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Abstract. Topics in our joint work of twenty years are discussed. To

name a few: asymptotic independence, strong approximation of additive

functionals, iterated processes, path properties of the Cauchy principal

value, Vervaat process.

1. Introduction

The work of Miklós Csörgő has a tremendous impact on modern probability
and statistics. His books and papers are bibles for the young generation of these
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fields. We are lucky enough to be his friends and collaborators for more than twenty
years. This survey might only attempt to give a brief account of the papers at least
one of us wrote with him. A number of these papers were written in collaboration
with Pál Révész. In what follows, we summarize the contents of these papers which
are concentrated on a few topics. These topics are in fact strongly connected.

2. Local time and additive functionals

2.1 The increments of the local time. At the beginning of the 1980-s
we were fascinated with the Brownian local time. The asymptotic behaviour of
the increments of the Wiener process was well understood, as Csörgő and Révész
proved their incredible precise results in a couple of papers about how big and how
small are these increments of the Wiener process? [35], [36]. In our first joint
paper our objective was to investigate the corresponding ”how big” question for
the increments of the local time. Before quoting their results, we introduce a pair
of conditions which will be frequently used in the sequel.

Condition A:
0 < at ≤ t is a nondecreasing function of t such that t/at is also nondecreasing.

Condition B:

lim
t→∞

log(ta−1
t )

log log t
= +∞.

Theorem A (Csörgő and Révész [35], [37]) Under Condition A we have

lim sup
t→∞

βta
−1/2
t (W (t + at) − W (t)) =

lim sup
t→∞

sup
0<s<at

βta
−1/2
t sup

0<s<at

(W (t + s) − W (t)) = 1,

where βt = (2(log ta−1
t + log log t))−1/2. Supposing Condition B as well we also

have

lim
t→∞

βta
−1/2
t sup

0<s<at

(W (t + s) − W (t)) = 1.

As it turned out, the increments of the local time behave very similarly, though
a slightly different normalization is needed. We start with a quick definition of the
local time process. For any Borel set A on the real line let

H(A, t) = λ{s : s ≤ t,W (s) ∈ A}
be the occupation time of W , where λ is the Lebesgue measure. H(A, t) is a random
measure which is absolutely continuous with respect to λ, its Radon -Nikodym
derivative is called the local time of W , and will be denoted by L(x, t), where

H(A, t) =

∫

A

L(x, t) dx.

The joint continuity of L(x, t) is a famous result of Trotter [72], who also
investigated the modulus of continuity, separately for x and for t. The celebrated
law of the iterated logarithm for the local time is due to Kesten [60]:

lim sup
t→∞

L(0, t)

(2t log log t)1/2
= lim sup

t→∞

sup−∞<x<∞ L(x, t)

(2t log log t)1/2
= 1 a.s. (2.1)
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Let us denote L(0, t) by L(t). Our main result in [13] was the following

Theorem 2.1 Under Condition A we have

lim sup
t→∞

γtY (t) = lim sup
t→∞

γta
−1/2
t (L(t) − L(t − at)) = 1 a.s., (2.2)

where

Y (t) = Y (t, at) = a
−1/2
t sup

0<s<t−at

(L(s + at) − L(s))

and

γt = (log ta−1
t + 2 log log t)−1/2.

Assuming Condition B as well, we also have

lim
t→∞

γtY (t) = 1 a.s.

2.2 Approximation by a Wiener sheet. Once we understood the asymp-
totic behaviour of the local time increments when t → ∞, we turned our attention
to the whole two-variate process L(x, t) − L(0, t). The starting point of these in-
vestigations was a landmark paper of Dobrushin [46] formulated for random walk
(instead of a Wiener process case) and which we will quote later. This theorem
tells us that the local time increments normalized appropriately has a distribution,
which for large t is close to the distribution of the product of N1

√

|N2| where N1 and
N2 are independent standard normal variables. This fact is even more intriguing
combined with the following insightful result of Yor [76]:

Theorem B (Yor [76]) As λ → ∞,
(

1

λ
W (λ2t),

1

λ
L(a, λ2t),

1

2
√

λ

(

L(a, λ2t) − L(0, λ2t)
)

)

D→ (W (t), L(a, t),W ∗(a, L(0, t)))

where W ∗(a, u) is a Wiener sheet independent of W (t) and
D→ denotes convergence

in distribution.

The above two results suggested that the local time difference L(x, t) − L(0, t)
could be strongly approximated by σxW ∗(L∗∗(0, t)) on such a way that

L(0, t) should be close to L∗∗(0, t),
W ∗(t) and L∗∗(0, t) should be independent,

and σx is a constant depending only on x. This conjecture was confirmed in [14] by

Theorem 2.2 There is a probability space with

• a standard Wiener process {W (t), t > 0} and its two-parameter local time

process {L(a, t), a ∈ R, t ≥ 0},
• a two-parameter Wiener process {B(a, u), a ≥ 0, u ≥ 0},
• a process {L1(0, t), t ≥ 0}, with {L1(0, t), t ≥ 0} D

= {L(0, t), t ≥ 0}
such that as t → ∞

• sup0≤a≤a∗tδ/2 |L(a, t) − L(0, t) − 2B(a, L1(0, t))| = O(t((1+δ)/4−ǫ/2) a.s.,

• |L1(0, t) − L(0, t)| = O(t15/32 log2 t) a.s..
• {L1(0, t), t ≥ 0} and {B(a, u), a ≥ 0, u ≥ 0} are independent,

and for the constants above we have; a∗ > 0, 0 < δ < 7/100, 0 < ǫ < 1/72 − δ/7,
D
= denotes equality in distribution.
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The proof of this result was based on two major ingredients. The first of these
two is an approximation theorem of Berkes and Philipp [3] for weakly dependent
vectors. The second ingredient is a method we developed in this paper to achieve
the stated independence of L1(0, t) and B(a, u) in the theorem.

As a consequence of the above results, one can conclude various limit distribu-
tions and laws of the iterated logarithm, such as

L(a, t) − L(0, t)

2
√

aL(0, t)

D→ N1 as t → ∞ for any a > 0, (2.3)

L(a, t) − L(0, t)

2a1/2t1/4

D→ N1|N2|1/2 as t → ∞ for any a > 0, (2.4)

lim sup
t→∞

L(a, t) − L(0, t)

2
√

2aL(0, t) log log t
= 1 a.s. for any a > 0, (2.5)

lim sup
t→∞

L(a, t) − L(0, t)

a1/2t1/4(log log t)3/4
=

29/4

33/4
a.s. for any a > 0, (2.6)

lim sup
t→∞

sup
0<a<a∗tδ

L(a, t) − L(0, t)

2
√

2a∗tδL(0, t)(log log t)
=

lim sup
t→∞

sup
0<a<a∗tδ

3

4
6−1/4 L(a, t) − L(0, t)

(a∗tδ)1/2t1/4(log log t)3/4
= 1 a.s. (2.7)

for any a∗ > 0 and 0 ≤ δ < 7
200 . In fact (2.3) and (2.4) also follow from Theorem B.

However the rest of the above statements do not follow from any weak invariance
principle. (2.5) and (2.6) were proved directly by Csáki and Földes [27]. An im-
portant step in attaining the above strong theorems was the following result which
proved to be important in its own right; If W1(·) and W2(·) are two independent
standard Wiener processes with respective local times L1(·) and L2(·) at zero, then

lim sup
t→∞

W1(L2(0, t))

t1/4(log log t)3/4
=

25/4

33/4
a.s. (2.8)

2.3 Additive functionals. Let us consider a sequence of i.i.d. random vari-
ables Xi, i = 1, 2... taking values on the integer lattice Z. Put S0 = 0, Sn =
X1 + X2 + ... + Xn. Let us denote the local time of the random walk Sn by
ξ(x, n) = #{k : 0 < k ≤ n, Sk = x}. Define the additive functional An as

An =
n
∑

i=1

f(Si) =
∞
∑

x=−∞
f(x)ξ(x, n), (2.9)

where f(x) x ∈ Z is a real valued function. Clearly in the special case f(a) =
1, f(0) = −1, and f(x) = 0 otherwise, An = ξ(a, n) − ξ(0, n). Let us denote

f̄ =

∞
∑

k=−∞
f(k).

The so called first-order results on An are establishing the following observation: If
f̄ 6= 0 then the asymptotic behaviour of An with appropriate normalization is the
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same as the behaviour of f̄L(0, n). The interested reader should consult Kallianpur
and Robbins [58], Darling and Kac [42], Skorokhod and Slobodenyuk [71] and
Borodin [6] to see the history of these first order limit results. However, we were
interested in the so-called second order limit theorems ofor An which are focused
on the behaviour of An when f̄ = 0 (clearly this is the case which contains the
increments of the local time). The history of this topic goes back to the above
mentioned famous result of Dobrushin [46]:

Theorem C (Dobrushin [46]) Assume that P(X1 = +1) = P(X1 = −1) = 1/2
and define the additive functional as in (2.9). If f(x), x ∈ Z has finite support and
f̄ = 0, then

lim
n→∞

P

(

An

dn1/4
< x

)

= P(N1

√

|N2| < x), (2.10)

where N1 and N2 are two independent standard normal variables, and

d2 = 4

∞
∑

k=−∞
kf2(k) + 8

∑

−∞<i<j<∞

∑

if(i)f(j) −
∞
∑

k=−∞
f2(k).

This result has several generalizations. The corresponding functional version
was given by Kasahara [59] and Borodin [5].

Similarly to the discrete case one can consider the additive functional of a
standard Wiener process. Let g(x) be an integrable function on the real line and
consider

Gt =

∫ t

0

g(W (s)) ds =

∫ ∞

−∞
g(x)L(x, t) dx.

Results on the additive functional Gt are parallel to the results on An. Let us quote
the functional form of the limit theorem given by Papanicolaou et al. [63], Ikeda
and Watanabe [56], Kasahara [59] and Borodin [5]. They proved (under somewhat
different assumptions on g) that

λ−1/4

(

∫ λt

0

g(W (s)) ds − ḡL(0, t)

)

w→ σW1(L2(t)) as λ → ∞, (2.11)

where W1 is another standard Wiener process, L2 is a Wiener local time at zero,
such that W1 and L2 are independent, and σ is an explicitly given constant.

Our goal was to prove the strong approximation version of (2.11) for the random
walk and the Wiener case as well. In both cases the method developed in [14] proved
to be the appropriate tool to achieve our results in [15]. To avoid being repetitious
we only quote the Wiener case result.

Theorem 2.3 Assume that f(x) is an integrable function on R and
∫ ∞

−∞
|x|1+δ|f(x)| dx < ∞ for some δ > 0. (2.12)

Then on a suitable probability space one can define a standard Wiener process W (t)
with two other standard Wiener processes W1(t) and W2(t) such that

• W1(t) and W2(t) are independent,

• |
∫ t

0
f(W (s)) ds − f̄L(0, t) − σW1(L2(0, t))| = O(tτ/2) a.s. (t → ∞),

• |L(0, t) − L2(0, t)| = O(tκ/4) a.s. (t → ∞),
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where f̄ =
∫∞
−∞ f(x) dx and

σ2 = 4

∫ 0

−∞

(
∫ x

−∞
f(y) dy

)2

dx + 4

∫ ∞

0

(
∫ ∞

x

f(y) dy

)2

dx, (2.13)

L(x, t) and L2(x, t) resp., are the local times of W (·) and W2(·) resp., and κ, τ are

any numbers satisfying κ < 4τ ,

1

4
+

1

2(2 + δ)
< τ <

1

2
,

7

4
+

1

2(2 + δ)
< κ < 2. (2.14)

As a consequence of the above theorem we get the following LIL type result for
the additive functionals.

Under the conditions of the above theorem we have

lim sup
t→∞

|
∫ t

0
f(W (s)) ds − f̄L(0, t)|
t1/4(log log t)3/4

= σ
25/4

33/4
a.s.

Both of the above two results and their random walk counterparts became
the starting point of many further investigations in this direction. The method of
proof was successfully used to generalize these results for the additive functionals
of various processes. Extensions were given for Markov chains by Csáki and Csörgő
[12], for diffusions by Csáki and Salminen [31], for Markov processes by Eisenbaum
and Földes [48], for simple symmetric random walk on the plane by Csáki et al. [29].
In [28] additive functionals of more general random walks in one and two dimensions
were strongly approximated under various conditions. As a consequence of these
results one always gets both LIL-type and weak convergence results.

2.4 Principal value of Brownian local time. An important special type
of additive functionals is the following

Yα(t) :=

∫ t

0

ds

Wα(s)
=

∫ ∞

0

L(x, t) − L(−x, t)

xα
dx, (2.15)

where the integral
∫ t

0
ds/Wα(s) (notation: zα = |z|α sgn(z)) is in the sense of

Cauchy’s principal value). Strictly speaking, the first integral is defined as Cauchy’s
principal value for 1 ≤ α < 3/2 and as Riemann integral for α < 1. The investiga-
tion of the process Y1(t) which is called the Cauchy principal value of the Brownian
local time goes back at least to Itô and McKean [57] and has become very active
since the late 70s, due to applications in various branches of stochastic analysis. For
example, it is a natural example in Fukushima [53] theory for Dirichlet processes
and zero-energy additive functionals. Also, the principal values of Brownian local
times are the key ingredient in establishing Bertoin [4]’s excursion theory for Bessel
processes of small dimensions. For a detailed account on these facts and general
properties of principal values of local times, we refer to the collection of research
papers in Yor [77] and to the survey paper by Yamada [75].

Hu and Shi [54] proved the following LIL-s for the local and global behaviour
of the principal value:
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Theorem D (Hu and Shi[54])

lim sup
t→∞

Y1(t)√
t log log t

= 2
√

2 a.s. (2.16)

and

lim sup
h→0

Y1(h)
√

h log log(1/h)
= 2

√
2 a.s.

This result supports the common belief that the principal value process Y1(t)
is very similar in behaviour to the Brownian motion. To explore further this phe-
nomenon we investigated some path properties of Yα(·) and especially Y1(·). We
studied the modulus of continuity and large increment properties (including the
LIL) of Yα(·), as well as appropriate properties of a simple symmetric random walk
along these lines. Due however to lack of precise distributional properties of Yα(·),
when α 6= 1, we could not obtain the desirable exact constants, though the rates
we established are optimal. In our first theorem [21] we proved the upper bounds
for the LIL, large increments and modulus of continuity.

Theorem 2.4 Under Condition A for 0 < α < 3/2 we have

lim sup
t→∞

sup0≤u≤t−at
sup0≤s≤at

|Yα(u + s) − Yα(u)|
a
1−α/2
t (log(t/at) + log log t)

α/2
≤ c1(α), a.s.(2.17)

lim sup
h→0

|Yα(h)|
h1−α/2(log log(1/h))α/2

≤ c1(α), a.s. (2.18)

lim sup
h→0

sup0≤t≤1−h sup0≤s≤h |Yα(t + s) − Yα(t)|
h1−α/2 (log(1/h))

α/2
≤ c1(α), a.s. (2.19)

Here, the constant c1(α) is given by

c1(α) =
3 · 27α/6

α2α/3(3 − 2α)1−α/3(2 − α)α/3
. (2.20)

Remark In the particular case at = t we get

lim sup
t→∞

|Yα(t)|
t1−α/2(log log t)α/2

≤ c1(α), a.s. (2.21)

Concerning the constant in LIL, we have the following result.

Theorem 2.5 For 0 < α < 3/2, there exists a finite positive constant c2(α)
such that

lim sup
t→∞

|Yα(t)|
t1−α/2(log log t)α/2

= c2(α) ∈
[

23α/2 Γ(3 − α), c1(α)
]

, a.s. (2.22)

The LIL holds true also for random walks via the following invariance principle
[21]. Let Si, i = 1, 2, . . . be a simple symmetric random walk on the line, starting
from 0, and let ξ(x, n) be its local time. Define

Gα(n) :=

n
∑

k=1

1[Sk 6=0]

Sα
k

=

∞
∑

i=1

ξ(i, n) − ξ(−i, n)

iα
. (2.23)

Theorem 2.6 On a suitable probability space one can define a Wiener process

{W (t), t ≥ 0} and a simple symmetric random walk {Sn, n = 1, 2, . . . } such that

for any 0 < α < 3/2 and sufficiently small ε > 0 we have

|Yα([t]) − Gα([t])| = o(t1−α/2−ε), a.s., (2.24)
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as t → ∞.

As a consequence of our Theorem 2.6, the LILs in (2.16), (2.21) and (2.22)
remain true if Yα is replaced by Gα.

As it is easily seen, Yα is not defined for α ≥ 3/2. In this case, we considered
instead the process

Zα(t) :=

∫ t

0

1[|W (s)|≥1]

Wα(s)
ds =

∫ ∞

1

L(x, t) − L(−x, t)

xα
dx. (2.25)

This is a ”nice” additive functional, for which Theorem 2.3 can be applied. The
limit process associated with such functionals is V (t) = W1(L2(t)), where W1(·) is
a standard Wiener process and L2(·) is a Wiener local time at zero, independent of
W1.

Considering the special case of Y1, in [20] we characterized the modulus of
continuity as follows;

Theorem 2.7 With probability one,

lim
h→0

sup
0≤t≤1

sup
0≤s≤h

|Y1(t + s) − Y1(t)|
√

h log(1/h)
= 2.

Remark. 1√
2
Y (t) and W (t) have the same moduli of continuity (and the same

remark applies to our next theorem below). We have already seen that 1
2Y (t) and

W (t) satisfy the same LIL. Heuristically speaking, that a factor
√

2 is missing in
the modulus of continuity comes from the fact that the Hausdorff dimension of the
zero set of W is 1

2 .
As to the large increments of Y (·), in [20] we proved

Theorem 2.8 Under Conditions A and B we have

lim
t→∞

sup
0≤u≤t−at

sup
0≤s≤at

|Y1(u + s) − Y1(u)|
√

at log(t/at)
= 2, a.s.

Remark. Recently Csáki and Hu [30] was able to fill the gap in the above
increment results by showing that Condition A is enough to get a limsup.

To look at the the corresponding two-dimensional question let

{W(t) := (W1(t),W2(t)), t ≥ 0}
be a two-dimensional Wiener process, where W1(t) and W2(t) are two independent
one-dimensional Wiener processes, with W1(0) = W2(0) = 0. Put

R(t) := ‖W(t)‖ =
√

W 2
1 (t) + W 2

2 (t) .

It is well-known that {R(t), t ≥ 0} is a two-dimensional Bessel process. In [22]
we were interested in the additive functional

Zα(t) :=

∫ t

0

ds

Rα(s)
, (2.26)

the critical case being α = 2 (instead of 3/2). It can be seen that the integral in
(2.26) converges for α < 2, but diverges for α ≥ 2 almost surely. In the latter case
we defined the modified process

Z∗
α(t) :=

∫ t

0

1

Rα(s)
1{R(s)≥1} ds. (2.27)
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Considering the random walk counterpart, let {Sn}∞n=1 be a simple symmetric
random walk on the integer lattice Z

2, i.e. Sn =
∑n

k=1 Xk, where the random
variables Xi, i = 1, 2, ... are i.i.d., with

P(X1 = (0, 1)) = P(X1 = (0,−1)) = P(X1 = (1, 0)) = P(X1 = (−1, 0)) =
1

4
.

We also proposed to study the discrete process

Uα(n) :=

n
∑

k=1

1

‖Sk‖α
1{Sk 6=0}. (2.28)

Define

ξ(x, n) := #{k; 1 ≤ k ≤ n, Sk = x},

for any lattice point x ∈ Z. This is the local time process of {Sn}∞n=1. Let further-
more {ρn, n ≥ 0} denote the consecutive return times of the random walk to zero,
that is

ρ0 := 0, ρn := min{k > ρn−1, Sk = 0}.

First we considered the case 0 < α < 2, for which we managed to show that
the processes Zα(·) and 2−α/2Uα(·) are close enough to each other to share many
of their properties. Based on some results of Revuz and Yor [65], Azencott [1] and
Borovkov and Mogulskii [7] we could prove exact lim sup and lim inf results for both
of these processes.

On the other hand, it turned out that when α > 2 then the two processes have
to be investigated separately. However both processes, suitably centered, are close
to certain iterated processes. We only quote the results in [22] in random walk case,
and some of its consequences, parallel results are true for Z∗

α(t).

Theorem 2.9 Let α > 2. There exists a probability space where one can define

• a two-dimensional simple symmetric random walk {Sn}∞0 with its local time

ξ(x, n), and with the corresponding additive functional {Uα(n), n = 1, 2...}
as in (2.29);

• a process {ξ(1)(0, n), n = 1, 2, ...} D
= {ξ(0, n), n = 1, 2, ...};

• a standard Wiener process {W (t), t ≥ 0}, independent of {ξ(1)(0, n), n =
1, 2, ...};

such that, for some ε > 0, as n → ∞,

• Uα(n) − f̄D
α ξ(0, n) = σD

α W (ξ(1)(0, n)) + O(log1/2−ǫ n), a.s.,
• ξ(0, n) = ξ(1)(0, n) + O(log1−ǫ n), a.s.

where f̄D
α :=

∑

x∈Z2−{0}
1

‖x‖α , σD
α :=

√

Var(Uα(ρ1)) .

The above theorem have both weak and strong implications.
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Theorem 2.10 For α > 2 we have

πUα(n)

f̄D
α log n

D→ |E|, n → ∞, (2.29)

Uα(n) − f̄D
α ξ(0, n)

σD
α

√
log n

√
2π

D→ E, n → ∞, (2.30)

lim sup
n→∞

Uα(n)

log n log3 n
=

f̄D
α

π
, a.s., (2.31)

lim sup
n→∞

Uα(n) − f̄D
α ξ(0, n)√

log n log3 n
=

σD
α√
2π

, a.s., (2.32)

where E is a bilateral exponential random variable with density e−|x|

2 x ∈ R, and

|E| is exponential with parameter 1.

2.5 Integral functionals. In [19] we studied the following two types of inte-
gral functionals of geometric stochastic processes which are of interest in financial
modelling:

A(t) :=

∫ t

0

exp(X(u)) du, B(t) :=

∫ ∞

0

exp

(

Y (u) − uα

t

)

du, 0 < t < ∞.

(2.33)

We managed to show, that under fairly general conditions on X(t) and Y (t)
respectively, log A(t) and log B(t) behave like sup0≤u≤t X(u) and sup0≤u<∞(Y (u)−
uα/t). We only quote our first strong invariance theorem which deals with X(t).

Theorem 2.11 Let the stochastic process {X(t); 0 ≤ t < ∞} have almost

surely continuous sample paths, P(X(0) = 0) = 1 and put

Z(t) := log A(t) and U(t) = sup
0≤u≤t

X(u).

Assume that for the increment of X(t) we have

sup
0≤s≤t−at

sup
0≤v≤at

|X(s + v) − X(s)| = O(r(t, at)) a.s.

as t → ∞, with some non-decreasing at (1 ≤ at ≤ t) and rate r(t, at). Then as

t → ∞,
|Z(t) − U(t)| = O(r(t, at) + log t) a.s.

We applied these strong approximation theorems for a number of processes,
such as Wiener process, fractional Brownian motion, Gaussian processes, and dif-
fusion processes.

3. Iterated processes, and their local times

3.1 Iterated processes. C. Burdzy [8] proposed to investigate the process

Z(t) := {W1(W2(t)), 0 ≤ t < ∞}, (3.1)

where {W1(t), t ∈ R} and {W2(t), t ≥ 0} are two independent standard Brownian
motions. He called this process an iterated Brownian motion (IBM), and proved
the following LIL:
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Theorem E (Burdzy [8])

lim sup
t→0

Z(t)

t1/4(log log(1/t))3/4
=

25/4

33/4
a.s. (3.2)

A closely related process to Z(t) is

H(t) := {W1(|W2(t)| ), 0 ≤ t < ∞}. (3.3)

In 1993-94 many people got interested in this process, one should consult [16]
for proper references. In the above Theorem E we have a LIL for t → 0 and in
(2.8) we have a LIL for the process V (t) = W1(L2(t)) as t → ∞ with the very same
constant. The latter result combined with a famous result of Paul Lévy, mentioned
earlier, implies that the same is true for the process Y (t) = W1(max0≤s≤t W2(s)),
and H(t), as well. It is easy to see that

V (t)

t1/4

D
=

H(t)

t1/4

D
=

Y (t)

t1/4

D
= N1

√

|N2|, (3.4)

where N1 and N2 are two independent standard normal variables. We have seen
this distribution to appear in Dobrushin’s theorem (2.10) and in (2.4) as well. In all
of these results we have in the above sense an iterated process created from a pair
of independent processes. This gave us the idea that there must be a common way
to investigate these three processes and started to study these iterated processes
more closely. To introduce our first result in this direction, we recall the following
definition: Let S be the Strassen class of functions, i.e., S ⊂ C[0, 1] is the class
of absolutely continuous functions (with respect to the Lebesgue measure) on [0, 1]
for which

f(0) = 0 and

∫ 1

0

ḟ2(x)dx ≤ 1. (3.5)

The set of r
2 valued, absolutely continuous functions

{(g(y), h(x)), 0 ≤ y ≤ 1, 0 ≤ x ≤ 1} (3.6)

for which g(0) = h(0) = 0 and
∫ 1

0

ġ2(y)dy +

∫ 1

0

ḣ2(x)dx ≤ 1 (3.7)

will be called Strassen class S2.
Now let C0[0, 1] ⊂ C[0, 1] be the set of continuous functions f(·) on [0, 1] for

which f(0) = 0. Let A be an operator on C0[0, 1], satisfying

(C.1) Acf = cρAf (ρ ≥ 1, c > 0),
(C.2) Af ≥ 0,
(C.3) Af ∈ C0[0, 1],
(C.4) A is uniformly continuous on bounded subsets of C0[0, 1], i.e.,

∀ε > 0, K > 0, ∃δ = δ(ε,K) > 0 such that if f, g ∈ C0[0, 1],
sup

0≤x≤1
|f(x)| ≤ K, sup

0≤x≤1
|g(x)| ≤ K and sup

0≤x≤1
|f(x) − g(x)| < δ, then

sup
0≤x≤1

|Af(x) − Ag(x)| ≤ ε,

(C.5) sup
f∈S

Af(x) = λ(A, x) = λx 0 < λx ≤ 1.
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Some of our examples for Af(x) are the following: |f(x)|, max0<y≤x f(x), and
max0<y≤x |f(x)|.

Theorem 3.1 Let W1(·) and W2(·) be two independent standard Wiener pro-

cesses starting from zero, and let A be an operator satisfying conditions (C.1)–(C.5).
Then for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the limit set of the vector

(

W1(yAW2(xT ))

T ρ/4(2 log log T )(ρ+2)/4
,

W2(xT )

(2T log log T )1/2

)

(3.8)

is (g(yAh(x)), h(x)), where (g, h) ∈ S2.

This theorem gives an easy way to show the above LIL-s, and it has many more
consequences. Here we mention only one of them as an example.

Theorem 3.2 For 0 ≤ y ≤ 1 we have

lim sup
T→∞

W1(yAW2(xT ))

T ρ/4(2 log log T )(ρ+2)/4
= λ1/2

x y1/2ρρ/4(ρ + 2)−(ρ+2)/421/2 a.s. (3.9)

3.2 Local time and occupation time. In [17] we defined the local time
L∗(x, t) of H(t) = W1(|W2(t)| as follows:

L∗(x, t) :=

∫ ∞

0

L2(s, t) dsL1(x, s), x ∈ R, t ≥ 0. (3.10)

where L2(·, ·), L1(·, ·) are the local time processes of |W2(·)| and W1(·), respectively.
In particular, L2(x, t) := L2(x, t)+L2(−x, t), x ≥ 0, where L2(·, ·) is the local time
process of W2(·). At about the same time Burdzy and Khoshnevisan [9] studied
the local time of the process Z(t) = W1(W2(t)) and proved its Hölder continuity.
Concerning L∗, we established its joint continuity and studied its path behaviour
aiming at the four classical Lévy classes of functions. However, these results are far
from being optimal yet, and leave open many problems for further considerations,
including even that of proving a LIL for L∗(x, t) at x = 0. Indeed, a systematic
study of the fine analytic properties of the process {L∗(x, t), x ∈ R, t ≥ 0} along
the lines of those of the classical Brownian local time of P. Lévy seems to be a
challenging problem. For further liminf type results we refer to [68].

We also considered the corresponding iterated random walk U(n) and defined
its local time ξ∗(x, n) similarly. Then we established that on an appropriate prob-
ability space

sup
x∈Z

|ξ∗(x, t) − L∗(x, t)| = O(t11/16+ε) a.s. (3.11)

which implies that all the above mentioned Lévy class type results are inherited by
ξ∗(x, t).

It is quite interesting that even though Z(t) and V (t) = W1(L2(t)) share many
properties, the investigation of their respective local times reveals how different
they really are. We started our investigation with studying the occupation time
of V (t), and it turned out that we must confine our attention to it as V (t) has
no local time. Actually because of the non-Markovian nature of V (t) it is more
appropriate to talk about the non-existence of its occupation density. Another
surprise was to realize that we were unable to establish a strong approximation
result similar to (??), hence each results had to be established separately for V (t)
and the corresponding iterated random walk. For simplicity, here we only explain
how to define the occupation time of the iterated random walk. Let S1(·) and
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S2(·) be two independent simple symmetric random walks as above and denote the
local time at zero of S2(·) by ξ2(n). In the spirit of V (t) = W1(L2(t)) we define
R(n) = S1(ξ2(n − 1)) and the corresponding occupation time of R(n) is defined as

ξ∗(r, n) := #{k : 1 ≤ k ≤ n,R(k) = r}. (3.12)

Then clearly

ξ∗(r, n) =
n
∑

k=1

I{S1(ξ2(k − 1)) = r}

=
∑

0≤s≤ ξ2(n−1)

(ρ2(s + 1) ∧ n − ρ2(s))I{S1(s) = r} (3.13)

where I(·) is an indicator function and 0 = ρ2(0) < ρ2(1) < ... are the consecutive
return epochs to zero of our second walk S2(·). Thus we have

ξ∗(r, ρ2(n)) =

n−1
∑

s=1

(ρ2(s + 1) − ρ2(s))I{S1(s) = r}. (3.14)

Further studying (3.14) led us to the right way of interpreting ξ∗(r, n) and the
occupation time of V (t) as well. It turned out that these occupation times has
interesting limit distributions. Here we only mention the following one.

Theorem 3.3 For any fixed integer r ≥ 0, as n → ∞, we have

ξ∗(r, n)

n1/2

D→ N2
1 |N2|T1

D
= C2|N2| (3.15)

where N1 and N2 are independent standard normal random variables that are also

independent of the stable (1/2) random variable T (1), and C is a standard Cauchy

random variable independent of N2.

As it was indicated above, the Lévy class type results for the occupation time
of V (s) and R(s) were separately established. For further LIL-type results for ξ∗

we refer to Révész [64].

4. Vervaat error process

Let Fn(t) be the empirical distribution function from a uniform [0,1] sample.
Let F−1

n be the left-continuous inverse of Fn. We denote the empirical and quantile
processes over the interval [0, 1] by

αn(t) := n1/2(Fn(t) − t), 0 ≤ t ≤ 1,

βn(t) := n1/2(F−1
n (t) − t), 0 ≤ t ≤ 1,

respectively. The sum

Rn(t) := αn(t) + βn(t), 0 ≤ t ≤ 1,

of the empirical and quantile processes is known in the literature as the Bahadur–
Kiefer process (cf. Bahadur [2], Kiefer [61], [62]. This process enjoys some re-
markable asymptotic properties, which are of interest in statistical quantile data
analysis (cf., e.g., Csörgő [32], Shorack and Wellner [70]. We summarize the most
relevant results of Kiefer [61], [62], Shorack [69], Deheuvels and Mason [44] in the
following theorem. For further developments one can consult Deheuvels and Mason
[45], Einmahl [47], Csörgő and Szyszkowicz [40].
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Theorem F For every fixed t ∈ (0, 1), we have

n1/4Rn(t)
D→ (t(1 − t))1/4N1(|N2|)1/2, n → ∞, (4.1)

lim sup
n→∞

n1/4|Rn(t)|
(log2 n)3/4

= (t(1 − t))1/4 25/4

33/4
a.s., (4.2)

where N1 and N2 are independent standard normal variables. Also,

lim
n→∞

n1/4(log n)−1/2 ‖Rn‖
(‖αn‖)1/2

= 1 a.s., (4.3)

where ‖f‖ := sup0≤t≤1 |f(t)| denotes the sup-norm of f.

Via using the usual and the other laws of the iterated logarithm for αn, (4.3)
immediately implies

lim sup
n→∞

n1/4(log n)−1/2(log log n)−1/4‖Rn‖ = 2−1/4 a.s., (4.4)

lim inf
n→∞

n1/4(log n)−1/2(log log n)1/4‖Rn‖ =
π1/2

81/4
a.s., (4.5)

while a direct application of (4.3) together with the weak convergence of αn to a
Brownian bridge B gives

n1/4(log n)−1/2‖Rn‖ D→ (‖B‖)1/2, n → ∞. (4.6)

Nevertheless, the following result, which one can immediately conclude also by
combining (4.1) with (4.6), is true, and it was first formulated and proved directly
by Vervaat [74].

Theorem G (Vervaat [74]) The statement

anRn
D→ Y, n → ∞

cannot hold true in the space D[0, 1] (endowed with the Skorokhod topology) for
any sequence {an} of positive real numbers and any non-degenerate random element
Y of D[0, 1].

In view of Theorems F and G now, it is of interest to see the asymptotic
behaviour of the Bahadur–Kiefer process possibly in other norms as well. In this
regard it was proved in [38], [39]

Theorem 4.1 For any p ∈ [2,∞), we have

lim
n→∞

n1/4 ‖Rn‖p

(‖αn‖p/2)1/2
= c0(p) a.s., (4.7)

where

c0(p) := (E|N1|p)1/p =
√

2

(

Γ((p + 1)/2)√
π

)1/p

, (4.8)

and N1 stands for a standard normal variable, and ‖f‖p :=
(

∫ 1

0
|f(t)|p dt

)1/p

, the

Lp norm of f .

Vervaat’s [74] proof of Theorem G was based, in an elegant way, on the following
integrated Bahadur–Kiefer process

In(t) :=

∫ t

0

Rn(s)ds, 0 ≤ t ≤ 1.
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Concerning the latter process, he established the weak convergence of

Vn(t) := 2n1/2In(t) (4.9)

to B2, the square of a Brownian bridge, as well as a functional LIL for Vn, via
proving the following theorem.

Theorem I (Vervaat [73], [74]) We have

lim
n→∞

(log log n)−1‖Vn − α2
n‖ = 0 a.s. (4.10)

lim
n→∞

‖Vn − α2
n‖ = 0 in probability. (4.11)

In particular, in the space C[0, 1],

Vn
D→ B2, n → ∞. (4.12)

We call the process Vn of (4.9) the uniform Vervaat process.
Bahadur [2] introduced Rn as the remainder term in the representation

βn = −αn + Rn

of the quantile process βn in terms of the empirical process αn. As we have seen
above, the remainder term Rn, i.e., the Bahadur–Kiefer process, is asymptotically
smaller than the main term αn, i.e., the empirical process, in both the Lp and
sup-norm topologies.

Similarly, one can consider the process

Qn(t) := Vn(t) − α2
n(t), 0 ≤ t ≤ 1, (4.13)

that appears in both statements (4.10) and (4.11) of Theorem I as the remainder
term Qn in the following representation

Vn = α2
n + Qn (4.14)

of the uniform Vervaat process Vn in terms of the square of the empirical process.
It is well-known (cf. Zitikis, [78], for details and references) that the remainder
term Qn in (4.14) is asymptotically smaller than the main term α2

n. Thus, just like
in the case of Rn, one may like to know how small the remainder term Qn is.

In view of Theorems F and 4.1, one suspects that there should be substan-
tial differences between the asymptotic pointwise, sup- and Lp-norm behaviour of
the process Qn. Indeed, Csörgő and Zitikis [41] established the following strong
convergence result for ‖Qn‖p .

Theorem H (Csörgő and Zitikis [41]) For any p ∈ [1,∞), we have

lim
n→∞

n1/4 ‖Qn‖p

(‖αn‖3p/2)3/2
=

1√
3
c0(p) a.s., (4.15)

where c0(p) is defined in (4.8). For a comparison of this result to that of Theorem

4.1, as well as for that of their consequences, we refer to Csörgő and Zitikis [41], who
have also conjectured that in sup-norm the analogue statement of (4.15) should be
of the following form:

lim
n→∞

bnn1/4 ‖Qn‖
‖αn‖3/2

= c a.s., (4.16)

where bn is a slowly varying function converging to 0 and c is a positive constant.
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One of our aims in [23] was to prove that this conjecture is true with bn =
(log n)−1/2. In addition, we also studied the pointwise behaviour of the Vervaat er-
ror process Qn. We summarize our results in the following theorem, which parallels
Theorem F concerning the process Rn.

Theorem 4.2 For every fixed t ∈ (0, 1), we have

n1/4Qn(t)
D→ (4/3)1/2(t(1 − t))3/4N1(|N2|)3/2, n → ∞, (4.17)

lim sup
n→∞

n1/4|Qn(t)|
(log log n)5/4

= (t(1 − t))3/4 211/431/4

55/4
a.s., (4.18)

where N1 and N2 are independent standard normal variables. Also,

lim
n→∞

n1/4(log n)−1/2 ‖Qn‖
(‖αn‖)3/2

= (4/3)1/2 a.s. (4.19)

As a consequence of this theorem, as well as that of Theorem J combined with
(4.19), we have the following corollary, which confirms the above conjecture.

Corollary 4.1 The statement

anQn →d Y, n → ∞,

cannot hold true in the space D[0, 1] for any sequence {an} of positive real numbers

and for any non-degenerate random element Y of the space D[0, 1].

Another consequence of (4.19) is the following corollary.

Corollary 4.2 We have

lim sup
n→∞

n1/4(log n)−1/2(log log n)−3/4‖Qn‖ =
21/4

31/2
a.s.,

lim inf
n→∞

n1/4(log n)−1/2(log log n)3/4‖Qn‖ =
π3/2

31/225/4
a.s.,

n1/4(log n)−1/2‖Qn‖ D→ (4/3)1/2‖B‖3/2, n → ∞,

where B is a standard Brownian bridge.

5. Banach space valued stochastic processes

Let {Y (t), t ∈ R} = {Xk(t), t ∈ R}∞k=1 be a sequence of independent Ornstein-
Uhlenbeck processes with coefficients γk and λk, i.e. Xk is a stationary, mean zero
Gaussian process with EXk(s)Xk(t) = (γk/λk) exp(−λk|t − s|). This process was
introduced by Dawson [43] and its path properties were studied by Csörgő and Lin
[33], [34], Fernique [50], [51], [52], Iscoe et al. [55], Schmuland [66], [67],
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[15] Csáki, E., Csörgő, M., Földes, A. and Révész, P. Strong approximations of additive function-

als. J. Theoret. Probab. 5 (1992), 679–706.
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