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1 Introduction and preliminary results

Let U1, U2, . . . be independent copies of a random variable U uniformly distributed over
the interval [0, 1]. Let

Fn(t) :=
1

n

n∑

k=1

1{Uk ≤ t}, 0 ≤ t ≤ 1,

denote the empirical distribution function based on U1, U2, . . . , Un, where 1 is the indicator
function. Let F−1

n be the left-continuous inverse of Fn. We denote the empirical and quantile
processes over the interval [0, 1] by

αn(t) := n1/2(Fn(t)− t), 0 ≤ t ≤ 1,

βn(t) := n1/2(F−1
n (t)− t), 0 ≤ t ≤ 1,

respectively. The sum
Rn(t) := αn(t) + βn(t), 0 ≤ t ≤ 1,

of the empirical and quantile processes is known in the literature as the Bahadur–Kiefer
process (cf. Bahadur, 1966, Kiefer, 1967, 1970).

The Bahadur–Kiefer process enjoys some remarkable asymptotic properties, which are
of interest in statistical quantile data analysis (cf., e.g., Csörgő, 1983, Shorack and Wellner,
1986). We summarize the most relevant results of Kiefer (1967, 1970) in this regard in the
following theorem. Throughout the paper, we use the notation log x := log max(x, e) and
log2 x := log log x.

Theorem A For every fixed t ∈ (0, 1), we have

n1/4Rn(t) →d (t(1− t))1/4N (|Ñ |)1/2, n →∞, (1.1)

lim sup
n→∞

n1/4|Rn(t)|
(log2 n)3/4

= (t(1− t))1/4 25/4

33/4
a.s., (1.2)

where N and Ñ are independent standard normal variables and →d denotes convergence in
distribution. Also,

lim
n→∞n1/4(log n)−1/2 ‖Rn‖

(‖αn‖)1/2
= 1 a.s., (1.3)

where ‖f‖ := sup0≤t≤1 |f(t)| denotes the uniform sup-norm of f.

Theorem A is due to Kiefer (1967, 1970), except for (1.3) for which he only proved the
convergence in probability. The upper bound for the almost sure convergence in (1.3) was
proved by Shorack (1982), and the lower bound by Deheuvels and Mason (1990). For a
review of these results and for further developments along these lines we refer to Deheuvels
and Mason (1992), Einmahl (1996), Csörgő and Szyszkowicz (1998).

Via using the usual and the other laws of the iterated logarithm for αn, (1.3) immediately
implies

lim sup
n→∞

n1/4(log n)−1/2(log2 n)−1/4‖Rn‖ = 2−1/4 a.s., (1.4)

lim inf
n→∞ n1/4(log n)−1/2(log2 n)1/4‖Rn‖ =

π1/2

81/4
a.s., (1.5)
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while a direct application of (1.3) together with the weak convergence of αn to a Brownian
bridge B gives

n1/4(log n)−1/2‖Rn‖ →d (‖B‖)1/2, n →∞. (1.6)

Nevertheless, the following result, which one can immediately conclude also by combining
(1.1) with (1.6), is true, and it was first formulated and proved directly by Vervaat (1972b).

Theorem B (Vervaat, 1972b) The statement

anRn →d Y, n →∞,

cannot hold true in the space D[0, 1] (endowed with the Skorohod topology) for any sequence
{an} of positive real numbers and any non-degenerate random element Y of D[0, 1].

In view of Theorems A and B now, it is of interest to see the asymptotic behaviour of
the Bahadur–Kiefer process possibly in other norms as well. In this regard we quote

Theorem C (Csörgő and Shi, 1998) For any p ∈ [2,∞), we have

lim
n→∞n1/4 ‖Rn‖p

(‖αn‖p/2)1/2
= c0(p) a.s., (1.7)

where

c0(p) := (E|N |p)1/p =
√

2

(
Γ((p + 1)/2)√

π

)1/p

, (1.8)

N stands as before for a standard normal variable, and ‖f‖p :=
(∫ 1

0 |f(t)|p dt
)1/p

, the Lp

norm of f .

In particular, (1.7) yields Lp versions of the laws of the iterated logarithm (LIL’s) for the
Bahadur–Kiefer process Rn. We also note that (1.7) combined with the weak convergence
of αn to a Brownian bridge B implies that, for p ∈ [2,∞),

n1/4‖Rn‖p →d c0(p)(‖B‖q)
1/2, n →∞.

This, in combination with (1.6), yields Theorem B again.
Vervaat’s (1972b) proof of Theorem B was based, in a most crucial and elegant way, on

the following integrated Bahadur–Kiefer process

In(t) :=
∫ t

0
Rn(s)ds, 0 ≤ t ≤ 1.

Concerning the latter process, he established the weak convergence of

Vn(t) := 2n1/2In(t) (1.9)

to B2, the square of a Brownian bridge, as well as a functional LIL for Vn, via proving the
following theorem (for a discussion of related details we refer to Csörgő and Zitikis, 1999a,
b).
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Theorem D (Vervaat, 1972a, b) We have

lim
n→∞ (log2 n)−1‖Vn − α2

n‖ = 0 a.s. (1.10)

lim
n→∞ ‖Vn − α2

n‖ = 0 in probability. (1.11)

In particular, in the space C[0, 1],

Vn →d B2, n →∞. (1.12)

For use of terminology, we call the process Vn of (1.9) the uniform Vervaat process. For
further references and elaboration on this terminology we refer to Section 1 of Zitikis (1998).

As a consequence of (1.12), Vervaat (1972b) concluded Theorem B. We also note that
(1.10) yields the LIL for Vn, see Corollary 1.1 (Vervaat 1972a, b) in Csörgő and Zitikis
(1999a, b).

2 The Vervaat error process, main results

Bahadur (1966) introduced Rn as the remainder term in the representation

βn = −αn + Rn

of the quantile process βn in terms of the empirical process αn. As we have seen in Theorems
A and C, the remainder term Rn, i.e., the Bahadur–Kiefer process, is asymptotically smaller
than the main term αn, i.e., the empirical process, in both the Lp and sup-norm topologies.

In a similar vein, we can think of the process

Qn(t) := Vn(t)− α2
n(t), 0 ≤ t ≤ 1, (2.1)

that appears in both statements (1.10) and (1.11) of Theorem D as the remainder term Qn

in the following representation

Vn = α2
n + Qn (2.2)

of the uniform Vervaat process Vn in terms of the square of the empirical process. It is
well-known (cf. Zitikis, 1998, for details and references) that the remainder term Qn in
(2.2) is asymptotically smaller than the main term α2

n. Thus, just like in the case of Rn,
one may like to know how small the remainder term Qn is.

In view of Theorems A and C, one suspects that there should be substantial differences
between the asymptotic pointwise, sup- and Lp-norms behaviour of the process Qn. Indeed,
Csörgő and Zitikis (1999a) established the following strong convergence result for ‖Qn‖p .

Theorem E (Csörgő and Zitikis, 1999a) For any p ∈ [1,∞), we have

lim
n→∞n1/4 ‖Qn‖p

(‖αn‖3p/2)3/2
=

1√
3
c0(p) a.s., (2.3)
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where c0(p) is defined in (1.8).

For a comparison of this result to that of Theorem C, as well as for that of their conse-
quences, we refer to Csörgő and Zitikis (1999a), who have also conjectured that in sup-norm
the analogue statement of (2.3) should be of the following form:

lim
n→∞ bnn

1/4 ‖Qn‖
‖αn‖3/2

= c a.s., (2.4)

where bn is a slowly varying function converging to 0 and c is a positive constant.
One of the aims of this exposition is to prove that this conjecture is true with bn =

(log n)−1/2. In addition, we also study the pointwise behaviour of the Vervaat error process
Qn. We summarize our results in the following theorem, which parallels Theorem A of
Kiefer (1967, 1970) concerning the process Rn.

Theorem 2.1 For every fixed t ∈ (0, 1), we have

n1/4Qn(t) →d (4/3)1/2(t(1− t))3/4N (|Ñ |)3/2, n →∞, (2.5)

lim sup
n→∞

n1/4|Qn(t)|
(log2 n)5/4

= (t(1− t))3/4 211/431/4

55/4
a.s., (2.6)

where N and Ñ are independent standard normal variables. Also,

lim
n→∞n1/4(log n)−1/2 ‖Qn‖

(‖αn‖)3/2
= (4/3)1/2 a.s. (2.7)

As a consequence of this theorem, as well as that of Theorem E combined with (2.7), we
have the following corollary, which confirms Conjecture 2.1 of Csörgő and Zitikis (1999a).

Corollary 2.1 The statement

anQn →d Y, n →∞,

cannot hold true in the space D[0, 1] for any sequence {an} of positive real numbers and for
any non-degenerate random element Y of the space D[0, 1].

Another consequence of (2.7) is the following corollary.

Corollary 2.2 We have

lim sup
n→∞

n1/4(log n)−1/2(log2 n)−3/4‖Qn‖ =
21/4

31/2
a.s., (2.8)

lim inf
n→∞ n1/4(log n)−1/2(log2 n)3/4‖Qn‖ =

π3/2

31/225/4
a.s., (2.9)

n1/4(log n)−1/2‖Qn‖ →d (4/3)1/2‖B‖3/2, n →∞, (2.10)

where B is a standard Brownian bridge.
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We note that (2.8) and (2.9) follow from (2.7) by means of the usual and the other LIL’s
for αn. As to (2.10), it results from a direct application of (2.7) together with the weak
convergence of αn to the Brownian bridge B.

Remark 2.1 In the literature we also find general forms of the Vervaat process that
are based on random variables X1, X2, . . . replacing the uniform [0,1] random variables
U1, U2, . . . In particular, such a general Vervaat process first appeared and was put to good
use in Csörgő and Zitikis (1996). We refer to Zitikis (1998) for a detailed survey on this
subject. For related though rather different limit theorems for the general Vervaat process,
we refer to Csörgő and Zitikis (1998). It is obvious that the results of this paper can be
generalized in such a way that they would cover general forms of the Vervaat process as well.
However, a solution of this problem under reasonably optimal assumptions may constitute a
rather challenging mathematical task which is definitely not within the scope of the present
paper. For a recent review of Vervaat and Vervaat error processes we refer to Csörgő and
Zitikis (1999b). ¤

3 The Vervaat error process in terms of a Kiefer process

We introduce some two-parameter Gaussian processes. Let {W (x, y), x ≥ 0, y ≥ 0} be a
Wiener (Brownian) sheet, i.e., a two-parameter Gaussian process with EW (x, y) = 0 and
covariance function

EW (x1, y1) W (x2, y2) = (x1 ∧ x2)(y1 ∧ y2).

Next we define a Kiefer process {K(x, y), 0 ≤ x ≤ 1, y ≥ 0} by

K(x, y) := W (x, y)− xW (1, y),

where W (x, y) is a Wiener sheet. A Kiefer process K(x, y) can be characterized as a mean
zero Gaussian process with covariance function

EK(x1, y1) K(x2, y2) = (x1 ∧ x2 − x1x2)(y1 ∧ y2).

Remark 3.1 In this paper we define, without loss of generality, all Kiefer processes K(x, y)
and Brownian bridges B(x) to be equal to zero if x < 0 or x > 1. ¤

Concerning the uniform empirical process αn, Komlós et al. (1975) established the
following fundamental embedding theorem.

Theorem F (Komlós, Major and Tusnády, 1975) On a suitable probability space,
the uniform empirical process {αk(x), 0 ≤ x ≤ 1, k = 1, 2, . . . } and a Kiefer process
{K(x, k), 0 ≤ x ≤ 1, k = 1, 2, . . . } can be so constructed that, as n →∞,

max
1≤k≤n

sup
0≤x≤1

|αk(x)− n−1/2K(x, k)| = O
(

(log n)2

n1/2

)
a.s.

Combining (1.4) with Theorem F, we arrive at (cf. Csörgő and Révész, 1975):
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Proposition A On the probability space of Theorem F for the uniform quantile process
{βk(x), 0 ≤ x ≤ 1, k = 1, 2, . . . } with the Kiefer process {K(x, k), 0 ≤ x ≤ 1, k = 1, 2, . . . }
of Theorem F, as n →∞, we have

max
1≤k≤n

sup
0≤x≤1

|βk(x) + n−1/2K(x, k)| = O
(

(log n)1/2(log2 n)1/4

n1/4

)
a.s. (3.1)

We note in passing (cf. Deheuvels, 1998 and references therein) that the almost sure rate
of convergence in (3.1) cannot be improved even when approximating the uniform quantile
process by any other Kiefer process.

For further use we quote the following two results of A.H.C. Chan (1977) (cf. Theorem
1.15.2 and Theorem S.1.15.1, respectively, in Csörgő and Révész, 1981).

Theorem G (Chan, 1977) Let K(·, ·) be a Kiefer process, and let {hn} be a non-increasing
sequence of positive numbers such that limn→∞(log 1

hn
)/ log2 n = ∞. Then

lim
n→∞ sup

0≤t≤1−hn

sup
0≤s≤hn

|K(t + s, n)−K(t, n)|
(2nhn log(1/hn))1/2

= 1 a.s.

Theorem H (Chan, 1977) Let 0 < εT < 1
2
, 0 < aT ≤ T be functions of T such that εT

and aT /T are non-increasing and aT is non-decreasing. Define K ((x1, x2], t) = K(x2, t) −
K(x1, t) (0 ≤ x1 < x2 ≤ 1). Then almost surely,

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤x≤1−εT

sup
0≤s≤εT

βT |K((x, x + s], t + aT )−K((x, x + s], t)|
= lim sup

T→∞
sup

0≤t≤T−aT

sup
0≤x≤1−εT

βT |K((x, x + εT ], t + aT )−K((x, x + εT ], t)| = 1,

where

βT =
(
2aT εT (1− εT )

(
log

T

εT aT

+ log2 T
))−1/2

.

If in addition, limT→∞(log T
εT aT

)/ log2 T = ∞, then lim sup
T→∞

can be replaced by lim
T→∞

.

The main result of this section is the following strong approximation of the Vervaat error
process Qn(t) defined in (2.1) via a Kiefer process.

Theorem 3.1 On the probability space of Theorem F, using the there constructed Kiefer
process K(·, ·), Qn(·) can be approximated as follows. As n →∞ we have

sup
0<t<1

|Qn(t)− Zn(t)| = O(n−3/8(log n)3/4(log2 n)5/8) a.s., (3.2)

where {Zn(t), 0 < t < 1, n = 1, 2, . . . } is defined by

Zn(t) := 2
K(t, n)

n

∫ 1

0

(
K

(
t− s

K(t, n)

n
, n

)
−K(t, n)

)
ds. (3.3)

The proof of this theorem is based on the next two lemmas, which are of interest on
their own.
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Lemma 3.1 Let

An(t) := 2n1/2
∫ t

F−1
n (t)

(αn(u)− αn(t)) du, 0 < t < 1, n = 1, 2, . . . (3.4)

Then

Qn(t) = An(t)−R2
n(t), (3.5)

and, consequently, as n →∞,

sup
0<t<1

|Qn(t)− An(t)| = O(n−1/2(log n)(log2 n)1/2) a.s. (3.6)

Proof. We have the following easy-to-check representation

Vn(t) = −αn(t)βn(t) + An(t)− (αn(t) + βn(t))βn(t)

for all t ∈ (0, 1) and n = 1, 2, . . . (cf., Vervaat, 1972a, Shorack and Wellner, 1986, Zitikis,
1998). By (2.1), Qn(t) = Vn(t) − α2

n(t) = An(t) − R2
n(t), yielding (3.5). The identity (3.6)

follows from (3.5) and (1.4). ¤

Lemma 3.2 On the probability space of Theorem F, using the there constructed Kiefer
process K(·, ·), the stochastic process An(t) of Lemma 3.1 can be approximated such that
when n →∞,

sup
0<t<1

|An(t)− Zn(t)| = O(n−3/8(log n)3/4(log2 n)3/8) a.s.,

where Zn(t) is as in Theorem 3.1.

Proof. By a change of variables u = t− s(t− F−1
n (t)) = t + sn−1/2βn(t) in (3.4), we have

An(t) = −2βn(t)
∫ 1

0

(
αn

(
t + s

βn(t)

n1/2

)
− αn(t)

)
ds.

The usual LIL for βn confirms that ‖βn‖ = O((log2 n)1/2) almost surely (when n → ∞).
Therefore, by Theorem F, when n →∞,

An(t) = −2n−1/2βn(t)
∫ 1

0

(
K

(
t + s

βn(t)

n1/2
, n

)
−K(t, n)

)
ds

+O
(
n−1/2(log n)2(log2 n)1/2

)
, a.s., (3.7)

uniformly in t ∈ (0, 1).
For all t, s ∈ (0, 1), we have

∣∣∣∣∣K
(
t + s

βn(t)

n1/2
, n

)
−K

(
t− s

K(t, n)

n
, n

)∣∣∣∣∣
:= |K(u + v, n)−K(u, n)|
≤ sup

0≤u≤1
sup

0≤v≤hn

|K(u + v, n)−K(u, n)|,
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where

u = t− s
K(t, n)

n
, v = s

(
βn(t)

n1/2
+

K(t, n)

n

)

and, on account of Proposition A, hn = O(n−3/4(log n)1/2(log2 n)1/4) (n → ∞), almost
surely. Thus, according to Theorem G, almost surely, when n →∞,

K

(
t + s

βn(t)

n1/2
, n

)
−K

(
t− s

K(t, n)

n
, n

)
= O

(
n1/8(log n)3/4(log2 n)1/8

)
,

uniformly in t, s ∈ (0, 1). Plugging this into (3.7) and using again the LIL for βn, we arrive
at:

An(t) = −2n−1/2βn(t)
∫ 1

0

(
K

(
t− s

K(t, n)

n
, n

)
−K(t, n)

)
ds

+O(n−3/8(log n)3/4(log2 n)5/8) a.s. (3.8)

According to Proposition A,

−2n−1/2βn(t) = 2
K(t, n)

n
+O

(
(log n)1/2(log2 n)1/4

n3/4

)
, a.s., (3.9)

almost surely and uniformly in t ∈ (0, 1). On the other hand, applying Theorem G to the
integrand in (3.9) with hn = O(n−1/2(log2 n)1/2), we obtain:

∫ 1

0

(
K

(
t− s

K(t, n)

n
, n

)
−K(t, n)

)
ds = O

(
n1/4(log n)1/2(log2 n)1/4

)
,

almost surely and uniformly in t ∈ (0, 1). Plugging this and (3.9) into (3.8) yields that
almost surely, when n →∞,

An(t) = Zn(t) +O
(

(log n)(log2 n)1/2

n1/2

)
+O(n−3/8(log n)3/4(log2 n)5/8),

uniformly in t ∈ (0, 1). This yields Lemma 3.2. ¤

Proof of Theorem 3.1. Follows from Lemmas 3.1 and 3.2. ¤

We mention that the process Zn(t) was put to use in Csörgő and Zitikis (1999a) in their
study of Qn(t) in Lp norm. Moreover, they also remarked that their conjecture as stated in
(2.4) is equivalent to stating it in terms of Zn instead of Qn. Likewise, in view of Theorem
3.1 now, the proof of Theorem 2.1 can, and will, be based on proving the statements (2.5)–
(2.7) with the process Zn(t) replacing Qn(t) in all of them. The latter goal in turn will
be achieved via using the next simple, though essential, observation that is borrowed from
Einmahl (1996).

Proposition B Let {K(x, y), 0 ≤ x ≤ 1, y ≥ 0} be a Kiefer process. For any fixed
0 ≤ u < v ≤ 1, the process

{
K(u + (v − u)x, y)− xK(v, y)− (1− x)K(u, y)√

v − u
, x ∈ [0, 1], y ≥ 0

}
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is a Kiefer process, independent of {K(s, y), s ∈ [0, u], y ≥ 0} and {K(s, y), s ∈ [v, 1], y ≥
0}.

Based on Theorem 3.1 and this crucial observation, the respective proofs of the pointwise
statements of (2.5)–(2.6) and the proof of the uniform property as in (2.7) of the process
Qn will take different routes. Hence, our next Section 4 is devoted to proving (2.5)–(2.6),
while Section 5 will be on establishing the almost sure ratio statement of (2.7).

4 Pointwise behaviour of the Vervaat error process

This section is devoted to the proof of (2.5) and (2.6) of Theorem 2.1, concerning the
pointwise asymptotics of Qn(t). We first establish a strong approximation of Zn(t) of (3.3)
for any fixed t ∈ (0, 1) by a process in n, which is an integral of a Wiener sheet in its first
parameter over a random interval that is independent of this Wiener sheet in hand.

Lemma 4.1 Given Zn(t) as in (3.3), then for any fixed t ∈ (0, 1) one can define a Wiener
sheet W ∗(·, ·) such that, as n →∞, we have

Zn(t) = 2
∫ |K(t,n)|/n

0
W ∗(y, n) dy +O

(
(log n)1/2 log2 n

n1/2

)
a.s., (4.1)

where {W ∗(y, n), y ≥ 0, n = 1, 2, . . . } is independent of {K(t, n), n = 1, 2, . . . }.

Proof. Using Proposition B with u = 0, v = t, and writing 1− x instead of x, we see that

K∗
1(x, n) :=

K(t(1− x), n)− (1− x)K(t, n)

t1/2
, 0 ≤ x ≤ 1, (4.2)

is a Kiefer process, independent of K(t, ·). Likewise, letting u = t, v = 1, we see that

K∗
2(x, n) :=

K(t + (1− t)x, n)− (1− x)K(t, n)

(1− t)1/2
, 0 ≤ x ≤ 1,

is also a Kiefer process, independent of K(t, ·). Moreover, K∗
1(·, ·) and K∗

2(·, ·) are indepen-
dent. Consequently, the components of the vector

(K(t, ·), K∗
1(·, ·), K∗

2(·, ·)) (4.3)

are independent processes.
Defining x via

(1− x)t = t− s
K(t, n)

n
if K(t, n) > 0,

t + (1− t)x = t− s
K(t, n)

n
if K(t, n) < 0,

in the integral in the definition of Zn(t) of (3.3), we arrive at the following representation
of the latter process for each fixed t:

Zn(t) = I1(n)1{K(t, n) > 0} − I2(n)1{K(t, n) < 0}, (4.4)
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where

I1(n) := 2t
∫ K(t,n)/(nt)

0
(K(t(1− x), n)−K(t, n)) dx,

I2(n) := 2(1− t)
∫ −K(t,n)/(n(1−t))

0
(K(t + (1− t)x, n)−K(t, n)) dx.

Considering I1(n), and remembering that this is the case when K(t, n) > 0, using the
definition (4.2) of K∗

1(·, ·), we obtain: almost surely as n →∞,

I1(n) = 2t3/2
∫ K(t,n)/(nt)

0
K∗

1(x, n) dx− 2tK(t, n)
∫ K(t,n)/(nt)

0
x dx

= 2t3/2
∫ K(t,n)/(nt)

0
K∗

1(x, n) dx− t(K(t, n))3

n2t2

= 2t3/2
∫ K(t,n)/(nt)

0
K∗

1(x, n) dx +O
(

(log2 n)3/2

n1/2

)
, (4.5)

the last line following from the LIL for the Kiefer process with fixed t. Since K∗
1(·, ·) is a

Kiefer process independent of K(t, ·), we can use the representation

K∗
1(x, n) = W ∗

1 (x, n)− xW ∗
1 (1, n),

where W ∗
1 (·, ·) is a Wiener sheet, independent of K(t, ·). This independence property will

be crucial in our use later on.
Observe that

∫ K(t,n)/(nt)

0
K∗

1(x, n) dx =
∫ K(t,n)/(nt)

0
W ∗

1 (x, n) dx− K2(t, n) W ∗
1 (1, n)

2t2 n2
.

By the LIL for the Kiefer process K and the Wiener process W ∗
1 (1, ·), we have, when

n → ∞, K2(t, n) W ∗
1 (1, n) = O(n3/2(log2 n)3/2) almost surely. Going back to (4.5), we

obtain: as n →∞, almost surely

I1(n) = 2t3/2
∫ K(t,n)/(nt)

0
W ∗

1 (x, n) dx +O
(

(log2 n)3/2

n1/2

)

= 2
∫ K(t,n)/n

0
t1/2W ∗

1 (
y

t
, n) dy +O

(
(log2 n)3/2

n1/2

)
. (4.6)

Similarly, in the case K(t, n) < 0, we can show that as n → ∞, for I2(n) of (4.4) we
have, almost surely,

I2(n) = 2
∫ −K(t,n)/n

0
(1− t)1/2W ∗

2 (
y

1− t
, n) dy +O

(
(log2 n)3/2

n1/2

)
, (4.7)

where, just like W ∗
1 (·, ·) of (4.6), the Wiener sheet W ∗

2 (·, ·) of (4.7) is also independent of
K(t, ·) (cf. (4.3)).

Combining (4.6) and (4.7) with (4.4) yields that, for each fixed t ∈ (0, 1), as n →∞,

Zn(t) = 2
∫ |K(t,n)|/n

0
W ∗(y, n) dy +O

(
(log2 n)(log n)1/2

n1/2

)
a.s.,
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where

W ∗(y, n) := t1/2W ∗
1 (

y

t
, n)1{K(t, n) > 0} − (1− t)1/2W ∗

2 (
y

1− t
, n)1{K(t, n) < 0}.

Since W ∗(·, ·) is a Wiener sheet, independent of K(t, ·), this yields Lemma 4.1. ¤
The rest of this section is devoted to the proof of (2.5) and (2.6) in Theorem 2.1. For

the sake of clarity, they are proved separately.

Proof of (2.5). For each fixed n and T , 31/2

n1/2T 3/2

∫ T
0 W ∗(y, n) dy is a standard normal

variable. Thus, by conditioning, if T is a random variable independent of W ∗(·, n), then
31/2

n1/2T 3/2

∫ T
0 W ∗(y, n) dy is a standard normal variable, independent of T . In view of the inde-

pendence of K(t, ·) and W ∗(·, ·), we have, for each fixed n and t, (taking T := |K(t, n)|/n)

2
∫ |K(t,n)|/n

0
W ∗(y, n) dy

=
(

4

3

)1/2 (t(1− t))3/4

n1/4

(
n1/2|T |

(t(1− t))1/2

)3/2 (
31/2

n1/2T 3/2

∫ T

0
W ∗(y, n) dy

)

=d

(
4

3

)1/2

(t(1− t))3/4n−1/4(|Ñ |)3/2N ,

where “=d” denotes identity in distribution, and N and Ñ are independent standard normal
random variables. This, in light of (3.2) and (4.1), yields (2.5). ¤
Proof of (2.6). Fix again t ∈ (0, 1). Define

Wt(n) :=
K(t, n)

(t(1− t))1/2
, n ≥ 1,

W ∗
t (x, y) := (t(1− t))1/4W ∗

(
x

(t(1− t))1/2
, y

)
, x ≥ 0, y ≥ 0.

Clearly, Wt is a Wiener process (restricted on N∗), and W ∗
t (·, ·) is a Wiener sheet, indepen-

dent of {K(t, n), n = 1, 2, . . . }, thus of Wt. We also observe that

∫ |K(t,n)|/n

0
W ∗(y, n) dy

= (t(1− t))3/4 (2 log2 n)5/4

n1/4

∫ |Wt(n)|/(2n log2 n)1/2

0

W ∗
t

(
u(2 log2 n

n
)1/2, n

)

n1/4(2 log2 n)3/4
du.

By Theorem 1.1 of Deheuvels and Mason (1992), as n →∞, the set of limit points of






 Wt(n)

(2n log2 n)1/2
,

W ∗
t

(
u(2 log2 n

n
)1/2, n

)

n1/4(2 log2 n)3/4


 , u ∈ [0, 1]





is almost surely equal to

D := {(c, f) : f absolutely continuous with respect to the Lebesgue measure,

|c| ∈ (0, 1), f(0) = 0, c2 +
∫ |c|
0 (f ′(u))2 du ≤ 1}. (4.8)

12



Consequently, with probability one,

lim sup
n→∞

n1/4

(log2 n)5/4

∫ |K(t,n)|/n

0
W ∗(y, n) dy = 25/4(t(1− t))3/4 sup

(c,f)∈D

∫ |c|

0
f(u) du.

We now determine the value of the “sup” expression on the right hand side. Integrating by
parts, using the Cauchy–Schwarz inequality and (4.8), we get, for each (c, f) ∈ D,

∫ |c|

0
f(u) du =

∫ |c|

0
(|c| − u)f ′(u) du

≤
(∫ |c|

0
(|c| − u)2 du

)1/2 (∫ |c|

0
(f ′(u))2 du

)1/2

≤
( |c|3(1− c2)

3

)1/2

.

Since |c|3(1− c2) ≤ 2× 33/2/55/2 for any c ∈ [−1, 1], this yields

sup
(c,f)∈D

∫ |c|

0
f(u) du ≤ 21/231/4

55/4
. (4.9)

Choosing

c = (3/5)1/2, f(u) =
21/231/4

51/4
u− 51/4

21/231/4
u2,

it is seen that in (4.9) we have, in fact, an equality. Accordingly, with probability one,

lim sup
n→∞

n1/4

(log2 n)5/4

∫ |K(t,n)|/n

0
W ∗(y, n) dy = (t(1− t))3/4 27/431/4

55/4
.

This yields (2.6) in view of (4.1) and (3.2). ¤

5 Uniform behaviour of the Vervaat error process

This section is devoted to establishing the uniform property (2.7) in Theorem 2.1. In view
of Theorems 3.1 and F it suffices to show that

lim sup
n→∞

n

(log n)1/2

‖Zn‖
‖K(·, n)‖3/2

≤
(

4

3

)1/2

a.s., (5.1)

lim inf
n→∞

n

(log n)1/2

‖Zn‖
‖K(·, n)‖3/2

≥
(

4

3

)1/2

a.s., (5.2)

where ‖Zn‖ := sup0≤t≤1 |Zn(t)| and ‖K(·, n)‖ := sup0≤t≤1 |K(t, n)|.

Proof of (5.1). Recall that (cf. (3.3)), by definition,

Zn(t) = 2
K(t, n)

n

∫ 1

0

(
K

(
t− s

K(t, n)

n
, n

)
−K(t, n)

)
ds

= 2
∫ K(t,n)/n

0
(K(t− z, n)−K(t, n)) dz. (5.3)
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Let

N = N(n) := bn1/2(log2 n)−4c, (5.4)

and let ti = ti(n) := i/N (for 0 ≤ i ≤ N). Define, for u ∈ [0, 1],

B∗
i,n(u) :=

N1/2

n1/2

(
K

(
ti +

u

N
, n

)
− uK(ti+1, n)− (1− u)K(ti, n)

)
.

It follows from Proposition B that for each fixed n,

{B∗
i,n(·), i = 0, 1, . . . , N − 1}

are independent Brownian bridges, and independent of {K(ti, n), i = 0, 1, . . . , N − 1}.
Let t ∈ [ti, ti+1]. Then

Zn(t) = 2

(∫ K(ti,n)/n

0
+

∫ K(t,n)/n

K(ti,n)/n

)
(K(t− z, n)−K(t, n)) dz.

By Theorem G, when n →∞,

max
0≤i≤N−1

sup
ti≤t≤ti+1

|K(t, n)−K(ti, n)|
n

= O
(

(log n)1/2

N1/2n1/2

)
a.s.

On the other hand, by the LIL for the Kiefer process and Theorem G,

K(t− z)−K(t, n) = O
(
n1/4(log n)1/2(log2 n)1/4

)
, a.s.,

uniformly in 0 ≤ i ≤ N − 1, t ∈ [ti, ti+1] and z ∈ [K(ti, n)/n, K(t, n)/n]. Therefore,

∫ K(t,n)/n

K(ti,n)/n
(K(t− z, n)−K(t, n)) dz = O

(
(log n)(log2 n)1/4

N1/2n1/4

)
a.s.

As a consequence, for t ∈ [ti, ti+1], we have, almost surely when n →∞,

Zn(t) = 2
∫ K(ti,n)/n

0
(K(t− z, n)−K(t, n)) dz +O

(
(log n)(log2 n)1/4

N1/2n1/4

)
, (5.5)

where O is uniform in i = 0, 1, . . . , N − 1.
Let i be such that K(ti, n) ≤ 0. If t ∈ [ti, ti+1], then t = ti + v/N for some v ∈ [0, 1].

Accordingly, by writing Ai := N |K(ti, n)|/n,

∫ K(ti,n)/n

0
(K(t− z, n)−K(t, n)) dz

= − n1/2

N3/2

∫ Ai

0
(B∗

i,n(v + y)−B∗
i,n(v)) dy − K(ti+1, n)−K(ti, n)

N

∫ Ai

0
y dy.

Since
∫ Ai
0 y dy = N2K2(ti, n)/2n2, an application of the LIL for the Kiefer process and

Theorem G yields that with probability one,
∫ K(ti,n)/n

0
(K(t− z, n)−K(t, n)) dz

= − n1/2

N3/2

∫ Ai

0
(B∗

i,n(v + y)−B∗
i,n(v)) dy +O

(
N1/2(log n)1/2 log2 n

n1/2

)
, (5.6)
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uniformly in i = 0, 1, . . . , N − 1.
Note that B∗

i,n can be represented as

B∗
i,n(u) := −W ∗

i,n(u) + uW ∗
i,n(1),

where (for each fixed n) {W ∗
i,n, i = 0, 1, . . . , N −1} are independent Wiener processes which

are also independent of {K(ti, n), i = 0, 1, . . . , N − 1}. Hence, almost surely,

∫ Ai

0
(B∗

i,n(v + y)−B∗
i,n(v)) dy

= −
∫ Ai

0
(W ∗

i,n(v + y)−W ∗
i,n(v)) dy + W ∗

i,n(1)
∫ Ai

0
y dy

= −
∫ Ai

0
(W ∗

i,n(v + y)−W ∗
i,n(v)) dy +O

(
N2(log n)1/2 log2 n

n

)
, (5.7)

the last equality following from the LIL for the Kiefer process and the fact that almost surely,
sup0≤i≤N−1 |W ∗

i,n(1)| = O((log n)1/2). This last fact can be easily checked using the usual
estimate for Gaussian tails and the Borel–Cantelli lemma, regardless of the dependency
structure of the standard normal variables {W ∗

i,n(1), i = 0, 1, . . . , N − 1; n = 1, 2, . . . }.
Putting (5.5), (5.6) and (5.7) together, and taking into account the definition of N in

(5.4), we obtain:

Zn(t) =
2n1/2

N3/2

∫ Ai

0
(W ∗

i,n(v + y)−W ∗
i,n(v)) dy +O

(
(log n)1/2

n1/4 log2 n

)
, (5.8)

for t = ti + v/N , 0 ≤ v ≤ 1, K(ti, n) ≤ 0.
If K(ti, n) > 0, then by introducing the Kiefer process K←(t, n) := K(1− t, n), we can

write

2
∫ K(ti,n)/n

0
(K(t− z, n)−K(t, n)) dz

= 2
∫ K(ti,n)/n

0
(K←(1− t + z, n)−K←(1− t, n)) dz,

and, similarly to the argument leading to (5.8), we can find independent Wiener processes
{W←

i,n, i = 0, 1, . . . , N − 1} which are also independent of {K(ti, n), i = 0, 1, . . . , N − 1},
such that almost surely,

Zn(t) =
2n1/2

N3/2

∫ Ai

0
(W←

i,n(v + y)−W←
i,n(v)) dy +O

(
(log n)1/2

n1/4 log2 n

)
, (5.9)

for t = ti + v/N , 0 ≤ v ≤ 1, K(ti, n) > 0.
Combining (5.8) and (5.9), we see that with probability one, for t = ti + v/N , v ∈ [0, 1],

Zn(t) =
2n1/2

N3/2

∫ Ai

0
(Wi,n(v + y)−Wi,n(v)) dy +O

(
(log n)1/2

n1/4 log2 n

)
, (5.10)

where
Wi,n(·) := W ∗

i,n(·)1{K(ti, n) ≤ 0}+ W←
i,n(·)1{K(ti, n) > 0},
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i = 0, 1, . . . , N−1, are Wiener processes, independent of {K(ti, n), i = 0, 1, . . . , N−1}. Note
that we do not claim that the Wiener processes {Wi,n, i = 0, 1, . . . , N − 1} are independent
between themselves.

For each n, we split {0, 1, . . . , N − 1} into two (random) parts:

J1 = J1(n) := {i : |K(ti, n)| ≤ n1/2(log2 n)−1, 0 ≤ i ≤ N − 1},
J2 = J2(n) := {i : |K(ti, n)| > n1/2(log2 n)−1, 0 ≤ i ≤ N − 1}.

If i ∈ J1, then applying the LIL for the Kiefer process and Theorem G implies that

∫ K(ti,n)/n

0
(K(t− z, n)−K(t, n)) dz = O

(
(log n)1/2

n1/4(log2 n)3/2

)
a.s.

uniformly in i ∈ J1. In view of (5.5), we obtain: when →∞,

max
i∈J1

sup
t∈[ti,ti+1]

|Zn(t)| = O
(

(log n)1/2

n1/4(log2 n)3/2

)
a.s. (5.11)

For i ∈ J2, we consider the variables

Xi,n :=
31/2

A
3/2
i

sup
0≤v≤1

∣∣∣∣∣
∫ Ai

0
(Wi,n(v + y)−Wi,n(v)) dy

∣∣∣∣∣ .

According to (5.10), almost surely when n →∞,

max
i∈J2

sup
t∈[ti,ti+1]

|Zn(t)| ≤ 2‖K(·, n)‖3/2

31/2 n
max
i∈J2

Xi,n +O
(

(log n)1/2

n1/4 log2 n

)
,

which, combined with (5.11), yields

‖Zn‖ ≤ 2‖K(·, n)‖3/2

31/2 n
max
i∈J2

Xi,n +O
(

(log n)1/2

n1/4 log2 n

)
a.s. (5.12)

We now show that the variables Xi,n, i ∈ J2 have Gaussian-like tails. To this end, we
fix A > 0 and introduce the mean zero Gaussian process

X(v) :=
31/2

A3/2

∫ A

0
(W (v + y)−W (v)) dy, v ∈ [0, 1].

It is straightforward to compute its covariance:

EX(u)X(v) =

{
1− 3|v−u|

2A
+ |v−u|3

2A3 if |v − u| ≤ A,
0 if |v − u| > A,

(5.13)

and therefore

E (X(v)−X(u))2 =

{
3|v−u|

A
− |v−u|3

A3 if |v − u| ≤ A,
2 if |v − u| > A.

(5.14)
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According to a well-known inequality of Fernique (1964), for any x > 0,

P

(
sup

0≤v≤1
|X(v)| ≥ x

(
σ2 + 4

∫ ∞

1
ϕ(p−s2

) ds
))

≤ 4p2
∫ ∞

x
e−s2/2 ds,

where p ≥ 2 is arbitrary, and σ and ϕ are such that

E(X(v))2 ≤ σ2, E (X(v)−X(u))2 ≤ ϕ2(v − u).

In view of (5.13) and (5.14), we can choose σ = 1 and ϕ(h) = (3h/A)1/2. Since

∫ ∞

1
ϕ(p−s2

) ds ≤
√

3√
A

∫ ∞

1
e−(s log p)/2 ds =

2
√

3√
pA log p

,

this leads to:

P

(
sup

0≤v≤1
|X(v)| ≥ x

(
1 +

8
√

3√
pA log p

))
≤ 4p2

∫ ∞

x
e−s2/2 ds. (5.15)

Recall that Wi,n is independent of K(ti, n). Therefore, applying (5.15) to W = Wi,n and
A = Ai (for i ∈ J2) we obtain:

P

(
Xi,n ≥ x

(
1 +

8
√

3 (log2 n)3

√
p log p

))
≤ 4p2

∫ ∞

x
e−s2/2 ds,

where, with N as in (5.4), we used the fact that Ai ≥ (log2 n)−6 for all i ∈ J2.
Let ε ∈ (0, 1). We choose p = ε−2(log2 n)6 and n0 = n0(ε) such that for all n ≥ n0,

8
√

3 (log2 n)3/
√

p log p ≤ ε. Thus for any x > 0 and n ≥ n0,

P(Xi,n ≥ (1 + ε)x) ≤ 4(log2 n)12

ε4

∫ ∞

x
e−s2/2 ds ≤ 4(log2 n)12

ε4

e−x2/2

x
,

which yields

P
(

max
i∈J2

Xi,n ≥ (1 + ε)x
)
≤ 4N(log2 n)12e−x2/2

ε4x
≤ 4n1/2(log2 n)8e−x2/2

ε4x
.

Taking x := (1 + ε)(log n)1/2, and we obtain:

P
(
max
i∈J2

Xi,n ≥ (1 + ε)2(log n)1/2
)
≤ 4(log2 n)8

ε4(1 + ε)(log n)1/2nε
.

Let nk = bk2/εc. By the Borel–Cantelli lemma and (5.12), almost surely when k →∞,

‖Znk
‖ ≤ 2(1 + ε)2(log nk)

1/2 ‖K(·, nk)‖3/2

31/2 nk

+O
(

(log nk)
1/2

n
1/4
k log2 nk

)
. (5.16)

Let nk ≤ n < nk+1. Note that nk+1 − nk = O(n
1−ε/2
k ), k →∞. By (5.3),

|Zn(t)− Znk
(t)| ≤ 2

∣∣∣∣∣
∫ K(t,n)/n

0
∆k,n,t(z) dz

∣∣∣∣∣

+2

∣∣∣∣∣
∫ K(t,n)/n

K(t,nk)/nk

(K(t− z, nk)−K(t, nk)) dz

∣∣∣∣∣ ,
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where ∆k,n,t(z) := K(t − z, n) −K(t − z, nk) −K(t, n) + K(t, nk). According to Theorem
H and the LIL for the Kiefer process, when k →∞,

∆k,n,t(z) = O
(
n

(1−ε)/4
k (log nk)

1/2(log2 nk)
1/4

)
a.s.,

uniformly in t ∈ (0, 1), z ∈ [0, K(t, n)/n] and nk ≤ n < nk+1. Thus, by the LIL for the
Kiefer process,

∫ K(t,n)/n

0
∆k,n,t(z) dz = O

(
n
−(1+ε)/4
k (log nk)

1/2(log2 nk)
3/4

)
a.s.,

uniformly in t ∈ (0, 1) and nk ≤ n < nk+1.
On the other hand, by the LIL for the Kiefer process and Theorem G,

K(t− z, nk)−K(t, nk) = O
(
n

1/4
k (log nk)

1/2(log2 nk)
1/4

)
a.s.,

uniformly in t ∈ (0, 1), z ∈ [K(t, nk)/nk, K(t, n)/n] and nk ≤ n < nk+1. Since (xxxx I

need a reference for this; Endre has a trick to prove it by means of Theorem

H, he is going to insert a proof here)

sup
0≤t≤1

|K(t, n)−K(t, nk)| = O
(
n

1/2−ε/4
k (log nk)

1/2
)

a.s., (5.17)

uniformly in nk ≤ n < nk+1, it follows that

max
nk≤n<nk+1

sup
t∈[0,1]

∣∣∣∣∣
K(t, n)

n
− K(t, nk)

nk

∣∣∣∣∣ = O
(
n
−1/2−ε/4
k (log nk)

1/2
)

a.s.

Therefore, almost surely when k →∞,

∫ K(t,n)/n

K(t,nk)/nk

(K(t− z, nk)−K(t, nk)) dz = O
(
n
−(1+ε)/4
k (log nk)(log2 nk)

1/4
)
,

uniformly in t ∈ [0, 1] and nk ≤ n < nk+1. We have therefore proved that

max
nk≤n<nk+1

‖Zn − Znk
‖ = O

(
n
−(1+ε)/4
k (log nk)(log2 nk)

1/4
)
, a.s.

Going back to (5.16) and taking (5.17) into account, we obtain, when n →∞,

‖Zn‖ ≤ 2(1 + ε)2 (log n)1/2

31/2 n
‖K(·, n)‖3/2 +O

(
(log n)1/2

n1/4 log2 n

)

= (1 + o(1))
2(1 + ε)2 (log n)1/2

31/2 n
‖K(·, n)‖3/2, a.s.

We used in the last line the other LIL for the Kiefer process (Kuelbs, 1979, Mogulskii 1979):

(‖K(·, n)‖)−1 = O
(

(log2 n)1/2

n1/2

)
a.s. (5.18)

The proof of (5.1) is complete. ¤
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Proof of (5.2). Let N and ti, i = 0, 1, . . . , N be as before (cf. (5.4)). Combining Theorem
G with

(
sup

0≤t≤1
K(t, n)

)−1

= O
(

log n

n1/2

)
a.s. (5.19)

(cf. Csáki and Shi, 1998), we conclude

lim
n→∞

max0≤i≤N−1 K(ti, n)

sup0≤t≤1 K(t, n)
= 1 a.s. (5.20)

Let t+0 = t+0 (ω, n) be such that K(t+0 , n) = max0≤i≤N−1 K(ti, n) and consider the set of
indices In := {i : t+0 − hn ≤ ti ≤ t+0 + hn}, where hn = (log n)−4. Fix ε ∈ (0, 1). For i ∈ In,
we obtain from Theorem G, (5.19) and (5.20) that when n is sufficiently large,

K(ti, n) ≥ K(t+0 , n)−O
(
(nhn log(1/hn))1/2

)

≥ (1− ε)K(t+0 , n) > 0, (5.21)

Hence, for i ∈ In, we can apply (5.9) to t = ti and v = 0 to see that when n →∞,

Zn(ti) =
2n1/2

N3/2

∫ NK(ti,n)/n

0
W←

i,n(y) dy +O
(

(log n)1/2

n1/4 log2 n

)

=
2

31/2 n
(K(ti, n))3/2Yi,n +O

(
(log n)1/2

n1/4 log2 n

)
, (5.22)

where, for each n, {W←
i,n, i = 0, 1, . . . , N − 1} are independent Wiener processes which are

also independent of {K(ti, n), i = 0, 1, . . . , N − 1}, and

Yi,n :=
31/2n3/2

N3/2

1

(K(ti, n))3/2

∫ NK(ti,n)/n

0
W←

i,n(y) dy, i ∈ In.

For each n, {Yi,n, i ∈ In} are independent standard normal variables. Since #(In) ≥
N/(log n)4, we have, by the usual estimate for Gaussian tails,

P
(
max
i∈In

|Yi,n| < (1− ε)1/2(log n)1/2
)

≤
(

1− 21/2 + o(1)

(1− ε)1/2(π log n)1/2

1

n(1−ε)/2

)N/(log n)4

≤ exp

(
− 21/2 + o(1)

(1− ε)1/2(π log n)1/2

N/(log n)4

n(1−ε)/2

)

= exp

(
− 21/2 + o(1)

(1− ε)1/2π1/2

nε/2

(log n)9/2(log2 n)4

)
,

which sums. By the Borel–Cantelli lemma, almost surely for all large n, maxi∈In |Yi,n| ≥
(1− ε)1/2(log n)1/2. Plugging this into (5.22) and (5.21) yields that, almost surely,

‖Zn‖ ≥ max
i∈In

Zn(ti)

≥ 2(1− ε)3/2(log n)1/2

31/2 n
(K(t+0 , n))3/2 +O

(
(log n)1/2

n1/4 log2 n

)

≥ 2(1− ε)2(log n)1/2

31/2 n

(
sup

0≤t≤1
K(t, n)

)3/2

+O
(

(log n)1/2

n1/4 log2 n

)
.
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(We used (5.20) in the last inequality). This also holds true for − inf0≤t≤1 K(t, n) in place
of sup0≤t≤1 K(t, n), by means of a similar argument with K(t+0 , n) replaced by −K(t−0 , n) =
−min0≤i≤N−1 K(ti, n). Consequently,

‖Zn‖ ≥ 2(1− ε)2(log n)1/2

31/2 n
‖K(·, n)‖3/2 +O

(
(log n)1/2

n1/4 log2 n

)
a.s.

In light of (5.18), this yields (5.2). ¤
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Birkhäuser, Boston.

[16] Einmahl, J.H.J. (1996). A short and elementary proof of the main Bahadur–Kiefer theorem.
Ann. Probab. 24 526–531.
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