes under very mild conditions. However this paper was a real eye opener. Let
X1, X2,... be a sequence of i.i.d. r.v.-s with

P (X1 = (0, 1)) = P (X1 = (0,−1)) = P (X1 = (1, 0)) = P (X1 = (−1, 0)) =
1

4
,(6.1)

and let S0 = 0, Sn = X1 + X2 + ... + Xn (n = 1, 2, ...) be a random walk on Z2 (0 = (0, 0)).
Its local time is defined by ξ(a, n) = #{k; 0 < k ≤ n, Sk = a}, where a = (a1, a2) is a lattice
point on the plane. Our main result was the following

Theorem 6.1. ([CsFR, 98]) There is a probability space with

• a simple symmetric random walk process Sn with its two parameter local time ξ(a, n),
a standard Wiener process {W (t), t ≥ 0}

• and a process {ξ(1)(0, n), n = 0, 1, 2, ...} D
= {ξ(0, n), n = 0, 1, 2, ...}

such that for an arbitrary but fixed a

• ξ(a, n)− ξ(0, n) = σaW (ξ(1)(0, n)) + O(log n)
2
5 a.s.
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• ξ(0, n) = ξ(1)(0, n) + O(log n)
4
5 a.s., as n →∞,

• where the processes ξ(1)(0, n) and {W (t), t ≥ 0} are independent

and σa is a constant, depending on a.

Let me mention here only one nice consequence of this theorem. Accordingly, the limit
distribution of

ξ(a, n)− ξ(0, n)

σa

√
log n

should be the same as the limit distribution of

W (ξ(1)(n))√
log n

where ξ(1)(n) = ξ(1)(0, n). Namely, as n →∞,

W (ξ(1)(n))√
log n

=
W (ξ(1)(n))√

ξ(1)(n)

√√√√ξ(1)(n)

log n
D→ U

√
Z.

Here U and Z are independent by the theorem and obviously U is a standard normal r.v.
and we know from Erdős and Taylor ([?]) that Z is is an exponential r.v. with parameter π.
From the various results which were motivated by this paper I will mention only the following

Theorem 6.2. ([?]) (Xi, τi)
∞
i=1 i.i.d. with τi ≥ 0 and

P (|Xi| > x) <
c

xβ
, P (τi > x) ≤ 1

h(x)
, x ≥ 0

for x large enough, where β > 2, c > 0 and h(x) is slowly varying at infinity, increasing,
and limx→∞ h(x) = +∞.

Then on an appropriate probability space one can construct

• two independent copies
(
X

(j)
i , τ

(j)
i

)∞
i=1

j = 1, 2 with (Xi, τi)
∞
i=1 j = 1, 2

such that

• (Sn, ρn)
D
= (S(j)

n , ρ(j)
n ), j = 1, 2,

• supk≤n |Sk − S
(2)
k | = O

(
n

1
β∗

)
a.s.
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• supk≤n |ρk − ρ
(1)
k | = O (h∗(nα)) a.s.,

as n →∞, where

S
(j)
k =

k∑

i=1

X
(j)
i , ρ

(j)
k =

k∑

i=1

τ
(j)
i , Sk =

k∑

i=1

Xi, ρk =
k∑

i=1

τi,

α < 1, β∗ > 2,

and h∗(.) is the inverse of h(.).

A similar, even simpler theorem holds when the tail of τi is regularly varying. It is still an
open question whether the tail conditions in these theorems can be weakened.

7. Maximal Local Time of a d-dimensional

Simple Random Walk on Subsets

This is the most recent one of our papers, and as such a favorite by definition. However I
think it is dealing with simple but very interesting problems and left open a few intriguing
questions.

Consider a simple symmetric random walk {Sn}∞n=1 starting at the origin 0 on the d-
dimensional integer lattice Zd, i.e., S0 = 0, Sn =

∑n
k=1 Xk, n = 1, 2, . . ., where Xk, k =

1, 2, . . . are i.i.d. random variables with distribution

P(X1 = ei) = P(X1 = −ei) =
1

2d
, i = 1, 2, ..., d,

and {e1, e2, ...ed} is a system of orthogonal unit vectors in Zd. We define the local time of
the walk as

ξ(d)(x, n) := #{k : 0 < k ≤ n, Sk = x}.
where x is any lattice point of Zd. The maximal local time is defined as

ξ(d)(n) := max
x∈Zd

ξ(d)(x, n).

The nature of the two dimensional and that of the higher dimensional results are rather
different, as usual, so we have to discuss them separately.
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Two dimensions.

According to a well-known integral test of Erdős and Taylor ([?]) the local time of every
particular lattice point of the plane is roughly log n. On the other hand they also proved
that

1

4π
≤ lim inf

n→∞
ξ(2)(n)

(log n)2
≤ lim sup

n→∞
ξ(2)(n)

(log n)2
≤ 1

π
a.s.

They conjectured that the upper bound in the above theorem is the correct limit. This
conjecture was not only confirmed but greatly generalized by Dembo, Peres, Rosen and
Zeitouni ([?]) for aperiodic random walks with i.i.d. steps having finite moments of any
order. The comparison of these two results suggest that taking the maximal local time over
some appropriate subsets we might get orders in between log n an (log n)2. So our goal was
to try to find the order of the maximal local time

ξ
(2)
A (n) := max

x∈A
ξ(2)(x, n).

where A is a subset of Z2. According to a theorem of Auer ([?]), roughly speaking every
point within a circle around the origin with radius

rn = exp((log n)1/2(log log n)−1/2−ε)(7.2)

has the same local time. This suggests that getting higher order than log n the set A has to
be rather big. We restricted our investigation to sets of two types: lines going through the
origin and discs centered at the origin.
Let B(r) denote the set of lattice points in the disc of radius r centered at the origin, i.e.,

B(r) := {x ∈ Z2 : ||x|| ≤ r}.

Denote by L = L(a1, a2) the lattice points x = (x1, x2) on the line a1x1 + a2x2 = 0, where
a1 and a2 are integers, not both of them are zero.

Theorem 7.1. For any line L = L(a1, a2) such that a1, a2 are integers, not both of them
are zero, we have

1

8π
≤ lim inf

n→∞
ξ

(2)
L (n)

(log n)2
≤ lim sup

n→∞
ξ

(2)
L (n)

(log n)2
≤ 1

2π
a.s.
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Theorem 7.2. Let rn = nα, 0 < α ≤ 1/2. Then

4α2

π
≤ lim inf

n→∞
ξ

(2)
B(rn)(n)

(log n)2
≤ lim sup

n→∞

ξ
(2)
B(rn)(n)

(log n)2
≤ 2α

π
a.s.

The above two result show that the maximal local time on a line and on a disc ( of radius
nα, 0 < α ≤ 1/2.) has the same order of magnitude as on the whole plane. However the
next result shows that, considering smaller but not very small discs (having a radius bigger
than in (??)), we get all the orders from log n to (log n)2.

Theorem 7.3. Let rn = exp((log n)β). For any ε > 0, 1/2 ≤ β < 1, and large enough n
we have

4(1− ε)

π
(log n)2β ≤ ξ

(2)
B(rn)(n) ≤ (log n)2β+ε a.s.

Three and higher dimensions.

Just like in two dimensions, for a subset A ⊆ Zd we define ξ
(d)
A (n) := maxx∈A ξ(d)(x, n). It is

known from the landmark paper of Erdős and Taylor ([?]) that, for d ≥ 3 , ξ(d)(0,∞), the
total local time at 0 of the infinite path in Zd has geometric distribution:

P(ξ(d)(0,∞) = k) = γd(1− γd)
k, k = 0, 1, 2, ...

where γd is the probability that the d-dimensional simple symmetric random walk never
returns to its starting point. They also proved, that

lim
n→∞

ξ(d)(n)

log n
= λd a.s.,

where λd = − 1
log(1−γd)

. Thus we might ask again about the transition of the order of the
maximal local time on different subsets. How does it change from being finite to attain the
order log n. Let B(r) stand for the (discrete) ball, centered at the origin in the d-dimensional
space with radius r, i.e.,

B(r) := {x ∈ Zd : ||x|| ≤ r}. Let furthermore x = (x1, x2, . . . , xd),

Sd−1 := {x ∈ Zd : a1x1 + a2x2 + ... + adxd = 0}
and

Sd−2 := {x ∈ Zd : a1x1 + a2x2 + ... + adxd = 0, b1x1 + b2x2 + ... + bdxd = 0}
with integer coefficients a1, a2, ...ad, b1, b2, ...bd. Our results for subspaces are as follows.
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Theorem 7.4. Suppose that a1, a2, ...ad are integers, not all of them are zero, then

lim
n→∞

ξ
(d)
Sd−1

(n)

log n
=

λd

2
a.s.

Theorem 7.5. Suppose that a1, a2, ...ad are integers, not all of them are zero and b1, b2, ...bd

are also integers not all of them are zero. Assume also that the vectors (a1, a2, . . . , ad) and
(b1, b2, . . . , bd) are not parallel. Then

lim
n→∞

ξ
(d)
Sd−2

(n)

log log n
= λd a.s.

These results are roughly saying that taking the maximum on a subspace with one less di-
mension won’t change the order but will change the constant. However, taking the maximum
on a subspace of dimension d− 2, the order will drop from log n to log log n.
Our last result explains how does the maximal local time, taken over a ball of radius rn,
grow in terms of rn.

Theorem 7.6. For any sequence rn ↑ ∞, such that

lim sup
n→∞

(log rn)/(log n) ≤ 1/2,

we have

lim
n→∞

ξ
(d)
B(rn)(n)

log rn

= 2λd a.s.

As it is seen from these results, there are many more natural but probably hard questions
open in this area. I just want to mention a few of these. The theorems for the two-dimensional
case might be sharpened. Results for other type of sets than subspaces and balls are missing.
Furthermore one would like to see order transitions from, e.g, lines, subspaces to angular
domains, cones and wedges. One would like to know how is the picture changing when the
set A is moving away from the origin as times goes on. What is the role of the shape and
the size of the set A in these results?
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[19] Csáki, E., Földes, A. and Révész, P.: Random walk with alternating excursions.
Studia Sci. Math. Hungar. 32 (1996) 267–280.
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