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City University of New York, 2800 Victory Blvd., Staten Island, New York 10314, U.S.A.
E-mail address: afoldes@gc.cuny.edu

Pál Révész1
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1. Introduction and main results

Consider a simple symmetric random walk {Sn}∞n=1 starting at the origin 0 on the d-
dimensional integer lattice Zd, i.e. S0 = 0, Sn =

∑n
k=1 Xk, n = 1, 2, . . ., where Xk, k =

1, 2, . . . are i.i.d. random variables with distribution

P(X1 = ei) = P(X1 = −ei) =
1

2d
, i = 1, 2, ..., d

and {e1, e2, . . . , ed} is a system of orthogonal unit vectors in Zd. Define the local time of the
walk by

ξ(d)(x, n) := #{k : 0 < k ≤ n, Sk = x}.(1.1)

where x is any lattice point of Zd. The maximal local time of the walk is defined as

ξ(d)(n) := max
x∈Zd

ξ(d)(x, n).(1.2)

The properties of ξd(n) were extensively studied in the cases d = 1, d = 2 and d ≥ 3
separately. For d = 1 the interested reader should consult the monograph of P. Révész
[8]. In this paper we are interested in investigating the maximum local time for d ≥ 2 in a
restricted sense, namely we want to investigate the maximum on certain subsets of the state
space. It is easy to see that these maximums depend on both of the size and the shape of the
selected subset. We will only investigate two types of subsets: balls centered at the origin
and subspaces.

1.1 Two dimension.

In what follows we present the most important results on local time for d = 2 which are
relevant to our investigation.

Theorem A (Erdős and Taylor [6])

lim
n→∞

P(ξ(2)(0, n) < x log n) = 1 − e−πx.

Let f(x) resp. g(x) be a decreasing resp. increasing function for which f(x) log x ↑ ∞,

g(x)(log x)−1 ↓ 0. Then

π−1g(n) log n ≤ ξ(2)(0, n)

finitely often with probability one if and only if

∫ ∞

1

g(x)

x log x
e−g(x) dx < ∞,
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and

f(n) log n ≥ ξ(2)(0, n)

finitely often with probability one if and only if

∫ ∞

1

f(x)

x log x
dx < ∞.

Theorem B (Erdős and Taylor [6])

1

4π
≤ lim inf

n→∞

ξ(2)(n)

(log n)2
≤ lim sup

n→∞

ξ(2)(n)

(log n)2
≤ 1

π
a.s.

They also conjectured that the upper bound in the above theorem is the correct limit.
This was confirmed recently by Dembo et al. [4]. In fact they proved the following more
general result about aperiodic random walks. Recall that a random walk in Zd is aperiodic
(sometimes called adapted) if the steps are not supported on a proper subgroup of Zd. Note
that this definition is equivalent to that in Spitzer [9], p. 20, and in this sense the simple
symmetric random walk is aperiodic. In the sequel we use this definition of aperiodicity.

Theorem C ([4]) Let Sn =
∑n

k=1 Xk be an aperiodic random walk with i.i.d. increments

Xk ∈ Z2 that satisfy EX1 = 0 and E|X1|m < ∞ for all m < ∞. Denote by Γ = EXX′ the

covariance matrix of the increments, and write πΓ := 2π(detΓ)1/2. Define the local time and

maximum local time as in the simple walk case. Let M(n, α) denote the number of points in

the set {x : ξ(x, n) ≥ α(log n)2}. Then

lim
n→∞

ξ(2)(n)

(log n)2
= π−1

Γ a.s.

and for α ∈ (0, π−1
Γ ]

lim
n→∞

log M(n, α)

log n
= 1 − απΓ a.s.

Moreover any (random) sequence {xn} such that ξ(2)(xn, n)/ξ(2)(n) → 1, must satisfy

lim
n→∞

log |xn|
log n

=
1

2
a.s.

For the simple symmetric random walk πΓ = π.
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As the above results show, the local time of every fixed point is roughly around log n
but the maximal local time is around (log n)2. This phenomenon suggests that taking the
maximum local time on appropriate subsets, one might get orders in between log n and
(log n)2. The following result of Auer is in fact telling us that a set having maximal local
time much greater than log n needs to be quite big.

Theorem D (Auer [1]) For any ε > 0 we have

lim
n→∞

sup
||x||≤rn

∣∣∣∣∣
ξ(2)(x, n)

ξ(2)(0, n)
− 1

∣∣∣∣∣ = 0 a.s.,

where

rn = exp((log n)1/2(log log n)−1/2−ε)

and ||x|| stands for the usual Euclidean norm.

Now let A be a subset of Z2 and define

ξ
(2)
A (n) := max

x∈A
ξ(2)(x, n).(1.3)

Let moreover B(r) denote the set of lattice points in the disc of radius r centered at the
origin, i.e.

B(r) := {x ∈ Z2 : ||x|| ≤ r}.(1.4)

Then with rn as in Theorem D, for any subset A ⊆ B(rn), ξ
(2)
A (n)/ξ(2)(0, n) → 1 as

n → ∞. Hence for ξ
(2)
A (n) we have the same asymptotic results as for ξ(2)(0, n).

Denote by L = L(a1, a2) the lattice points x = (x1, x2) on the line a1x1 + a2x2 = 0,
where a1 and a2 are integers not both of them zero. Now we formulate our results for the
two-dimensional case. Our first theorem is telling us that for any line going through the
origin which contains lattice points at all, the maximal local time has the same order of
magnitude as for the whole plane.

Theorem 1.1. For any line L = L(a1, a2) such that a1, a2 are integers, not both of them

zero, we have

1

8π
≤ lim inf

n→∞

ξ
(2)
L (n)

(log n)2
≤ lim sup

n→∞

ξ
(2)
L (n)

(log n)2
≤ 1

2π
a.s.(1.5)

The next two theorems contain our results about discs centered at the origin.
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Theorem 1.2. Let rn = nα, 0 < α ≤ 1/2. Then

4α2

π
≤ lim inf

n→∞

ξ
(2)
B(rn)(n)

(log n)2
≤ lim sup

n→∞

ξ
(2)
B(rn)(n)

(log n)2
≤ 2α

π
a.s.(1.6)

Remark. The upper part of (1.6) is not new. It was proved by Dembo et al. [4] as a
byproduct of their proof of Theorem 5.1 (see page 17 in their paper).

Theorem 1.3. Let rn = exp((log n)β), where 1/2 ≤ β < 1. Then

4(1 − ε)

π
(log n)2β ≤ ξ

(2)
B(rn)(n) ≤ (log n)2β+ε a.s.(1.7)

for any ε > 0 and for all but finitely many n.

Corollary 1.1 If L and B(rn) are the sets in Theorems 1.1, 1.2 and 1.3 respectively, then

for rn = nα, 0 < α ≤ 1/2 we have

α2

2π
≤ lim inf

n→∞

ξ
(2)
B(rn)∩L(n)

(log n)2
≤ lim sup

n→∞

ξ
(2)
B(rn)∩L(n)

(log n)2
≤ 1

π
min

(
1

2
, 2α

)
a.s.(1.8)

and for rn = exp((log n)β) with 1/2 ≤ β < 1 we have

1 − ε

2π
(log n)2β ≤ ξ

(2)
B(rn)∩L(n) ≤ (log n)2β+ε a.s.(1.9)

for any ε > 0 and for all but finitely many n.

1.2 Three and higher dimension.

Just like in two dimension, for a subset A ⊆ Zd we define

ξ
(d)
A (n) := max

x∈A
ξ(d)(x, n).(1.10)

To formulate the most important known results on ξ(d)(n) of (1.2), we need some more
definition. Denote by γd(n) the probability that in the first n − 1 steps the path does not
return to the origin. Then

1 = γd(1) ≥ γd(2) ≥ ... ≥ γd(n) ≥ ... > 0.
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It was proved in Dvoretzky and Erdős [5] that, for d ≥ 3

γd(n) → γd > 0,(1.11)

and
γd < γd(n) < γd + O(n1−d/2)(1.12)

as n → ∞. So γd is the probability that the d-dimensional simple symmetric random walk
never returns to its starting point.

Let ξ(d)(0,∞) be the total local time at 0 of the infinite path in Zd. Then (see [6])
ξ(d)(0,∞) has geometric distribution:

P(ξ(d)(0,∞) = k) = γd(1 − γd)
k, k = 0, 1, 2, ...(1.13)

Erdős and Taylor [6] proved the following strong law for the maximal local time:

Theorem F ([6])For d ≥ 3

lim
n→∞

ξ(d)(n)

log n
= λd a.s.,(1.14)

where

λd = − 1

log(1 − γd)
.(1.15)

Remark. For the exact value of γ3 see e.g. Spitzer [9], p. 103 which implies that λ3 < 1
and hence λd < 1 for all d ≥ 3.

Let B(r) stand for the (discrete) ball centered at the origin in the d-dimensional space
and having radius r, i.e.

B(r) := {x ∈ Zd : ||x|| ≤ r}.(1.16)

Let furthermore x = (x1, x2, . . . , xd),

Sd−1 := {x ∈ Zd : a1x1 + a2x2 + ... + adxd = 0}

and

Sd−2 := {x ∈ Zd : a1x1 + a2x2 + ... + adxd = 0, b1x1 + b2x2 + ... + bdxd = 0}

with integer coefficients a1, a2, ...ad, b1, b2, ...bd.

For subspaces we will prove the following two results.
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Theorem 1.4. Let d ≥ 3. Suppose that a1, a2, ...ad are integers, not all of them zero, then

lim
n→∞

ξ
(d)
Sd−1

(n)

log n
=

λd

2
a.s.

The above theorem is telling us that the maximal local time in the d − 1 dimensional
subspace has the same order of magnitude as in the whole d-dimensional space. On the other
hand, the next theorem shows that in the d−2 dimensional subspace the maximal local time
gets drastically smaller. Note that in d − 3-dimensional subspace the maximal local time
remains finite with probability 1 as n → ∞.

Theorem 1.5. Let d ≥ 3. Suppose that a1, a2, ...ad are integers, not all of them zero and

b1, b2, ...bd are also integers not all of them zero. Assume also that the vectors (a1, a2, . . . , ad)
and (b1, b2, . . . , bd) are not parallel. Then

lim
n→∞

ξ
(d)
Sd−2

(n)

log log n
= λd a.s.

For balls centered at the origin we will prove the following result:

Theorem 1.6. Let d ≥ 3. For any sequence rn ↑ ∞, such that lim supn→∞(log rn)/(log n) ≤
1/2, we have

lim
n→∞

ξ
(d)
B(rn)(n)

log rn

= 2λd a.s.(1.17)

The organization of the paper is as follows. In Section 2 we will present some well-known
facts and prove some preliminary results. Sections 3 and 4 contain the proofs of the two
dimensional and higher dimensional results, respectively. In Section 5 some implications
of the above results and some open questions will be discussed. Throughout the paper
c, c1, . . . , C, C1, . . . will denote positive constants, the value of which is unimportant and
may vary from line to line.

2. Preliminary facts and results

First we present the d-dimensional law of the iterated logarithm and rate of escape for simple
walk.
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Fact 1. (Dvoretzky and Erdős [5] or [8], pp. 193, 195) For a simple symmetric random walk

in Zd

lim sup
n→∞

(2n log log n)−1/2d1/2||Sn|| = 1 a.s.(2.1)

Moreover, in case d ≥ 3, for any nonincreasing nonnegative sequence b(n) we have

n1/2b(n) ≥ d1/2||Sn|| a.s.(2.2)

for all but finitely many n, if and only if

∞∑

n=1

(b(2n))d−2 < ∞.(2.3)

Consider now the case d = 2. Introduce

p(x) : = P(min{n > 0 : Sn = 0} > min{n > 0 : Sn = x})
= P({Sn} reaches x before returning to 0).(2.4)

We will need the following two lemmas from Révész [8]:

Fact 2. ([8], p. 219) For a simple symmetric random walk in Z2 there exists a positive

constant C such that for any x ∈ Z2 with ||x|| ≥ 2

p(x) ≥ C

log ||x|| .(2.5)

Let us define

ρ0 := 0, ρn := min{k : k > ρn−1, Sk = 0}, n = 1, 2, . . .(2.6)

Fact 3. ([8], pp. 219-220.) For a simple symmetric random walk in Z2 let

Yi(x) := ξ(2)(x, ρi) − ξ(2)(x, ρi−1), i = 1, 2, . . .(2.7)

Then for fixed x ∈ Z2, {Yi(x)}∞i=1 are i.i.d. random variables with the following distribution:

P(Y1(x) = 0) = 1 − p(x)(2.8)

P(Y1(x) = k) = (1 − p(x))k−1p2(x), k = 1, 2, . . .(2.9)

Now we will prove our first
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Lemma 2.1. For a simple symmetric random walk in Z2 we have for arbitrary x ∈ Z2, and

any u > 2

P

(
n∑

k=1

Yk(x) > un

)
≤ enp(x)(1−u/2).(2.10)

Remark. Fact 3 and Lemma 2.1 are true for more general random walk, but we need them
only for simple symmetric case.

Proof: From (2.9) we easily get with q(x) = 1 − p(x) that for any z > 0, for which
q(x)ez < 1,

E
(
ezY1(x)

)
= q(x) +

p2(x)ez

1 − q(x)ez
.(2.11)

Putting z = log(2/(1 + q(x))), we have

q(x)ez =
2q(x)

1 + q(x)
< 1(2.12)

so (2.11) holds. Thus

E
(
ezY1(x)

)
= q(x) +

p2(x)ez

1 − q(x)ez
= 1 + p(x).(2.13)

By exponential Markov inequality, and (2.13) we have

P

(
n∑

k=1

Yk(x) > un

)
≤

(
EezY1(x)

)n

ezun
= (1 + p(x))n

(
1 − p(x)

2

)un

≤ exp (np(x)(1 − u/2)) ,(2.14)

where the inequality 1 + v ≤ ev was used. 2

For our next lemma we need further notations and facts. Our main source for these is
Spitzer’s book [9]. Here we consider a two-dimensional symmetric aperiodic recurrent walk
on Z2, more general than a simple symmetric random walk which will be denoted by {Sn}
as well. All what we are quoting however work in case of a one-dimensional walk under
the same constraints as well. We adopt the notations and definitions listed below from [9].
Denote the n-step probability transition function by

Pn(x,y) = Pn(y,x) = Pn(0, x − y) = P(Sn = x − y|S0 = 0), n = 0, 1, . . . , x,y ∈ Z2.
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For b ≥ 0 integer we define

Tb := min{j > 0 : Sb+j = 0}(2.15)

and will denote T0 =: T. Let (see [9], pp. 107, 160-161)

Qn(x,y) := Px(Sn = y, T > n), n = 0, 1, . . . , x,y ∈ Z2 − {0},(2.16)

and

g(x,y) :=
∞∑

n=0

Qn(x,y), x,y ∈ Z2 − {0}(2.17)

where Px(·) := P(·|S0 = x). Using P(·) := P0(·) we also recall from Spitzer [9] that

Px(T > n) =
∑

t 6=0

g(x, t)
∑

y 6=0

Qn(t,y)P1(y,0), n = 0, 1, . . . , x ∈ Z2 − {0}(2.18)

and introducing

vn(t) =
1

P(T > n + 1)

∑

y 6=0

Qn(t,y)P1(y,0), n = 0, 1, . . . , t ∈ Z2 − {0},(2.19)

we get for x 6= 0

Px(T > n) = P(T > n + 1)
∑

t 6=0

g(x, t)vn(t), n = 0, 1, . . .(2.20)

with
vn(t) ≥ 0,

∑

t 6=0

vn(t) = 1.(2.21)

We introduce further the notations (see [9], pp. 114, 139, 328)

Gn(x,y) =
n∑

k=0

Pk(x,y), n = 0, 1, . . . , x,y ∈ Z2,(2.22)

the truncated Green function

h(n) = Gn(0,0) =
n∑

k=0

Pk(0,0), n = 0, 1, . . .(2.23)

and the potential kernel

a(x) =
∞∑

n=0

(Pn(0,0) − Pn(0,x)), x ∈ Z2.(2.24)
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Then it is known (see Spitzer [9], p. 355) that

0 ≤ g(x,y) = a(x) + a(y) − a(x − y).(2.25)

We recall from Spitzer [9], p. 139

Fact 4. For any symmetric recurrent aperiodic random walk in two dimension

∑

y∈Z2

Pn+1(x,y)a(y) = a(x) + Gn(x,0), n = 0, 1, . . . , x ∈ Z2.(2.26)

Now we are ready to prove our

Lemma 2.2. For any symmetric, recurrent aperiodic walk in two dimension we have

P(Tb ≥ k) ≤ 2
h(b)

h(k − 1)
, b = 0, 1, . . . , k = 2, 3, . . .(2.27)

Proof: We start with the following simple observation: for k ≥ 1, b ≥ 0

P(Tb ≥ k) =
∑

x∈Z2

P(Tb ≥ k|Sb = x)P(Sb = x) =
∑

x∈Z2

Pb(0,x)Px(T ≥ k).(2.28)

Now (2.25) and the symmetry of the walk implies that

a(x + y) ≤ a(x) + a(y).(2.29)

Moreover, denoting x + y = z we easily get from (2.29) that

a(z) ≤ a(x) + a(z − x) = a(x) + a(x − z),(2.30)

thus
a(z) − a(x − z) ≤ a(x),(2.31)

which in turn, combined with (2.25) implies that

g(x,y) ≤ 2 a(x).(2.32)

Combining (2.20), (2.21) and (2.32) we conclude that for x 6= 0

Px(T > n) ≤ 2a(x)P(T > n + 1), n = 0, 1, . . .(2.33)
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Now using (2.28), (2.33), Fact 4 and the simple observation that a(0) = 0, we get that

P(Tb ≥ k) ≤ 2P(T ≥ k + 1)
∑

x∈Z2−{0}

Pb(0,x)a(x) + Pb(0,0)P(T ≥ k)

≤ 2P(T ≥ k)



∑

x∈Z2

Pb(0,x)a(x) + Pb(0,0)




≤ 2P(T ≥ k)(Gb−1(0,0) + Pb(0,0)) ≤ 2P(T ≥ k)h(b).(2.34)

To estimate P(T > k) we use an argument essentially from Erdős and Taylor [6]. Partitioning
according to the last return to zero we get

k∑

j=0

P(T > k − j)Pj(0,0) = 1(2.35)

implying that

P(T > k)
k∑

j=0

Pj(0,0) ≤ 1,(2.36)

hence
P(T > k) ≤ 1/h(k).(2.37)

Now (2.34) and (2.37) imply our lemma. 2

Fact 5. If the walk is recurrent and aperiodic with finite second moment, then we have as

n → ∞
h(n) ∼ c2 log n for d = 2,(2.38)

h(n) ∼ c1

√
n for d = 1.(2.39)

The case d = 2 is well-known for strongly aperiodic walk (see [9], p. 75 and [4] how to
weaken this condition for the aperiodic case). The case d = 1 is well-known (see e.g. [9], p.
381).

Let {Sn} be a symmetric recurrent aperiodic walk in two dimension. Consider the fol-
lowing problem. Let Tb be defined by (2.15). At b + Tb the walk is at 0. Now after another
b steps we wait again until the walk returns to 0. Keep repeating this procedure, we would
like to estimate the number of such returns within n steps. This problem was considered in
[2] in one dimension. Here we repeat essentially the same argument and spell it out in the
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d = 2 case with the appropriate modifications, using Lemma 2.2. To formulate this problem
precisely, let

ζ1(b) := b, αk(b) := Tζk(b), ζk+1(b) :=
k∑

i=1

αi(b) + (k + 1)b, k = 1, 2, . . .(2.40)

Then αk(b), k = 1, 2, . . . are i.i.d. random variables having the same distribution as Tb.

Lemma 2.3. For a symmetric recurrent aperiodic random walk in Z2 we have for b > 1,
u > 1, k ≥ 1

P

(
k∑

i=1

αi(b) ≥ u

)
≤ C k

log b

log u
.(2.41)

Proof: By Lemma 2.2 and Fact 5

P(Tb ≥ k) ≤ 2
h(b)

h(k − 1)
≤ C

log b

log(k − 1)
≤ C

log b

log k
.(2.42)

Let
uαk(b) =

{
αk(b) if αk(b) ≤ u
0 if αk(b) > u

(2.43)

First observe, that

E(uαi(b)) ≤
u∑

j=0

P(Tb ≥ j) ≤ 2 + C
u∑

j=2

log b

log j
≤ Cu

log b

log u
.(2.44)

Define the event

A =
k⋂

j=1

{αj(b) < u}.(2.45)

P

(
k∑

i=1

αi(b) ≥ u

)
≤ P

(
k∑

i=1

αi(b) ≥ u,A

)
+ P(Ā) ≤ P

(
k∑

i=1

uαi(b) ≥ u

)

+ kP(αi(b) ≥ u) ≤ kE(uαi(b))

u
+ kC

log b

log u
≤ Ck

log b

log u
.(2.46)

2

Let bt > 1 be an integer valued function of t and let νt be the largest integer N for which

N∑

i=1

αi(bt) + (N + 1)bt ≤ t.(2.47)
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Lemma 2.4. Under the conditions of Lemma 2.3 for f(t) > 0, (f(t) + 2)bt < t− 1 we have

P(νt ≤ f(t)) ≤ Cf(t)
log bt

log(t − (f(t) + 2)bt)
.(2.48)

Proof: By Lemma 2.3

P(νt ≤ f(t)) ≤ P(νt ≤ [f(t)] + 1) ≤ P




[f(t)]+1∑

i=1

αi(bt) > t − ([f(t)] + 2)bt)




≤ C(f(t) + 1)
log bt

log(t − (f(t) + 2)bt)
,(2.49)

implying our statement. 2

As mentioned above, the quantities defined in this section have analogues in one di-
mension. Also, there are corresponding one-dimensional analogues of results quoted for the
two-dimensional case. We recall the one-dimensional versions of Lemmas 2.3 and 2.4.

Fact 6. ([2]) Consider a symmetric aperiodic random walk {Sn} on Z1 with finite variance

and define αi(b) and νt exactly as before for {Sn}. Then for b > 1, u > 1, k ≥ 1

P

(
k∑

i=1

αi(b) ≥ u

)
≤ C k

√
b

u
.(2.50)

Furthermore, if f(t) > 0, bt > 0, (f(t) + 2)bt < t we have

P(νt ≤ f(t)) ≤ Cf(t)

√
bt√

t − (f(t) + 2)bt

.(2.51)

We will need the following upper tail estimates essentially from Erdős and Taylor [6].

Fact 7. ([6] or [4]) For the simple symmetric random walk on the plane we have for any

α > 0 and 0 < δ < 1, n ≥ 1

P(ξ(2)(0, n) ≥ α(log n)2) < n−(1−δ)πα.(2.52)

Fact 8. ([6], (3.6)) For the simple symmetric random walk on the plane we have for any

α > 0, δ > 0, n ≥ 1

P(ξ(2)(0, n) ≥ α(log n)2) > n−(1+δ)πα.(2.53)
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Fact 9. ([2]) Let {Sn} be a one-dimensional symmetric aperiodic random walk on Z1 with

σ2 = E(X2
1 ) < ∞ and suppose that xn → ∞, xn/n

1/2 → 0 as n → ∞. Let ξ(0, n) be its local

time at zero. Then for any ε > 0 and large enough n

C1 exp

(
−(1 + ε)

x2
nσ

2

2

)
≤ P(ξ(0, n) ≥ xn n1/2) ≤ C2 exp

(
−(1 − ε)

x2
nσ

2

2

)
.(2.54)

Fact 10. ([3], (2.1) and [7], Lemma 2.5.) For a symmetric aperiodic random walk with finite

variance in Z2 we have for any x > 0

P
(
ξ(2)(0, n) ≥ x log n

)
≤ exp(−cx)(2.55)

with some constant c > 0.

3. Proofs of the two dimensional results.

Now let {Sn} be a two-dimensional simple symmetric random walk as defined in the Intro-
duction with steps {Xi}.
Proof of Theorem 1.1. Consider the line L = L(a1, a2) with a1x1 + a2x2 = 0, where a1

and a2 are integers, not both of them zero. Without loss of generality we may assume that
a1 and a2 are relatively prime.

For the two-dimensional random walk define a one-dimensional walk with steps

Yi = aj if Xi = ej, i = 1, 2, ... j = 1, 2.

Yi = −aj if Xi = −ej, i = 1, 2, ... j = 1, 2.

Then Zn =
∑n

i=1 Yi is an aperiodic one-dimensional symmetric random walk with Zn = 0 if
and only if Sn ∈ L(a1, a2). Thus denoting by V L(n) = #{i : 1 ≤ i ≤ n, Si ∈ L(a1, a2)}, the
number of visits of Sn on L(a1, a2), we have

V L(n) = ξZ(0, n),(3.1)

where ξZ(·, n) is the local time of {Zn}.
To get the upper bound in our theorem, denote by D(n) the set of lattice points on L

which are visited up to n by {Si}, and denote by |D(n)| the number of points in D(n). Select
a subsequence nj = [ej], j = 1, 2, ... and let for any x ∈ Z2

Cj
x = {ξ(2)(x, nj+1) > λ(log nj)

2}.
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Then using (3.1), Facts 7 and 9 we conclude that for any λ > 0, δ > 0, ε > 0 and j large
enough

P(ξ
(2)
L (nj+1) > λ(log nj)

2)

≤ P




⋃

x∈D(nj+1)

Cj
x, |D(nj+1)| ≤

√
nj+1 log nj+1


+ P

(
|D(nj+1)| >

√
nj+1 log nj+1

)

≤ P




⋃

x∈D(nj+1)

Cj
x, |D(nj+1)| ≤

√
nj+1 log nj+1


+ P

(
ξZ(0, nj+1) >

√
nj+1 log nj+1

)

≤
√

nj+1 log nj+1 P(ξ(2)(0, nj+1) > λ(log nj)
2) + C2 exp

(
−(j + 1)

(1 − ε)σ2

2

)

≤
√

nj+1 log nj+1 exp

(
−λ(1 − δ)π

j2

j + 1

)
+ C2 exp

(
−j

(1 − ε)σ2

2

)

≤ exp
(
−(1 − δ)2π j λ + j(1/2 + ε)

)
+ C2 exp

(
−j

(1 − ε)σ2

2

)
,(3.2)

where we used in the second inequality above that |D(n)| ≤ V L(n). Here σ2 is the variance
of Yi and hence depends only on a1 and a2. It is easy to see that we can choose ε > 0, δ > 0
for which the last line of (3.2) is summable in j whenever λ > 1/(2π), which in turn, using
Borel-Cantelli lemma and the usual monotonicity argument implies

lim sup
n→∞

ξ
(2)
L (n)

(log n)2
≤ 1

2π
a.s.,(3.3)

so we have the upper half of the theorem.

To get the lower bound, we will essentially follow Erdős and Taylor’s argument with
some modification. We consider the walk {Si}, wait [nα] steps and observe ξ(2)(0, [nα]). The
number 0 < α < 1 will be chosen later. At time [nα] the walk is somewhere on the plane,
and we wait until its first return to L = L(a1, a2). When it returns to L, we observe the local
time of the hitting point of L for a time interval [nα], and then wait again for the walk to
return to L. We keep repeating this procedure for a total time of n steps. This construction
ensures that the local times of these hitting points over a time interval [nα] are i.i.d. random
variables having the same distribution as ξ(2)(0, [nα]). Combining this observation with our
Fact 6, would produce our lower bound in the theorem. In what follows we work out the
above outlined ideas with the added complexity of working with subsequences as before. Let
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nj = jβ, j = 1, 2, . . . with integer β to be chosen later. Now fix j ≥ 1 and define for
k = 1, 2, . . .

ηj
0 := 0, ηj

k := min{i > ηj
k−1 + [nα

j ] : Si ∈ L}, Y
j
k := Sηj

k
.(3.4)

Furthermore, let νj be the largest integer N for which

ηj
N + [nα

j ] ≤ nj.(3.5)

Put f(nj) = [n
(1−α)(1−κ)/2
j ] for any 0 < κ < 1. Since Si ∈ L if and only if Zi = 0, we can

apply Fact 6 to get

P (νj < f(nj)) ≤ Cn
(α−1)κ/2
j .(3.6)

Introduce further the events

Aj
k = {ξ(2)(Yj

k, η
j
k + [nα

j ]) − ξ(2)(Yj
k, η

j
k) < K(log nj+1)

2}.(3.7)

For fixed j the events Aj
k are independent in k and having the same probability as Aj

1. Using
the above notations and (3.6)

P
(
ξ

(2)
L (nj) < K(log nj+1)

2
)
≤ P

( νj⋂

k=1

Aj
k

)
≤ Cn

(α−1)κ/2
j +

(
P(Aj

1)
)f(nj)

.(3.8)

Now by Fact 8 we have

P(Aj
1) = P(ξ(2)(0, [nα

j ]) < K(log nj+1)
2)

≤ 1 − exp



−

Kπ

α
(1 + δ)(β log j)

(
log(j + 1)

log j

)2


 .(3.9)

Consequently, we have for j big enough

P
(
ξ

(2)
L (nj) < K(log nj+1)

2
)

≤ Cn
(α−1)κ/2
j +

(
1 − exp

{
−Kπ

α
(1 + δ)2(β log j)

})(nj)
(1−α)(1−κ)

2

≤ Cjβ(α−1)κ/2 +

(
1 − 1

j
Kπ
α

β(1+δ)2

)j
β(1−α)(1−κ)

2

≤ Cjβ(α−1)κ/2 + C exp{−j
β(1−α)(1−κ)

2
−Kπ

α
β(1+δ)2}.(3.10)
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For given 0 < α < 1 and κ > 0 select an integer β such that

β(α − 1)κ/2 < −1

so that the first term in (3.10) is summable in j. The second term will be summable in j
whenever

(1 − α)(1 − κ)

2
>

Kπ

α
(1 + δ)2.(3.11)

On choosing α = 1/2, δ > 0 and κ > 0 small, we conclude that (3.10) is summable in j if

K <
1

8π
.(3.12)

Using again Borel-Cantelli lemma and the usual monotonicity argument, we get

lim sup
n→∞

ξ
(2)
L (n)

(log n)2
≥ 1

8π
a.s.,(3.13)

proving our theorem. 2

Proof of Theorem 1.2. We will only prove the lower bound (see Remark after the theorem).
First observe that the condition α ≤ 1/2 is not a real restriction as by the LIL (Fact 1) with
probability 1 the walk in the time interval [0, n] remains in B(rn) for rn = nα, α > 1/2, n

large, thus ξ
(2)
B(rn)(n) = ξ(2)(n) eventually with probability 1.

In case α ≤ 1/2, using the LIL again, during the first [r2−ε
n ] steps the walk remains in

B(rn) with probability 1 for any ε > 0 and for all but finitely many n. Hence by Theorem
C for any ε > 0 with probability 1 eventually,

ξ
(2)
B(rn)(n) ≥ ξ(2)([r2−ε

n ]) ≥ 1

π

(
log r2−ε

n

)2
(1 − ε)

=
1

π

(
log nα(2−ε)

)2
(1 − ε) =

α2(2 − ε)2

π
(log n)2(1 − ε).(3.14)

Let ε → 0 to get

lim inf
n→∞

ξ
(2)
B(rn)(n)

(log n)2
≥ 4α2

π
a.s.(3.15)

Thus we have our theorem. 2

Remark. Observe that in case α = 1/2 the lim inf and lim sup coincide.
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Proof of Theorem 1.3. Let rn = exp{(log n)β}. To get the lower half of the theorem, by
the same argument as in the proof of Theorem 1.2, in the first [r2−ε

n ] steps the walk remains
in B(rn) with probability 1, thus by Theorem C we have with probability 1 eventually

ξ
(2)
B(rn)(n) ≥ ξ(2)([r2−ε

n ]) ≥ 1

π

(
log r2−ε

n

)2
(1 − ε)

=
1

π
(log n)2β(2 − ε)2(1 − ε)(3.16)

Sending now ε → 0 we get

lim inf
n→∞

ξ
(2)
B(rn)(n)

(log n)2β
≥ 4

π
a.s.(3.17)

To get the other half of the theorem, consider first a disc An := B(exp{nγ}) where
1/2 ≤ γ < 1. Recall the definition of ρn in (2.6). First we show that for arbitrary small
δ > 0

max
x∈An

ξ(2)(x, ρn) ≤ n2γ+δ a.s.(3.18)

for all but finitely many n.
Using the definition of Yn(x) in Fact 3 and Lemma 2.1 we have that for any u > 2

P(max
x∈An

ξ(2)(x, ρn) > un) ≤ P(max
x∈An

n∑

k=1

Yk(x) > un)

≤ C1 exp{2nγ} max
x∈An

P(
n∑

k=1

Yk(x) > un)

≤ C1 exp{2nγ} max
x∈An

exp{np(x)(1 − u/2)}

≤ C1 exp{2nγ} exp{C2n
1−γ(1 − u/2)},(3.19)

where in the last inequality we used that for all x ∈ An p(x) ≥ C2n
−γ by Fact 2. Selecting

now u = nθ we get from (3.19) that for n big enough

P(max
x∈An

ξ(2)(x, ρn) > n1+θ) ≤ C1 exp{2nγ} exp{−C3n
1+θ−γ}.(3.20)

The probabilities in (3.20) can be summed up for n if 1+θ−γ > γ. Thus for any 1/2 ≤ γ < 1
and for an arbitrary small δ > 0 we might select θ > 0 such that
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1 + θ = 2γ + δ(3.21)

to get by Borel-Cantelli lemma that (3.18) holds.
Applying now (3.18) with n = ξ(2)(0, k) we get that

max
x∈A

ξ(2)(0,k)

ξ(2)(x, k) ≤ max
x∈A

ξ(2)(0,k)+1

ξ(2)(x, ρξ(2)(0,k)+1)

≤
(
ξ(2)(0, k) + 1

)2γ+δ ≤ (log k)2γ+δ′ a.s.(3.22)

for any δ′ > δ and for all but finitely many k by Theorem A. On the other hand, (3.22) and
Theorem A imply that for any 0 < γ′ < γ

max
x∈B(exp{(log k)γ′

})
ξ(2)(x, k) ≤ max

x∈A
ξ(2)(0,k)

ξ(2)(x, k) ≤ (log k)2γ+δ′ a.s.(3.23)

for all but finitely many k, which is equivalent to our statement. 2

Proof of Corollary 1.1. Clearly the upper bound for ξ
(2)
B(rn)(n) or ξ

(2)
L (n) holds for ξ

(2)
B(rn)∩L

as well. On the other hand, to get the lower bounds, observe that with probability one, in
the first [r2−ε

n ] steps the walk remains in B(rn) eventually. Consequently

ξ
(2)
L (r2−ε

n ) = ξ
(2)
L∩B(rn)(r

2−ε
n ) ≤ ξ

(2)
L∩B(rn)(n)(3.24)

for all but finitely many n. But (3.24) and Theorem 1.1 imply our statements. 2

4. Proofs of the higher dimensional results.

Now let {Sn} be a d-dimensional (d ≥ 3) simple symmetric random walk as defined in the
Introduction with steps {Xi}.
Proof of Theorem 1.4. The proof of this theorem is very similar to the proof of Theorem
1.1. Consider the subspace

Sd−1 = {x ∈ Zd : a1x1 + a2x2 + ... + adxd = 0}
with integer coefficients a1, a2, ...ad, not all of them zero. Without loss of generality we may
assume that the largest common divisor of (a1, . . . , ad) is equal to 1.
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Define a one-dimensional random walk with the following steps:

Yi = aℓ if Xi = eℓ, ℓ = 1, 2, ...d, i = 1, 2, ...

Yi = −aℓ if Xi = −eℓ, ℓ = 1, 2, ...d, i = 1, 2, ...(4.1)

Note that these values are not necessarily distinct. In that case we sum up the probabilities
1/(2d) according to their multiplicity.

Zn =
∑n

i=1 Yi, n = 1, 2, . . . is an aperiodic one-dimensional symmetric random walk with
Zn = 0 if and only if Sn ∈ Sd−1. Thus denoting by V Sd−1(n) = #{i : 1 ≤ i ≤ n, Si ∈ Sd−1},
the number of visits of {Si} up to time n in Sd−1, we have

V Sd−1(n) = ξZ(0, n),(4.2)

where ξZ(0, n) is the local time at zero up to time n of the random walk {Zi}.
To get the upper bound in our theorem, denote by D(n) the set of lattice points on Sd−1

which are visited by {Si} up to time n and denote |D(n)| the number of points in D(n).
Select a subsequence nj = [ej], j = 1, 2, . . . and define the events for any x ∈ Zd

Cj
x = {ξ(d)(x, nj+1) > λ(log nj)}.

Then using the exact distribution (1.13), and Fact 9 we conclude, that

P(ξ
(d)
Sd−1

(nj+1) > λ log nj)

≤ P




⋃

x∈D(nj+1)

Cj
x, |D(nj+1)| ≤

√
nj+1 log nj+1


+ P

(
|D(nj+1)| >

√
nj+1 log nj+1

)

≤ P




⋃

x∈D(nj+1)

Cj
x, |D(nj+1)| ≤

√
nj+1 log nj+1


+ P

(
ξZ(0, nj+1) >

√
nj+1 log nj+1

)

≤
√

nj+1 log nj+1 P(ξ(d)(0, nj+1) > λ log nj) + C2 exp

(
−(j + 1)

(1 − ε)σ2

2

)

≤
√

nj+1 log nj+1 P(ξ(d)(0,∞) > λ log nj) + C2 exp

(
−(j + 1)

(1 − ε)σ2

2

)

≤
√

nj+1 log nj+1 exp

(
− λ

λd

j

)
+ C2 exp

(
−(j + 1)

(1 − ε)σ2

2

)

≤ C
√

j exp

(
j

(
1

2
− λ

λd

))
+ C2 exp

(
−(j + 1)

(1 − ε)σ2

2

)
(4.3)
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for j big enough, where we used in the second inequality above that |D(n)| ≤ V Sd−1(n). The
σ above depends only on a1, a2, ...ad. It is easy to see that the last line of (4.3) is summable in
j whenever λ > λd/2, which in turn, using Borel-Cantelli lemma and the usual monotonicity
argument implies

lim sup
n→∞

ξ
(2)
Sd−1

(n)

log n
≤ λd

2
a.s.,(4.4)

so we have the upper half of the theorem.
To get the lower bound, we will follow Erdős and Taylor’s argument again with the

appropriate modifications. We consider the walk {Sn}, wait [(log n)2] steps. After that
many steps we wait until the walk arrives back to Sd−1. Then wait again [(log n)2] steps,
and repeat this procedure over and over again. The probability that an arrival point to Sd−1

will be visited by the walk again in the next [log n] steps is by (1.12)

1 − γd + O

(
1

(log n)1/2

)

and the probability that it will be visited at least [λ log n] times (with some λ < 1) within
[(log n)2] steps is greater than

(
1 − γd + O

(
1

(log n)1/2

))[λ log n]

.(4.5)

These ideas will be combined with our Fact 6, and applied for subsequences, just like in the
proof of Theorem 1.1.

Let nj = jβ, j = 1, 2, . . . with some integer β. Define

ηj
0 := 0, ηj

k := min{i > ηj
k−1 + [(log nj)

2] : Si ∈ Sd−1}, Y
j
k := Sηj

k
.(4.6)

Furthermore, let νj be the largest integer N for which

ηj
N + [(log nj)

2] ≤ nj.(4.7)

Selecting for any 0 < δ < 1, f(nj) =
[(

nj

(log nj)2

)(1−δ)/2
]
, it is easy to see that from Fact

6 we get

P (νj < f(nj)) ≤ C

(
(log nj)

2

nj

)δ/2

.(4.8)
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Introduce further the events

Aj
k = {ξ(d)(Yj

k, η
j
k + [(log nj)

2]) − ξ(d)(Yj
k, η

j
k) < λ log nj+1}.(4.9)

For fixed j the events Aj
k are independent in k and having the same probability as Aj

1. Using
(4.8) we get that

P
(
ξ

(d)
Sd−1

(nj) < λ log nj+1

)
≤ P

( νj⋂

k=1

Aj
k

)

≤ C

(
(log nj)

2

nj

)δ/2

+
(
P(Aj

1)
)f(nj)

.(4.10)

Now by (4.5) we have

P(Aj
1) = P(ξ(d)(0, [(log nj)

2]) < λ(log nj+1))

< 1 −
(

1 − γd + O

(
1

(log nj)1/2

))λ log nj+1

= 1 − n
− λ

λd

(
1+O

(
1

(log nj)1/2

))

j+1 .(4.11)

Consequently,

P
(
ξ(d)(nj) < λ(log nj+1)

)

≤ C

(
β2(log j)2

jβ

)δ/2

+


1 − n

− λ
λd

(1+O( 1

(log nj)1/2
))

j+1




[(
nj

(log nj)2

) 1−δ
2

]

≤ j−
βδ
3 +

(
1 − (j + 1)

−β λ
λd

(1+O( 1

(log j)1/2
))
)j

β(1−2δ)
2

≤ j−
βδ
3 + exp

(
−1

2
j

β

(
1
2
−δ− λ

λd
+O( 1

(log j)1/2
)

))
(4.12)

for 0 < δ < 1/2 and j big enough. It is easy to see that in (4.12) selecting δ > 0 as small as
necessary the second term is summable in j if λ < λd/2. On the other hand, one can select
a β big enough (depending on δ) that the first term is summable in j. Borel-Cantelli lemma
and the usual monotonicity argument results in

lim inf
n→∞

ξ
(2)
Sd−1

(n)

log n
≥ λd

2
a.s.(4.13)
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which combined with (4.4) implies our theorem. 2

Proof of Theorem 1.5. Recall that

Sd−2 = {x ∈ Zd : a1x1 + a2x2 + ... + adxd = 0, b1x1 + b2x2 + ... + bdxd = 0}

with integers ai, bj. Without loss of generality, we may assume that the largest common
divisor of both (a1, . . . , ad) and (b1, . . . , bd) is equal to 1 and (a1, . . . , ad) 6= (b1, . . . , bd).

Define a two-dimensional random walk associated with our d-dimensional random walk
with steps

Ỹi = (ar, br) if Xi = er, r = 1, 2, . . . , d,

Ỹi = −(ar, br) if Xi = −er, r = 1, 2, . . . , d.

Note that, as in the previous theorem, these values are not necessarily distinct. In that case
we sum up the probabilities 1/(2d) according to their multiplicity.

Then
Z̃n = Ỹ1 + . . . + Ỹn, n = 1, 2, . . .

is a two-dimensional symmetric recurrent (possibly periodic) random walk in Z2 with finite
variance with the property Sn ∈ Sd−2 if and only if Z̃n = 0. Let

V Sd−2(n) = #{i : 1 ≤ i ≤ n, Si ∈ Sd−2}

and

ξZ̃(0, n) = #{i : 1 ≤ i ≤ n, Z̃i = 0},
the local time of {Z̃} at 0 up to time n.

Then we have V Sd−2(n) = ξZ̃(0, n).
Now we define an aperiodic random walk with the same property. If {Z̃n} is aperiodic,

then let Ẑn = Z̃n, n = 0, 1, . . . In the case when {Z̃n} happens to be periodic, then following
Spitzer [9], pp. 65-66 construct an aperiodic walk in Z2 as follows. The steps (ar, br), r =
1, . . . , d are supported on a proper subgroup G ⊂ Z2. Since under our assumptions ar 6= br

at least for one r, the subgroup is two-dimensional, i.e. there exists a basis of G consisting
of two vectors, say u, v. Let (αr, βr) be the coordinates of (ar, br) related to this basis, i.e.
(ar, br) = αru + βrv. Now define a new two-dimensional random walk with steps

Ŷi = (αr, βr) if Ỹi = (ar, br), r = 1, 2, . . . , d,

Ŷi = −(αr, βr) if Ỹi = −(ar, br), r = 1, 2, . . . , d.
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Then (cf. [9], p. 65)
Ẑn = Ŷ1 + . . . + Ŷn, n = 1, 2, . . .

is a symmetric recurrent aperiodic random walk in Z2. Obviously Z̃n = 0 if and only if

Ẑn = 0. Hence we have also V Sd−2(n) = ξẐ(0, n) with obvious notation for the local time of
{Ẑ}.

Now we prove the upper bound in Theorem 1.5, i.e.

lim sup
n→∞

ξ
(d)
Sd−2

(n)

log log n
≤ λd a.s.(4.14)

In the proof we follow the same lines as in the proof of Theorem 1.4. Choose λ > λd and
ε > 0 such that δ = λ/λd − 1 − ε > 0. Then using (1.13), Fact 5 and Fact 10 we can see as
in (4.3) that for n big enough,

P
(
ξ

(d)
Sd−2

(n) > u
)
≤ (log n)1+εP (ξ(d)(0, n) ≥ u) + P(V (d−2)(n) > (log n)1+ε)

≤ (log n)1+εP(ξ(d)(0,∞) > u) + P(ξẐ(0, n) > (log n)1+ε)

≤ (log n)1+ε exp
(
− u

λd

)
+ exp(−(log n)ε/2).

Hence choosing nj =
[
exp

(
j2/δ

)]
,

P(ξ
(d)
Sd−2

(nj+1) ≥ λ log log nj) ≤ C(log nj)
−δ =

C

j2
.

Borel-Cantelli lemma and the usual monotonicity argument yields (4.14), since ε can be
arbitrary small.

Now we prove the lower bound

lim inf
n→∞

ξ
(d)
Sd−2

log log n
≥ λd a.s.(4.15)

Here again we follow the proof of Theorem 1.4. Let λ < λd and nj = [exp(j2/(1−β))] with
some λ/λd < β < 1 and define

ηj
0 := 0, ηj

k := min{i > ηj
k−1 + [(log nj)

2] : Si ∈ Sd−2}, Y
j
k := Sηj

k
.(4.16)
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Furthermore, let νj be the largest integer N for which

ηj
N + [(log nj)

2] ≤ nj.(4.17)

Since {Ẑ} is a two-dimensional random walk for which Lemma 2.4 holds, choosing b =
[(log nj)

2], f(nj) = (log nj)
β there, we get

P(νj ≤ (log nj)
β) ≤ c log log nj

(log nj)1−β
.

Similarly to (4.5), the probability that a point will be visited at least λ log log nj+1 times
within [(log nj)

2] steps is greater than

(
1 − γd + O

(
1

(log nj)1/2

))[λ log log nj+1]

= (log nj+1)
−λ/λd(1 + o(1)).

Define the events

Aj
k = {ξ(d)(Sηj

k
, ηj

k + [(log nj)
2]) − ξ(d)(Sηj

k
, ηj

k) < λ log log nj+1},

then clearly Aj
k are independent in k for fixed j, and have the same probability, hence we

have for j big enough

P(Aj
k) ≤ 1 − 1 + o(1)

(log nj+1)λ/λd
.

Moreover,

P(ξ
(d)
Sd−2

(nj) < λ log log nj+1) ≤
(

1 − 1 + o(1)

(log nj+1)λ/λd

)(log nj)
β

+
c log log nj

(log nj)1−β

≤ exp
(
−(1/2)(log nj)

β−λ/λd

)
+

c log log nj

(log nj)1−β
.

This is summable in j, hence Borel–Cantelli lemma and monotonicity imply (4.15). This
together with (4.14) completes the proof of Theorem 1.5. 2

Proof of Theorem 1.6. First we prove the lower bound, i.e.

2λd ≤ lim inf
n→∞

ξ
(d)
B(rn)(n)

log rn

a.s.(4.18)
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For any δ > 0 and large enough n we have r2−δ
n ≤ n and by the law of the iterated

logarithm (2.1) we conclude that for any δ > 0, {Si, 1 ≤ i ≤ r2−δ
n ≤ n} are all in B(rn) for

large n with probability one, hence by Theorem F we have for any η,

ξ
(d)
B(rn)(n) ≥ ξ(d)(r2−δ

n ) ≥ (1 − η)λd log r2−δ
n = (1 − η)(2 − δ)λd log rn a.s.

for all but finitely many n. Since η and δ are arbitrary, (4.18) follows.
To show the upper bound

lim sup
n→∞

ξ
(d)
B(rn)(n)

log rn

≤ 2λd a.s.,(4.19)

note that by (2.2) and (2.3) for any ε > 0 and large n the random walk does not hit points
in the ball B(rn) after r2+ε

n steps with probability one. Hence by Theorem F

ξ
(d)
B(rn)(n) ≤ ξ(d)(r2+ε

n ) ≤ (2 + 2ε)λd log rn a.s.

for all but finitely many n. Since ε is arbitrary, (4.19) follows.
This completes the proof of Theorem 1.6. 2

5. Further consequences and questions.

5.1 A special one dimensional walk.

Consider a simple symmetric walk in Z2

S(2)
n =

n∑

k=1

Xk = (Sn,1, Sn,2) =

(
n∑

k=1

Xk,1,
n∑

k=1

Xk,2

)
.

Clearly the components Xk,1 and Xk,2 are dependent. However it is easy to check that the
pair

Yk,1 = Xk,1 + Xk,2, Yk,2 = Xk,1 − Xk,2

are independent, with common distribution

P(Yk,1 = ±1) = P(Yk,2 = ±1) =
1

2
.

Consequently,
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Vn =
n∑

k=1

Yk,1 = Sn,1 + Sn,2 and Zn =
n∑

k=1

Yk,2 = Sn,1 − Sn,2, n = 1, 2 . . .

are independent simple symmetric random walks.
Consider now the consecutive return times of {Zn} to zero, that is to say let

ρ0 := 0, ρk := min{i > ρk−1 : Zi = 0}, k = 1, 2, . . .

Now clearly our two-dimensional walk S(2)
n is on the line x1−x2 = 0 if and only if Zn = 0, that

is to say at the steps ρi, i = 1, 2, . . . Introducing the i.i.d. sequence Ui = Vρi
−Vρi−1

i = 1, 2...
we get a one-dimensional random walk

Rn = Vρn =
n∑

i=1

Ui, n = 1, 2, . . .

For this walk we have from Spitzer [9], p. 89 that

P(U1 = 0) = 1 − 2

π
,

P(U1 = 2k) =
2

π

1

4k2 − 1
, k = ±1,±2, . . .

Rn is in the domain of attraction of the Cauchy distribution, so we will refer to it as
Cauchy walk. Some properties of the Cauchy walk was investigated in Taylor [10]. Here we
want to point out that our results have some implications for the local time of the Cauchy
walk. As

Rn = 2k ⇔ S(2)
ρn

= (k, k),

we conclude that for the local time of Rn

η(2ℓ, n) := #{i : 1 ≤ i ≤ n,Ri = 2ℓ} = ξ(2)((ℓ, ℓ), ρn).(5.1)

Thus from (5.1) we get that

η(n) = max
y

η(y, n) = ξ
(2)
L (ρn)

where L = L(1,−1) is the line x1 − x2 = 0.
Taking into account the well-known fact that log ρn ∼ 2 log n (see e.g. [8], p. 115) a

simple application of our Theorem 1.1 implies that for the maximal local time of the Cauchy
walk we have

1

2π
≤ lim inf

n→∞

η(n)

(log n)2
≤ lim sup

n→∞

η(n)

(log n)2
≤ 2

π
a.s.
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5.2 Open questions.

1./ Our methods are not powerful enough to get exact constants in Theorems 1.1, 1.2. We
don’t have any conjecture whether in these theorems the lim inf and lim sup can be replaced
by limit and if so what would be the actual value of those limits. In Theorem 1.3 even the
exact order escapes us.

2./ In Theorems 1.1, 1.4 and 1.5 we have lines and subspaces going through the origin.
These results remain valid for lines and subspaces having a fixed distance from the origin.
However it would be interesting to investigate the maximal local time on lines and subspaces
having a distance from the origin d(n) → ∞.

3./ In our theorems we have balls centered at the origin. One might be interested in the
maximal local time in balls having a center with distance d(n) → ∞ from the origin.

4./ We discussed subspaces and balls in the theorems but other sets would be just as
interesting to be investigated. One possibility would be to investigate angular domains,
cones and wedges. E.g. in Theorem 1.4 if we take the wedge in between two planes, then
we have to have a transition from λd

2
to λd as the angle of the wedge increases from 0 → 2π.

Similarly we might ask that if in Theorem 1.5 we replace the line with a cone (centered at
the origin) what kind of transition happens as the cone gets wider, that is to say how does
the order change from log log n to log n as the angle of the cone changes from 0 → π (from
the line to Z3.) Similar questions can be asked in two dimension as well but those would be
more interesting if the exact constant were known in Theorem 1.1.

5./ One might ponder that how important is the actual shape of the subset on which the
maximum is taken. E.g. it would be interesting to have results on the maximal local time
on sets which are not specified in shape just their size are given and of course one has to
ensure that they are located close enough to the origin that visits should occur.

6./ All our theorems are about simple symmetric walk. We might ask how important is
this restriction. Theorem C is valid for a much wider class of random walks. So we might
ask whether our theorems remain valid for aperiodic random walks under certain moment
conditions. In Theorem C all the moments has to exist, maybe somewhat less precise results
can be ensured even if only the second moment exists. Is it possible to say anything without
second moment?
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[2] Csáki, E. and Földes, A.: How big are the increments of the local time of a recurrent
random walk? Z. Wahrsch. verw. Gebiete 65 (1983), 307–322.
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