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1. Introduction and main results

Let {W (t), t ≥ 0} be a standard Wiener process (Brownian motion) with local time L(x, t)
and for α < 3/2 define

Yα(t) :=
∫ t

0

ds

Wα(s)
=

∫ ∞

0

L(x, t)− L(−x, t)

xα
dx.

Here zα = |z|α sgn(z) and the first integral is defined as Cauchy principal value for 1 ≤ α <
3/2. In our previous works [CsCsFS, 99a and 99b], we were interested in the almost sure
path properties of Yα(t) and its corresponding counterparts for the case of simple symmetric
random walk. The general case 0 < α < 3/2 was studied in [CsCsFS, 99a], and the case
α = 1 in [CsCsFS, 99b]. Moreover, in [CsCsFS, 99a], for α > 3/2, we investigated the
properties of the modified process

Y ∗
α (t) :=

∫ t

0

1

Wα(s)
1{|W (s)|≥1} ds.

In this note we discuss the corresponding two-dimensional problem.
Let {W(t) := (W1(t),W2(t)), t ≥ 0} be a two-dimensional Wiener process, where W1(t)

and W2(t) are two independent one-dimensional Wiener processes, with W1(0) = W2(0) = 0.
Put

R(t) := ‖W(t)‖ =
√

W 2
1 (t) + W 2

2 (t) .

It is well-known that {R(t), t > 0} is a two-dimensional Bessel process. We are interested
in the additive functional

Zα(t) :=
∫ t

0

ds

Rα(s)
,(1.1)

the critical case being α = 2 (instead of 3/2). It can be seen that the integral in (1.1)
converges for α < 2, but diverges for α ≥ 2 almost surely. In the latter case we define the
modified process

Z∗
α(t) :=

∫ t

0

1

Rα(s)
1{R(s)≥1} ds.(1.2)

Considering the random walk counterpart, let {Sn}∞n=1 be a simple symmetric random
walk on the integer lattice Z2, i.e. Sn =

∑n
k=1 Xk, where the random variables Xi, i = 1, 2, ...

are i.i.d., with

P(X1 = (0, 1)) = P(X1 = (0,−1)) = P(X1 = (1, 0)) = P(X1 = (−1, 0)) =
1

4
.
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We also propose to study the discrete process

Uα(n) :=
n∑

k=1

1

‖Sk‖α
1{Sk 6=0}.(1.3)

Define
ξ(x, n) := #{k; 0 < k ≤ n, Sk = x},

for any lattice point x of Z2. This is the local time process of {Sn}∞n=1. Let furthermore
{ρn, n ≥ 0} denote the consecutive return times of the walk to zero, that is

ρ0 := 0, ρn := min{k > ρn−1, Sk = 0}.

Our first result concerns the case 0 < α < 2, for which we show that the processes Zα(·)
and Uα(·) are close to each other.

Theorem 1.1. Let 0 < α < 2. Then on a probability space one can define a two-dimensional
Wiener process W(·) with the additive functional Zα(·) as in (1.1) and a two-dimensional
simple symmetric random walk S· with the additive functional Uα(·) as in (1.3) such that, as
n →∞, for any ε > 0

|2−α/2Uα(n)− Zα(n)| =




O(n1−α+ε), a.s. if 0 < α ≤ 1,

O(log2+ε n), a.s. if 1 < α < 2.
(1.4)

We note that by self-similarity, Zα(t) is of order t1−α/2, so the rates in (1.4) are useful.
In the case when α > 2, the corresponding processes, Z∗

α and Uα are certainly not close to
each other. Instead, as in the one-dimensional case, we show separately, that both processes,
suitably centered, are close to certain iterated processes.

Theorem 1.2. Let α > 2. There exists a probability space where one can define

(i) a two-dimensional simple symmetric random walk {Sn}∞0 with its local time process
ξ(x, n), and with the corresponding additive functional process {Uα(n), n = 1, 2...} as
in (1.3);

(ii) a process {ξ(1)(0, n), n = 0, 1, 2, ...} D
= {ξ(0, n), n = 0, 1, 2, ...};

(iii) a standard Wiener process {W (t), t ≥ 0}, independent of {ξ(1)(0, n), n = 0, 1, 2, ...};
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such that, for some ε > 0, as n →∞,

Uα(n)− f̄D
α ξ(0, n) = σD

α W (ξ(1)(0, n)) +O(log1/2−ε n), a.s.,

where

f̄D
α :=

∑

x∈Z2−{0}

1

‖x‖α
, σD

α :=
√

Var(Uα(ρ1)) .

Moreover, the processes ξ(0, n) and ξ(1)(0, n) can be chosen such that for some δ > 0,

ξ(0, n) = ξ(1)(0, n) +O(log1−δ n), a.s.

We would like to prove a similar result for the corresponding problem of a two-dimensional
Wiener process. Formulating a claim in this case needs some careful consideration as points
are polar for the two-dimensional Wiener process, so that it has no local time. However its
norm R(t) does have a local time which could perfectly fit in our theorem. For technical
reasons we introduce a slightly different definition as our modified local time for R(t). This
idea is not new at all, similar but more general concepts were already discussed e.g. in
Burdzy et al. [BPY, 90]. Define two increasing sequences of stopping times {σn, n ≥ 0} and
{θn, n ≥ 1} by

σ0 := inf{t > 0; R(t) = 1},(1.5)

θn := inf{t > σn−1; R(t) = 2}, n ≥ 1,(1.6)

σn := inf{t > θn; R(t) = 1}, n ≥ 1,(1.7)

τi := σi − σi−1, i = 1, 2, ...(1.8)

Let furthermore
η(t) = max{n; σn − σ0 ≤ t}(1.9)

Theorem 1.3. Let α > 2. There exists a probability space where one can define

(i) a two-dimensional Wiener process {W(t), t ≥ 0} with its corresponding additive func-
tional process {Z∗

α(t), t ≥ 0} as in (1.2), and with {η(t), t > 0} as in (1.9);

(ii) a process {η(1)(t), t > 0} D
= {η(t), t > 0};

(iii) a standard Wiener process {W (t), t ≥ 0}, independent of {η(1)(t), t ≥ 0};
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such that for some ε > 0,

Z∗
α(t)− f̄W

α η(t) = σW
α W (η(1)(t)) +O(log1/2−ε t), a.s.,(1.10)

where

f̄W
α :=

2

(α− 2)2
,

(
σW

α

)2
:= E

(∫ ∞

1

1

xα
`(x, τ1) dx

)2

−
(
f̄W

α

)2
,

and `(x, t) is the local time at time t and position x of {R(t), t ≥ 0}. Furthermore, η and
η(1) can be chosen such that for some δ > 0,

η(t) = η(1)(t) +O(log1−δ t), a.s.(1.11)

The rest of the paper is organized as follows. Section 2 is devoted to a collection of
known results which will be used later on. Theorems 1.1 – 1.3 are proved in Sections 3–5
respectively. In Section 6 we present some further weak and strong convergence results, as
consequences of our theorems.

2. Preliminary results

In this section we list some results which will be used in the proofs of the theorems.
Let {Sn, n ≥ 0} be a simple symmetric random walk on the plane, with S0 = 0, and let

{ρn, n ≥ 0} denote, as before, the consecutive return times to zero.
For any real valued function f(·) on Z2 we define the additve functional

A(f, n) =
n∑

k=0

f(Sk).

We assume that for some δ > 0,

E




∣∣∣∣∣
ρ1∑

k=1

f(Sk)

∣∣∣∣∣
2+δ


 < ∞.(2.1)

It is easy to compute the expectation of
∑ρ1

k=1 f(Sk). Indeed, by Spitzer [S, 64], E(ξ(x, ρ1)) =
1 for any x ∈ Z2, and hence we have

E

( ρ1∑

k=1

f(Sk)

)
= E

∑

x∈Z2

ξ(x, ρ1)f(x) =
∑

x∈Z2

f(x) =: f̄ .

Now we recall a few known results that will be of use later on.
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Theorem A (Csáki and Földes [CsF, 99]). Let (Xi, τi)
∞
i=1 be a sequence of i.i.d. vectors,

such that τi ≥ 0 and

P(|Xi| > x) <
c

xβ
, P(τi > x) ≤ 1

h(x)
(2.2)

for x large enough, where β > 2, c > 0 and h(x) is slowly varying at infinity, increasing
with limx→∞ h(x) = +∞. Then on an appropriate probability space one can construct two

independent copies (X
(1)
i , τ

(1)
i )∞i=1 and (X

(2)
i , τ

(2)
i )∞i=1 together with (Xi, τi)

∞
i=1 such that

(Sn, ρn)∞n=1
D
= (S(j)

n , ρ(j)
n )∞n=1, j = 1, 2,

sup
k≤n

|Sk − S
(2)
k | = O(n1/β∗), a.s.,

sup
k≤n

|ρk − ρ
(1)
k | = O (h∗(nγ)) , a.s.,

as n → ∞, where S
(j)
k =

∑k
i=1 X

(j)
i , ρ

(j)
k =

∑k
i=1 τ

(j)
i , Sk =

∑k
i=1 Xi, ρk =

∑k
i=1 τi, γ < 1,

β∗ > 2, and h∗(·) is the inverse of h(·).

The next result is an application of Theorem A for simple symmetric random walk in Z2.

Theorem B (Csáki and Földes [CsF, 99]). For a simple symmetric random walk {Sn}∞0
in Z2 and any real valued function f(·) for which (2.1) holds, there exists a probability
space where we can redefine {Sn}∞0 together with its local time process ξ(0, n) and with the
corresponding additive functional A(f, n) in such a way, that on the same probability space
there exist

(i) a standard Wiener process {W (t), t ≥ 0},

(ii) and a process

{ξ(1)(0, n), n = 0, 1, 2, ...} D
= {ξ(0, n), n = 0, 1, 2, ...}

such that {W (t), t ≥ 0} and {ξ(1)(0, n), n = 0, 1, 2, ...} are independent and, as t → ∞, we
have

A(f, n)− f̄ ξ(0, n) = σW (ξ(1)(0, n)) +O(logκ n), a.s.,

and
|ξ(1)(0, n)− ξ(0, n)| = O(log1−δ n), a.s.,

where σ =
√

Var(
∑ρ1

k=1 f(Sk)), κ < 1/2, and δ > 0.
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Concerning the moments of the local time of ξ(x, ρ1) we quote the following result.

Theorem C (Révész [R, 90]). For any integer m ≥ 1,

|E (ξ(x, ρ1)− 1)m | ≤ q + m!p1−mq,

where
p := P(0 ; x) = P({Sn} hits x before returning to 0),

and q = 1− p.

The order of magnitude of p is well-known, namely we have

Theorem D (Spitzer [S, 64], pp. 117, 124, 125, and Révész, [R, 90] p. 219). As ‖x‖ goes
to infinity,

P(0 ; x) =
π + o(1)

4 log ‖x‖ .

The next theorem concerns the asymptotics of ξ(0, n).

Theorem E (Dvoretzky and Erdős [DE, 51], Erdős and Taylor [ET, 60]).

lim
n→∞P(ξ(0, n) < x log n) = 1− e−πx.

We also have

lim sup
n→∞

ξ(0, n)

log n log3 n
=

1

π
, a.s.

lim sup
n→∞

supx ξ(x, n)

(log n)2
≤ 1

π
, a.s.

Furthermore, as n goes to infinity,

P(ρ1 > n) = P(ξ(0, n) = 0) =
π

log n
+O((log n)−2).

.

Now we collect certain results for the two-dimensional Bessel process {R(t), t ≥ 0} (with
R(0) = 0). Let {σn, n ≥ 0} and {θn, n ≥ 1} be as in (1.3)–(1.5). It is a consequence of
the strong Markov property that {σi − σi−1}∞1 is an i.i.d. sequence of random variables, for
which we quote the following result.
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Theorem F (Csáki et al. [CsFRS, 98]). We have,

P(σ1 − σ0 > x) =
2 log 2

log x
+O(log−2 x),

as x →∞.

We also need the following iterated logarithm law.

Theorem G (Csáki et al. [CsFRS, 98]). Let {η(t), t > 0} be as in (1.9). Then

lim sup
t→∞

η(t)

log t log3 t
=

1

2 log 2
, a.s.(2.3)

Let us recall now the following theorem concerning the increments of n 7→ ξ(0, n).

Theorem H (Csáki, Földes and Révész [CsFR, 98]). Let an = exp((log n)K) and bn =
exp((log n)b) for some constants K > 0 and b > 0. Then for any ε > 0,

sup
a≤an

(ξ(0, a + bn)− ξ(0, a)) = O(logb+ε n), a.s.

Finally, we will need the following strong approximation theorem for the two-dimensional
random walk and a Wiener process;

Theorem J (Révész [R, 90]). On a rich enough probability space one can define a Wiener
process W(·) ∈ R2 and a simple symmetric random walk Sn ∈ Z2 such that

‖
√

2Sn −W(n)‖ = O(log n), a.s.

3. Proof of Theorem 1.1

We begin this section with a few lemmas and facts which will be needed in the proof.
Fact 1. For x ≥ 1, y ≥ 1

|xα − yα| ≤ α|x− y|(xα−1 + yα−1) if α > 1(3.1)
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and
|xα − yα| ≤ |x− y| if 0 < α ≤ 1.(3.2)

Fact 1 is a simple consequence of the mean value theorem.

Fact 2. For x ≥ 1, y ≥ 1, and α ≥ 0 we have

1

xyα
+

1

yxα
≤ 2

(
1

xα+1
+

1

yα+1

)
.(3.3)

Fact 2 can be checked by elementary computation.

Recall that {R(t), t ≥ 0} is a two-dimensional Bessel process and {`(x, t), x ≥ 0, t ≥ 0}
is its local time. First we give a rough estimate for Zα(t) for large t.

Lemma 3.1. For 0 < α < 2, and any ε > 0, as t →∞,

Zα(t) :=
∫ t

0

ds

Rα(s)
= O

(
t1−α/2+ε

)
, a.s.(3.4)

Proof: By the well-known scale change property of R(·)

R(ut)
D
=
√

tR(u)(3.5)

which implies by simple substitution that

Zα(t)
D
= t1−α/2

∫ 1

0

du

Rα(u)
.(3.6)

Observe furthermore that R2(u)/u is exponentially distributed, thus we have

E

(∫ 1

0

1

Rα(u)
du

)
= c1

∫ ∞

0

1

zα/2
e−z dz = c2,(3.7)

where c1 and c2 are finite constants. Hence by Markov’s inequality, we get for any A > 0
that

P
(
Zα(t) > t1−α/2 A

)
≤ c2

A
.(3.8)

For any given ε > 0, let tk = kβ such that βε > 1 should hold. From (3.8) we get that

P
(
Zα(tk+1) > t

1−α/2+ε
k

)
≤ 2c2

kβε
(3.9)
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for k large enough, as tk+1/tk → 1. Using Borel–Cantelli lemma and the monotonicity of
Zα(t) we obtain that

Zα(t) = O
(
t1−α/2+ε

)
, a.s.,(3.10)

completing the proof of Lemma 3.1. 2

Lemma 3.2. For any γ > 2, and any 0 ≤ α < 2, as t →∞,

Q(t) :=
∫ 1

0

`(x, t)

xα
dx = O(logγ t), a.s.(3.11)

Proof: Using the notations introduced in (1.5)–(1.8) we can decompose the local time `(x, t)
of R(t) as follows:

`(x, t) = `(x, σ0) +
η(t)∑

i=1

(`(x, σi)− `(x, σi−1)) + `(x, t)− `(x, ση(t))

≤ `(x, σ0) +
η(t)+1∑

i=1

(`(x, σi)− `(x, σi−1)).(3.12)

It follows from Borodin and Salminen ([BS, 96], Formula 2.3.1 on p. 297) that

E1

(
e−γ`(x,σ1−σ0)

)
=





1+2γx| log x|
1+2γx| log x/2| if 0 < x ≤ 1

1
(1+2γx| log x|)(1+2γx| log x/2|) if 1 ≤ x < 2

1+2γr| log r/2|
1+2γr| log r| if x ≥ 2,

(3.13)

where E1 denotes expectation under the condition R(0) = 1. Hence for 0 < x ≤ 1

E (`(x, σi)− `(x, σi−1)) = E1 (`(x, σi − σi−1)) = 2x log 2.(3.14)

Similarly using again the same formula of Borodin and Salminen [BS, 96], we obtain for
0 < x ≤ 1

E
(
e−γ`(x,σ0)

)
=

1

1 + 2γx| log x| .(3.15)

implying that
E (`(x, σ0)) = 2x log(1/x).(3.16)
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Based on (3.14), (3.16) and Theorem G, we get that for any δ > 0, as t →∞,

E(Q(t)) ≤
∫ 1

0

x log(1/x)

xα
dx + (log1+δ t)

∫ 1

0

x log 2

xα
dx = O(log1+δ t)(3.17)

for all 0 ≤ α < 2 and any δ > 0. Based on (3.17), we can finish the proof in the same way
as that of Lemma 3.1, using the monotonicity of Q(t) in t, the subsequence tk = ek and
Borel–Cantelli lemma. Namely, by (3.17) and Markov’s inequality we have

P (Q(tk+1) > (log tk)
γ) ≤ c3

(log tk+1)
1+δ

(log tk)γ
≤ c4

(k + 1)1+δ

kγ
,(3.18)

whose sum in k being convergent, whenever 2 + δ < γ. This can be achieved by selecting δ
small enough for any given γ > 2. 2

Lemma 3.1 and Lemma 3.2 imply

Lemma 3.3. For 0 ≤ α < 2, and any ε > 0

Z∗
α(t) :=

∫ t

0

1{R(s)≥1}
Rα(s)

ds = O
(
t1−α/2+ε

)
, a.s.(3.19)

Lemma 3.4. As n →∞, we have almost surely

U2α(n) :=
n∑

k=1

1{||Sk||6=0}
||Sk||2α

=





O (n1−α+ε) if α < 1
O(log3+ε n) if α = 1
O(log2 n) if α > 1.

(3.20)

Proof: Let
Mn = max

k≤n
||Sk||.(3.21)

Then clearly
Mn = O(n log log n)1/2.(3.22)

By Theorem E

n∑

k=1

1{||Sk||6=0}
||Sk||2α

=
∑

x∈Z2−{0}

ξ(x, n)

||x||2α
= O(log2 n)

∑

x∈Z2−{0},||x||≤Mn

1

||x||2α
.(3.23)

Due to the following equiconvergence relation

∑

x∈Z2−{0},||x||≤N

1

||x||2α
∼

∫ N

1
r1−2α dr(3.24)
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and the fact that
∫ N

1
r1−2α dr =





O (N2−2α) if α < 1
O(log N) if α = 1
O(1) if α > 1.

(3.25)

we have our statement combining (3.23)–(3.25). 2

Proof of Theorem 1.1: We start with the following decomposition:

∣∣∣2−α/2Uα(n)− Z∗
α(n)

∣∣∣ =

∣∣∣∣∣
n∑

k=1

∫ k

k−1

(
1{Sk 6=0}
||S∗k||α

− 1{R(s)≥1}
(R(s))α

)
ds

∣∣∣∣∣

≤
∣∣∣∣∣

n∑

k=1

∫ k

k−1

(R(s))α − ||S∗k||α
||S∗k||α(R(s))α

1{||Sk||6=0,R(s)≥1} ds

∣∣∣∣∣

+

∣∣∣∣∣
n∑

k=1

∫ k

k−1

1{||Sk||=0,R(s)≥1}
(R(s))α

ds

∣∣∣∣∣ +

∣∣∣∣∣
n∑

k=1

∫ k

k−1

1{||Sk||6=0,R(s)<1}
||S∗k||α

ds

∣∣∣∣∣
= I1 + I2 + I3,(3.26)

where S∗k =
√

2Sk.
First observe that

I2 ≤
n∑

k=1

1{||Sk||=0} = ξ(0, n) = O(log1+ε n), a.s.(3.27)

for any ε > 0, by Theorem E. Similarly we have that for any ε > 0

I3 ≤
∫ n

0
1{R(s)<1} ds =

∫ 1

0
`(x, n) dx = O(log2+ε n), a.s.(3.28)

by Lemma 3.2 (applied in the special case α = 0).
The estimation of I1 is more delicate and we have to consider two cases. First we consider

the case 0 < α ≤ 1. According to (5.2) we have

I1 ≤
n∑

k=1

∫ k

k−1

|(R(s))α − ||S∗k||α|
||S∗k||α(R(s))α

1{||Sk||6=0,R(s)≥1} ds

≤
n∑

k=1

∫ k

k−1

|R(s)− ||S∗k|| |
||S∗k||α(R(s))α

1{||Sk||6=0,R(s)≥1} ds

≤
n∑

k=1

∫ k

k−1

|R(s)− ||S∗k|| |
||S∗k||α(R(s))α

1{||Sk||6=0,R(s)≥1} ds

≤ O(log n)
n∑

k=1

∫ k

k−1

1{||Sk||6=0,R(s)≥1}
||S∗k||α(R(s))α

ds,(3.29)
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where in the last line we used Theorem J. Apply now (3.3) in the special case of α = 1 to
get from (3.29) that

I1 ≤ O(log n)
n∑

k=1

∫ k

k−1
1{||Sk||6=0,R(s)≥1}

(
1

||S∗k||2α
+

1

(R(s))2α

)
ds

≤ O(log n)

(
n∑

k=1

1{||Sk||6=0}
||S∗k||2α

+
∫ n

0

1{|R(s)≥1}
(R(s))2α

ds

)
.(3.30)

Apply now Lemmas 3.3 and 3.4 to get our statement for 0 < α ≤ 1.
Consider now the case 1 < α < 2. Then based on (3.1), using again Theorem J and (3.3),

we get that

I1 ≤
n∑

k=1

∫ k

k−1

|(R(s))α − ||S∗k||α|
||S∗k||α(R(s))α

1{||Sk||6=0,R(s)≥1} ds

≤
n∑

k=1

∫ k

k−1

2|R(s)− ||S∗k|| | ((R(s))α−1 + ||S∗k||α−1)

||S∗k||α(R(s))α
1{||Sk||6=0,R(s)≥1} ds

≤ O(log n)
n∑

k=1

∫ k

k−1

1

||S∗k||α(R(s))
1{||Sk||6=0,R(s)≥1} ds

+ O(log n)
n∑

k=1

∫ k

k−1

1

||S∗k||(R(s))α
1{||Sk||6=0,R(s)≥1} ds

≤ O(log n)
n∑

k=1

1

||S∗k||α+1
1{||Sk||6=0} +O(log n)

∫ n

0

1

(R(s))α+1
1{R(s)≥1} ds.(3.31)

Observe now that as α > 1, in the last line above both the sum and the integral are exactly
the ones which are discussed in Theorems 1.2 and 1.3, except a constant factor in the first
case (as α + 1 > 2). Hence we can apply those theorems to conclude that

n∑

k=1

1

||S∗k||α+1
1{||Sk||6=0} = O(log1+ε n),(3.32)

and similarly ∫ n

0

1

(R(s))α+1
1{R(s)≥1} ds = O(log1+ε n)(3.33)

for any ε > 0, proving our Theorem 1.1. 2
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4. Proof of Theorem 1.2

In view of Theorem B in Section 2, to prove Theorem 1.2, it suffices to show that, when
α > 2, the function x 7→ f(x) = 1{x6=0}/‖x‖α satisfies (2.1) with an appropriately chosen
δ > 0.

Write ‖Y ‖p := (E(|Y |p))1/p for any random variable Y and p ≥ 1. Fix an integer m ≥ 1.
It follows from Theorems C and D that for any x ∈ Z2 − {0},

‖ξ(x, ρ1)‖m ≤ 1 + ‖ξ(x, ρ1)− 1‖m

≤ 1 + Cmp(1−m)/m

≤ Cm (log ‖x‖+ 1)(m−1)/m

≤ Cm (log ‖x‖+ 1) ,(4.1)

where Cm denotes a (finite and positive) constant depending only on m, whose value varies
from line to line.

Let f(x) = 1{x6=0}/‖x‖α. To check (2.1), observe that

ρ1∑

k=1

f(Sk) =
∑

x∈Z2−{0}

ξ(x, ρ1)

‖x‖α
.

Hence for any integer m ≥ 1, by the triangle inequality and (4.1),

‖
ρ1∑

k=1

f(Sk)‖m ≤ ∑

x∈Z2−{0}

‖ξ(x, ρ1)‖m

‖x‖α
≤ Cm

∑

x∈Z2−{0}

1 + log ‖x‖
‖x‖α

,

which is finite whenever α > 2. Thus any moments of order m ≥ 1 of
∑ρ1

k=1 f(Sk) exist,
proving Theorem 1.2. 2

5. Proof of Theorem 1.3

The proof of this theorem is based on Theorem A. Denote by `(x, t) the local time (at time
t and position x) of the Bessel process {R(t), t ≥ 0}. Let {σn, n ≥ 0} and {θn, n ≥ 1} be as
in (1.5)–(1.7). Both {θi−σi−1}∞1 and {σi−θi}∞1 are i.i.d. sequences. The Laplace transform
of `(x, σ1)− `(x, σ0) is given by (3.13), from which we can obtain for x ≥ 1,

E(`(x, σ1)− `(x, σ0)) = 2x log x,(5.1)

E
(
(`(x, σ1)− `(x, σ0))

3
)
≤ Cx3(log x)2,(5.2)
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where C > 0 is a constant.
Define, for i ≥ 1,

τi := σi − σi−1,(5.3)

Xi :=
∫ σi

σi−1

1

Rα(s)
1{R(s)≥1} ds.(5.4)

We show that the sequence (Xi, τi)
∞
i=1 of i.i.d. vectors satisfies the conditions of Theorem A.

Indeed, by (5.2),

‖Xi‖3 =


E1

(∫ σ1

σ0

1

Rα(s)
1{R(s)≥1} ds

)3



1/3

=


E

(∫ ∞

1

`(x, τ1)

xα
dx

)3



1/3

≤
∫ ∞

1

‖`(x, τ1)‖3

xα
dx

≤ C
∫ ∞

1

(x3(log x)2)
1/3

xα
dx,

which is finite, whenever α > 2. Using Chebyshev’s inequality, this leads to

P (|Xi| > x) ≤ c

x3
,(5.5)

for some constant c > 0 and all x > 0. Thus, the first condition of (2.2) is satisfied by Xi

with β = 3. It is clear that the second condition in (2.2) is satisfied by τi with h(x) = C log x,
since by Theorem F, P(τi > x) ≤ C/ log x.

Consequently, the sequence of vectors (Xi, τi)
∞
i=1 defined in (5.3)–(5.4) satisfies the con-

ditions of Theorem A. Let

Si :=
∫ σi

σ0

1

Rα(s)
1{R(s)≥1} ds = Z∗

α(σi), i ≥ 1,

ρn := σn − σ0, n ≥ 0.

According to Theorem A, on an appropriate probability space one can construct two inde-

pendent copies, say
(
X

(1)
i , τ

(1)
i

)∞
i=1

and
(
X

(2)
i , τ

(2)
i

)∞
i=1

, of (Xi, τi)
∞
i=1, such that

(Sn, ρn)∞n=1
D
= (S(1)

n , ρ(j)
n )∞n=1, j = 1, 2,(5.6)

sup
k≤n

|Sk − S
(2)
k | = O

(
n1/β∗

)
, a.s.,(5.7)

sup
k≤n

|ρk − ρ
(1)
k | = O

(
ecnγ

)
, a.s.(5.8)
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where S
(j)
k =

∑k
i=1 X

(j)
i , ρ

(j)
k =

∑k
i=1 τ

(j)
i , γ < 1 and 2 < β∗ < 3,

Apply now the Komlós–Major–Tusnády theorem [KMT, 75] (see also Csörgő and Révész
[CsR, 81], p. 108, Theorem 2.6.6) to get that, there exists a Wiener process {W (t), t ≥ 0}
such that for any 2 < β∗ < 3, when N goes to infinity,

S
(2)
N −NE(X1)− σW

α W (N) = O(N1/β∗), a.s.,(5.9)

where σW
α =

√
Var(X1). Since W is constructed from {S(2)

n , n ≥ 1}, it can be chosen to be

independent of (X
(1)
i , τ

(1)
i )∞i=1.

By (5.1),

E(X1) = E
∫ ∞

1

`(x, σ1 − σ0)

xα
dx =

∫ ∞

1

2 log x

xα−1
dx =

2

(α− 2)2
=: f̄W

α .

It follows from (5.9) and (5.7) that

SN −Nf̄W
α − σW

α W (N) = O(N1/β∗), a.s.

Now let η(t) be as in (1.9). We get

Sη(t) − f̄W
α η(t)− σW

α W (η(t)) = O
(
(η(t))1/β∗

)
, a.s.,

which, in view of (2.3), yields that, for any small enough ε > 0,

Sη(t) − f̄W
α η(t)− σW

α W (η(t)) = O(log1/2−ε t), a.s.(5.10)

Now we want to get an almost sure upper bound for |Z∗
α(t)−Sη(t)|. Since η(t) < t ≤ η(t)+1,

we have
|Z∗

α(t)− Sη(t)| ≤ Xη(t)+1.

On the other hand, a routine Borel–Cantelli argument, using (5.5), yields that for a small
enough δ > 0, Xk = O(k1/2−δ) almost surely (when k goes to infinity). Therefore, by (2.3),
Xη(t)+1 = O(log1/2−δ∗ t), for any 0 < δ∗ < δ. Accordingly,

Z∗
α(t)− Sη(t) = O(log1/2−δ∗ t), a.s.

Going back to (5.10), we arrive at

Z∗
α(t)− f̄W

α η(t) = σW
α W (η(t)) +O(log1/2−γ∗ t), a.s.,(5.11)

with a small enough γ∗ > 0.
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What remains to show is that on the right hand side of (5.11) we can replace W (η(t))
by W (η(1)(t)), at the price of a possible small increase in the order of the error term in the
approximation. For this purpose we need two preliminary estimates. The first one (Lemma
5.1) is analogous to Theorem H. Its proof, which goes along the same lines as that of Theorem
H, is omitted.

Lemma 5.1. Let at = exp((log t)K) and bt = exp((log t)b), for K > 0 and b > 0. Then for
any ε > 0,

sup
a≤at

(η(a + bt)− η(a)) = O(logb+ε t), a.s.

Lemma 5.2. There exists ν < 1 such that, as t →∞,

|η(1)(t)− η(t)| = O(logν t), a.s.

Proof: Since η(t) = η(1)(ρ
(1)
η(t)), η(1)(t) = η(ρη(1)(t)), t ≥ ρη(t) and t ≥ ρ

(1)

η(1)(t)
, we have

η(1)(ρη(t))− η(1)(ρ
(1)
η(t)) ≤ η(1)(t)− η(t) ≤ η(ρη(1)(t))− η(ρ

(1)

η(1)(t)
).(5.12)

By (2.3), for any ε > 0 and all large t, η(t) < (log t)1+ε. It follows from (5.8) that for some
γ < 1 and all large t,

|ρη(t) − ρ
(1)
η(t)| ≤ sup

i≤(log t)1+ε

|ρi − ρ
(1)
i | ≤ exp

(
c (log t)(1+ε)γ

)
, a.s.

Now apply Lemma 5.1 to bt = exp(c (log t)(1+ε)γ) and at = t (noting that ρ
(1)

η(1)(t)
≤ t) to see

that
η(1)(ρη(t))− η(1)(ρ

(1)
η(t)) = O(log(1+2ε)γ t), a.s.

A similar argument shows that

η(ρη(1)(t))− η(ρ
(1)

η(1)(t)
) = O(log(1+2ε)γ t), a.s.

In view of (5.12), we have

η(1)(t)− η(t) = O(log(1+2ε)γ t), a.s.

Choosing ε > 0 so small that (1 + 2ε)γ < 1, gives the lemma. 2
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We now go back to the proof of Theorem 1.3. Note that Lemma 5.2 yields (1.11). To
check (1.10), we can control the the increments of W by using Theorem 1.2.1 of Csörgő and
Révész [CsR, 81]: for any ε > 0 and any ν > 0,

sup
0≤u,v≤(log t)1+ε, |u−v|≤(log t)ν

|W (u)−W (v)| = O
(
(log t)ν/2(log log t)1/2

)
, a.s.

Since η(t) = O(log1+ε t) (cf. Theorem G), it follows from Lemma 5.2 and (5.11) that for any
1 > ν∗ > ν,

Z∗
α(t)− f̄W

α η(t) = σW
α W (η(1)(t)) +O(logν∗/2 t) +O(log1/2−γ∗ t), a.s.

Take

κ := max
(

1

2
− γ∗,

ν∗

2

)
<

1

2
to get

Zα(t)− f̄W
α η(t) = σW

α W (η(1)(t)) +O(logκ t), a.s.,

as t →∞. Since W was chosen to be independent of (X
(1)
i , τ

(1)
i )∞i=1, it is a fortiori independent

of {η(1)(t), t > 0}. This completes the proof of Theorem 1.2. 2

6. Further results

Our theorems can be used to deduce weak and strong laws for the additive functionals studied
in this paper. Considering Zα(t), defined by (1.1), by scale change we have (cf. (3.6))

Zα(t)
D
= t1−α/2Zα(1).(6.1)

Hence, Theorem 1.1 implies for 0 < α < 2,

2−α/2nα/2−1Uα(n)
D→ Zα(1), n →∞,(6.2)

where
D→ denotes convergence in distribution. It follows also that the LIL for the process

Zα(·) is inherited by Uα(·). Now we study limsup and liminf properties of Zα. It is obvious
from (6.1) that first we have to study the upper and lower tail behaviour of Zα(1). A direct
approach however does not seem available, instead, we apply Corollary XI.1.12 of Revuz and
Yor [RY, 99] telling us that

Zα(1) :=
∫ 1

0

ds

Rα(s)
D
=

(
2

2− α

)α (∫ 1

0
Rβ(t) dt

)−(1−α/2)

,(6.3)
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where β = 2α/(2− α). For β ≥ 1 Azencott [A, 80] shows that there exists a finite constant
c(β) such that

log P
(∫ 1

0
Rβ(t) dt > u

)
∼ −c(β)u2/β, u →∞(6.4)

which combined with (6.3) yields

log P(Zα(1) < x) ∼ −c1(α)x−2/α, x → 0,(6.5)

where

c1(α) =
4c(β)

(2− α)2
.(6.6)

Now the usual argument gives the following liminf result for 2/3 ≤ α < 2:

lim inf
t→∞ t−(1−α/2)(log log t)α/2Zα(t) = K(α), a.s.,(6.7)

where
K(α) = (c1(α))α/2.(6.8)

Hence, by Theorem 1.1 we have also for 2/3 ≤ α < 2

lim inf
n→∞ n−(1−α/2)(log log n)α/22−α/2Uα(n) = K(α), a.s.(6.9)

Concerning the limsup results, we can use the following small deviation theorem of
Borovkov and Mogulskii [BM, 91]: for β ≥ 1

log P
(∫ 1

0
Rβ(t) dt < u

)
∼ −c̃(β)u−2/β, u → 0,(6.10)

where

c̃(β) =

(
β

2 + β

)−2/β (
cos

π

2 + β

)2/β

λ(β)(6.11)

and λ(β) is the smallest positive solution of the eigenvalue problem

1

2

(
∂2

∂u2
+

∂2

∂v2

)
ϕ(u, v)− (u2 + v2)β/2ϕ(u, v) = −λϕ(u, v).(6.12)

We note that in [BM, 91] the analogue result is proved for one-dimensional Wiener
process, but as they remark, their result holds also true for higher dimensional case.
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Based on (6.10), similarly to the liminf case, one can easily obtain

lim sup
t→∞

Zα(t)

t1−α/2(log log t)α/2
= K̃(α), a.s.(6.13)

with

K̃(α) = (c̃(β))−α/2 2α

(2− α)α
(6.14)

and consequently

lim sup
n→∞

2−α/2Uα(n)

n1−α/2(log log n)α/2
= K̃(α), a.s.(6.15)

Turning now to the case α > 2, we consider first some limiting distribution results. Let E
be a random variable with density function e−|x|/2, x ∈ R. Then E is a bilateral exponential
random variable and |E| has an exponential distribution, i.e. it has the density function e−x,
x ∈ [0,∞). By Theorem E,

πξ(0, n)

log n
D→ |E|, n →∞(6.16)

and similarly, from Theorem F one can see that

(2 log 2)η(t)

log t
D→ |E|, t →∞.(6.17)

Moreover, as easily seen,

√
2πW (ξ(1)(0, n))√

log n
D→ E, n →∞(6.18)

and
2
√

log 2W (η(1)(t))√
log t

D→ E, t →∞,(6.19)

where W (ξ(1)(0, ·)) and W (η(1)(·)), resp. are the processes of Theorems 1.2 and 1.3, resp.
Now our Theorems 1.2 and 1.3 imply the following weak convergence results:

πUα(n)

f̄D
α log n

D→ |E|, n →∞,(6.20)

Uα(n)− f̄D
α ξ(0, n)

σD
α

√
log n

√
2π

D→ E, n →∞,(6.21)
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(2 log 2)Z∗
α(t)

f̄W
α log t

D→ |E|, t →∞,(6.22)

Z∗
α(t)− f̄W

α η(t)

σW
α

√
log t

2
√

log 2
D→ E, t →∞.(6.23)

Concerning strong limit results, our Theorems 1.2 and 1.3 combined with Theorems E
and G yield

lim sup
n→∞

Uα(n)

log n log3 n
=

f̄D
α

π
, a.s.(6.24)

and

lim sup
t→∞

Z∗
α(t)

log t log3 t
=

f̄W
α

2 log 2
, a.s.(6.25)

Moreover, the following LIL is true (cf. [MR], [CsFR,98], [CsF,99])

lim sup
n→∞

W (ξ(1)(0, n))√
log n log3 n

=
1√
2π

, a.s.(6.26)

Similarly, one can see that

lim sup
t→∞

W (η(1)(t))√
log t log3 t

=
1

2
√

log 2
, a.s.(6.27)

Consequently, we have the following LIL’s:

lim sup
n→∞

Uα(n)− f̄D
α ξ(0, n)√

log n log3 n
=

σD
α√
2π

, a.s.(6.28)

and

lim sup
t→∞

Z∗
α(t)− f̄W

α η(t)√
log t log3 t

=
σW

α

2
√

log 2
, a.s.(6.29)
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[DE, 51] Dvoretzky, A. and Erdős, P. (1951). Some problems on random walk in space, Pro-
ceedings of the Second Berkeley Symposium on Mathematical Statistics and Proba-
bility, University of California Press, Berkeley, pp. 353–367.
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