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1. Introduction and main results
Consider a random walk {Sn}∞n=1 starting at the origin on the d-dimensional integer lattice
Zd, i.e. S0 = 0, Sn =

∑n
k=1 Xk, n = 1, 2, . . . , where Xk, k = 1, 2, . . . are i.i.d. random

variables with distribution
P(X1 = x) = p(x), x ∈ Zd. (1.1)
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The random walk is called simple symmetric if p(ei) = 1/(2d), i = 1, . . . , 2d, where
e1, . . . , ed is a system of orthogonal unit vectors in Zd and ei = −ei−d, i = d + 1, . . . , 2d.

Denote by Q the covariance matrix of X1, and let |Q| be its determinant and let Q−1 its
inverse. Let

‖x‖2 := xQ−1x. (1.2)

For simple symmetric random walk ‖x‖2 = |x|2 := x2
1 + · · ·+ x2

d, where x = (x1, . . . , xd).
Recall the following definitions and basic properties from Spitzer [9].
A random walk is aperiodic if for

R+ = {x ∈ Zd : P(Sn = x) > 0 for somen ≥ 0}
we have

{x : x = y − z, for some y ∈ R+, z ∈ R+} = Zd.

A random walk is strongly aperiodic if for each x ∈ Zd the smallest subgroup containing the
set

{y : y = x + z, where p(z) > 0}
is Zd. We assume throughout the paper that the random walk is aperiodic (but not necessarily
strongly aperiodic) and symmetric, i.e. p(x) = p(−x), x ∈ Zd.

For d ≥ 3 the random walk is transient, i.e.

γ := P(Si 6= 0, i = 1, 2, . . .) > 0. (1.3)

Define
γx := P(Si 6= x, i = 1, 2, . . .), x ∈ Zd. (1.4)

We shall impose the following moment conditions:
∑

x∈Zd

|x|2p(x) < ∞, d = 3, (1.5)

∑

x∈Zd

|x|2 log(|x|+ 1)p(x) < ∞, d = 4, (1.6)

∑

x∈Zd

|x|d−2p(x) < ∞, d ≥ 5, (1.7)

where |x| is the Euclidean distance.
The Green function is defined by

G(x) :=
∞∑

n=0

P(Sn = x), x ∈ Zd. (1.8)
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We have the identities

γ =
1

G(0)
, 1− γx =

G(x)

G(0)
, x 6= 0.

We need the following asymptotic property for the Green function in the case of aperiodic
random walk with mean 0, satisfying the moment conditions (1.5), (1.6), (1.7) for d ≥ 3.

G(x) ∼ cd|Q|−1/2‖x‖2−d, |x| → ∞ (1.9)

with some constant cd. See Spitzer [9], p. 308 for d = 3, p. 339, Problem 5 for d > 3, or
Uchiyama [10] for strongly aperiodic case and use Spitzer’s trick ([9], p. 310) to reduce the
aperiodic case to strongly aperiodic case. For simple random walk see Révész [8].

In this paper we are interested in studying local times of the random walk defined by the
number of visits as follows.

ξ(x, n) :=
n∑

k=1

I{Sk = x}, n = 1, 2, . . . , x ∈ Zd, (1.10)

where I{A} denotes the indicator of A.
Since the random walk is transient for d ≥ 3, typically there is only a finite number of

visits to a fixed site, even for infinite time. More precisely we have the distribution

P(ξ(0,∞) = k) = γ(1− γ)k, k = 0, 1, 2, . . . (1.11)

Cf. Erdős and Taylor [4] for simple random walk. The general case is similar.
There are however (random) points where the random walk accumulates a higher number

of visits. Consider the maximal local time

ξ(n) := max
x∈Zd

ξ(x, n), n = 1, 2, . . . (1.12)

and also
η(n) := max

0≤j≤n
ξ(Sj,∞), n = 1, 2, . . . (1.13)

Erdős and Taylor [4] proved for simple random walk and d ≥ 3

lim
n→∞

ξ(n)

log n
= λ := − 1

log(1− γ)
a.s. (1.14)
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Following the proof of Erdős and Taylor, without any new idea, one can prove that (1.14)
holds for general aperiodic random walk and also

lim
n→∞

η(n)

log n
= λ a.s. (1.15)

For general treatment of similar strong theorems for local and occupation times see [3].
(1.14) means that there are sites where the local time up to time n is around λ log n.

These will be called heavy points. We are interested in the problem what happens around
these heavy points. We may ask whether it is possible that in a close neighborhood of a
heavy point there is another heavy point? Or an empty point (not visited at all up to time
n)? We shall see that the answers for both questions happen to be negative.

In [2] we investigated the joint asymptotic behavior of local times of two neighboring
sites for simple random walk and found that the vector

(
ξ(x, n)

log n
,

ξ(x + e1, n)

log n

)

is essentially in the domain

{y ≥ 0, z ≥ 0 : −(y + z) log(y + z) + y log y + z log z − (y + z) log α ≤ 1},
where

α :=
1− γ

2− γ
.

One can see that the only point in this domain with y = λ is z = λ(1 − γ), which
tells us that if a point is heavy, i.e. its local time is around λ log n, then the local time
of any of its neighbors should be around λ(1 − γ) log n, i.e. cannot fluctuate too much, at
least asymptotically. We say that the local time around a heavy point is asymptotically
deterministic. Our concern is to investigate this phenomenon further and determine the
asymptotic value of local times of sites x with ‖x‖ ≤ rn, where rn may tend to infinity at a
certain rate.

Define

mx =

{
1 if x = 0,
(1−γx)2

1−γ
if x 6= 0.

(1.16)

mx is, in fact, the expectation of the local time at x between two consecutive returns to zero
(see Remark 2.1).

We shall consider the "balls" (which are, in fact, ellipsoids in Euclidean space)

B(r) = {x : ‖x‖ ≤ r} , (1.17)

where ‖x‖ is defined by (1.2).
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Theorem 1.1. Let d ≥ 5 and kn = (1 − δn)λ log n. Let rn > 0 and δn > 0 be selected such
that δn is non-increasing, rn is non-decreasing, and for any c > 0, let r[cn]/rn < C with some
C > 0 and for

βn := r2d−4
n

log log n

log n
(1.18)

lim
n→∞

βn = 0, lim
n→∞

δnr
2d−4
n = 0. (1.19)

Define the random set of points

An = {z ∈ Zd : ξ(z, n) ≥ kn}. (1.20)

Then we have for symmetric aperiodic random walk

lim
n→∞

sup
z∈An

sup
x∈B(rn)

∣∣∣∣
ξ(z + x, n)

mxλ log n
− 1

∣∣∣∣ = 0 a.s. (1.21)

Theorem 1.2. Let d ≥ 3 and kn = (1 − δn)λ log n. Let rn > 0 and δn > 0 be selected such
that δn is non-increasing, rn is non-decreasing, and for any c > 0, let r[cn]/rn < C for some
C > 0 and for

βn := r2d−4
n

log log n

log n
(1.22)

lim
n→∞

βn = 0, lim
n→∞

δnr
2d−4
n = 0. (1.23)

Define the random set of indices

Bn = {j ≤ n : ξ(Sj,∞) ≥ kn}. (1.24)

Then we have for symmetric aperiodic random walk

lim
n→∞

sup
j∈Bn

sup
x∈B(rn)

∣∣∣∣
ξ(Sj + x,∞)

mxλ log n
− 1

∣∣∣∣ = 0 a.s. (1.25)

Remark 1.1 For a given ω, An or Bn can be empty. In this case supz∈An
or supj∈Bn

is
automatically considered to be 0.

Corollary 1.1 Let A ⊂ Zd be a fixed set.
(i) If d ≥ 5 and zn ∈ An, then

lim
n→∞

∑
x∈A ξ(x + zn, n)

log n
= λ

∑
x∈A

mx a.s.
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(ii) If d ≥ 3 and jn ∈ Bn, then

lim
n→∞

∑
x∈A ξ(x + Sjn ,∞)

log n
= λ

∑
x∈A

mx a.s.

From our Theorems it is obvious that the critical case is around rn ∼ (log n)1/(2d−4).
It follows that for smaller rn the ball Sj + B(rn) is completely covered for j ∈ Bn with
probability 1. We have the following Corollary.

Corollary 1.2 For j ∈ Bn let R(n, j) denote the largest number such that Sj +B(R(n, j)) is
completely covered by the random walk S0, S1, S2, . . ., i.e. ξ(Sj + x,∞) > 0, x ∈ B(R(n, j)).
Then for any ε > 0 we have R(n, j) ≥ (log n)(1−ε)/(2d−4) almost surely.

We conjecture that for j ∈ Bn we have R(n, j) ≤ (log n)(1+ε)/(2d−4). Our next result is
one step in this direction, showing that in Theorems 1.2 the power 1/(2d−4) of log n cannot
be improved in general.

Theorem 1.3. For simple symmetric random walk let {xn} be a sequence such that |xn| ∼
c(log n)1/(2d−4) for some c > 0. Then with probability one there exist infinitely many n such
that

ξ(Sn,∞) ≥ λ

(
log n +

(
d− 4

d− 2
− ε

)
log log n

)
, ξ(Sn + xn,∞) = 0.

Consequently, n ∈ Bn and R(n, n) ≤ c(log n)1/(2d−4) infinitely often with probability one.

2. Preliminary facts and results
First we present some more notations. For x ∈ Zd let Tx be the first hitting time of the
point x, i.e. Tx = min{i ≥ 1 : Si = x} with the convention that Tx = ∞ if there is no i with
Si = x. Denote T0 = T .

Introduce further

qx := P(T < Tx), (2.1)
sx := P(Tx < T ). (2.2)

In words, qx is the probability that the random walk, starting from 0, returns to 0, before
hitting x (including T < Tx = ∞), and sx is the probability that the random walk, starting
from 0, hits x, before returning to 0 (including Tx < T = ∞).

Now we give the joint distribution of ξ(0,∞) and ξ(x,∞) in the following form.
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Lemma 2.1. For x 6= 0, v < log(1/(1− γ)), k = 0, 1, 2, . . .

E(evξ(x,∞); ξ(0,∞) = k) =

(
qx +

s2
xe

v

1− qxev

)k

(1− qx − sx)

(
1 +

sxe
v

1− qxev

)
(2.3)

= γ(1− γ)k (ϕ(v))k ψ(v), (2.4)

where

ϕ(v) :=
1− (1−γ)2−(1−γx)2

γ(1−γ)
(ev − 1)

1− 1−γ−(1−γx)2

γ
(ev − 1)

, (2.5)

ψ(v) :=
1− γx−γ

γ
(ev − 1)

1− 1−γ−(1−γx)2

γ
(ev − 1)

. (2.6)

Proof. Observe that

P

(
T∑

n=1

I{Sn = x} = j, T < ∞
)

=

{
qx if j = 0,
s2

xq
j−1
x if j = 1, 2, ...

(2.7)

and

P

(
T∑

n=1

I{Sn = x} = j, T = ∞
)

=

{
1− qx − sx if j = 0,
sx(1− qx − sx)q

j−1
x if j = 1, 2, ...

(2.8)

Obviously
ξ(x,∞) = Z1 + . . . + Zξ(0,∞) + Ẑ,

where Z1, . . . , Zξ(0,∞) are the local times of x between consecutive returns to 0 and Ẑ is the
local time of x after the last return to zero. Hence (2.3) follows from (2.7) and (2.8). (2.4)
can be obtained by using

qx = 1− γ

1− (1− γx)2
, (2.9)

sx = (1− γx)(1− qx). (2.10)

(Cf. [1] or [8] for simple random walk, the general case being similar).
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Remark 2.1 It is easy to see that our condition v < log(1/(1−γ)) implies qxe
v < 1, needed

to obtain (2.3). Furthermore

ϕ(v) = E
(
ev
PT

n=1 I{Sn=x} | T < ∞
)

,

ψ(v) = E
(
ev
PT

n=1 I{Sn=x} | T = ∞
)

and

mx = E

(
T∑

n=1

I{Sn = x} | T < ∞
)

.

Further properties of qx and sx for simple symmetric random walk is given in the next
Lemma.

Lemma 2.2. For simple symmetric random walk and x ∈ Zd

γx ≥ γ, (2.11)
1− γ

2− γ
≤ qx ≤ 1− γ, (2.12)

1− qx − sx ≥ γ

2− γ
, (2.13)

qx(n) := P(T < min(n, Tx)) = qx +
O(1)

nd/2−1
. (2.14)

Proof. For (2.11) see [1], Lemma 2.4 and for (2.14) see [1], Lemma 2.5. (2.12) and (2.13)
can be easily obtained from (2.9), (2.10) and (2.11).

The next result gives an estimation of ϕ and ψ, where the error term is uniform in x.

Lemma 2.3. For log(1− γ(1− γ)) < v < log(1 + γ(1− γ)) we have

ϕ(v) = exp(mx(v + O(v2))), v → 0, (2.15)

where O is uniform in x,

ψ(v) ≤ 1 + |ev − 1|
1− |ev − 1|/γ . (2.16)
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Proof. Write
ϕ(v) =

1− u

1− y

with
u =

(1− γ)2 − (1− γx)
2

γ(1− γ)
(ev − 1), y =

1− γ − (1− γx)
2

γ
(ev − 1).

Then it is easy to see that
y − u = mx(e

v − 1),

and
|u| ≤ |ev − 1|

γ(1− γ)
, |y| ≤ |ev − 1|

γ(1− γ)
.

By Taylor series

log
1− u

1− y
= log(1− u)− log(1− y) = y − u +

y2 − u2

2
+

y3 − u3

3
+ . . .

= (y − u)

(
1 +

y + u

2
+

y2 + uy + u2

3
+ . . .

)
.

Since ev − 1 = v + O(v2), we have

∣∣∣∣log
1− u

1− y
−mx(e

v − 1)

∣∣∣∣ ≤ mx|ev − 1|
(
|ev − 1|
γ(1− γ)

+

( |ev − 1|
γ(1− γ)

)2

+ . . .

)
= mxO(v2),

where O is independent of x. Hence (2.15) follows. (2.16) is obvious.

3. Proof of Theorem 1.2
Observe that kn ∼ λ log n. Let n` = [e`], and define the events

Aj =

{
ξ(Sj,∞) ≥ kn`

, sup
x∈B(rn`+1

)

(
ξ(Sj + x,∞)

mxkn`

− 1

)
≥ ε

}

P

(
n`+1⋃
j=0

Aj

)
≤

n`+1∑
j=0

P(Aj) ≤
n`+1∑
j=0

∑

x∈B(rn`+1
)

P(A
(x)
j ),
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where
A

(x)
j = {ξ(Sj,∞) ≥ kn`

, ξ(Sj + x,∞) ≥ (1 + ε)mxkn`
} .

Consider the random walk obtained by reversing the original walk at Sj, i.e. let S ′i :=
Sj−i − Sj, i = 0, 1, . . . , j and extend it to infinite time, and also the forward random walk
S ′′i := Sj+i − Sj, i = 0, 1, 2, . . . Then {S ′0, S ′1, . . .} and {S ′′0 , S ′′1 , . . .} are independent random
walks and so are their respective local times ξ′ and ξ”. Moreover,

ξ(Sj,∞) = ξ”(0,∞) + ξ(Sj, j) ≤ ξ”(0,∞) + ξ′(0,∞) + 1,

ξ(Sj + x,∞) = ξ”(x,∞) + ξ(Sj + x, j) ≤ ξ”(x,∞) + ξ′(x,∞).

Here ξ′ and ξ” are independent and have the same distribution as ξ.
Hence

P(A
(x)
j ) ≤ P(ξ”(0,∞) + ξ′(0,∞) ≥ kn`

− 1, ξ”(x,∞) + ξ′(x,∞) ≥ (1 + ε)mxkn`
)

=
∑

P(ξ”(0,∞) = k1, ξ
′(0,∞) = k2, ξ”(x,∞) + ξ′(x,∞) ≥ (1 + ε)mxkn`

),

where the summation goes for k1 + k2 ≥ kn`
− 1. Using exponential Markov inequality,

Lemma 2.1, independence of ξ” and ξ′ and elementary calculus, we get

P(A
(x)
j ) ≤

∑
E

(
ev(ξ”(x,∞)+ξ′(x,∞)), ξ”(0,∞) = k1, ξ

′(0,∞) = k2

)
e−v(1+ε)mxkn`

=
∑

(ϕ(v))k1+k2γ2(1− γ)k1+k2ψ2(v)e−v(1+ε)mxkn`

= γ2ψ2(v)e−v(1+ε)mxkn`

∑
(ϕ(v)(1− γ))k1+k2

= γ2ψ2(v)e−v(1+ε)mxkn` (ϕ(v)(1− γ))kn`

×
(

kn`

ϕ(v)(1− γ)(1− ϕ(v)(1− γ))
+

1

(1− ϕ(v)(1− γ))2

)
.

By (2.15) we obtain for all j

P(A
(x)
j ) ≤ γ2ψ2(v)

(
kn`

ϕ(v)(1− γ)(1− ϕ(v)(1− γ))
+

1

(1− ϕ(v)(1− γ))2

)

× e−mxvkn`
(ε+O(v))(1− γ)kn` .

Choose v0 > 0 small enough such that

ε + O(v0) > 0, ev0 < 1 + γ(1− γ), ϕ(v0) <
1

1− γ
.
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Using x ∈ B(rn`+1
) and (1.9) we get

mxkn`
=

(1− γx)
2

1− γ
(λ log n`(1− δn`

)) ≥ C1(1− δn`
) log n`

‖x‖2d−4
≥ C1(1− δn`

) log n`

r2d−4
n`+1

,

where here and in the sequel C1, C2, . . . will denote positive constants whose values are
unimportant in our proofs.

By the above assumptions

P(A
(x)
j ) ≤ C2kn`

e−mxv0kn`
(ε+O(v0))(1− γ)kn`

≤ C2kn`
exp

(
−(1− δn`

) log n`

(
C3

r2d−4
n`+1

+ 1

))
.

Hence
n`+1∑
j=0

∑

x∈B(rn`+1
)

P(A
(x)
j ) ≤ C4n`+1r

d
n`+1

kn`
exp

(
−(1− δn`

) log n`

(
C3

r2d−4
n`+1

+ 1

))

≤ C4
n`+1

n`

kn`
rd
n`+1

exp

(
−C3 log n`

r2d−4
n`+1

+ δn`
log n`

)

= C4
n`+1

n`

kn`
rd
n`+1

exp

(
− log n`

r2d−4
n`

(
C3

(
rn`

rn`+1

)2d−4

− δn`
r2d−4
n`

))

≤ C4
n`+1

n`

kn`
rd
n`+1

exp

(
−C5

log n`

r2d−4
n`

)
≤ C6(log n`)

3− C7
βn` ,

where in the last two lines we used the conditions of the Theorem for rn and δn. Consequently

P(

n`+1⋃
j=0

Aj) ≤
n`+1∑
j=0

∑

x∈B(rn`+1
)

P(A
(x)
j ) ≤ C6`

3− C7
βn` ≤ C6

`2

for large enough ` which is summable in `. By Borel-Cantelli lemma for large ` if ξ(Sj,∞) ≥
kn`

, then ξ(Sj + x,∞) ≤ (1 + ε)mxkn`
for all x ∈ B(rn`+1

).
Let now n` ≤ n < n`+1 and x ∈ B(rn`+1

). ξ(Sj,∞) ≥ kn, j ≤ n implies ξ(Sj,∞) ≥ kn`
,

i.e.
ξ(Sj + x,∞) ≤ (1 + ε)mxkn`

≤ (1 + ε)mxkn. (3.1)
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The lower bound is similar, with slight modifications. We call Sj new if Si 6= Sj, i =
1, 2, . . . , j − 1. Define the events

Dj =

{
ξ(Sj,∞) ≥ kn`

, sup
x∈B(rn`+1

)

(
1− ξ(Sj + x,∞)

mxkn`+1

)
≥ ε

}
,

D
(x)
j = {Sj new, ξ(Sj,∞) ≥ kn`

, ξ(Sj + x,∞) ≤ (1− ε)mxkn`+1
}.

Observe that ⋃

{j:0≤j≤n`+1}
Dj =

⋃

{j:0≤j≤n`+1, Sj new}
Dj.

Considering again the forward random walk, we have

ξ(Sj,∞) = ξ”(0,∞) + 1, ξ(Sj + x,∞) ≥ ξ”(x,∞).

Hence by Markov’s inequality

P(D
(x)
j ) ≤

∞∑

k=kn`
−1

P(ξ”(0,∞) = k, ξ”(x,∞) ≤ (1− ε)mxkn`+1
)

≤
∞∑

k=kn`
−1

(ϕ(−v)(1− γ))kψ(−v) exp(v(1− ε)mxkn`+1
)

≤ ψ(−v)

(1− γ)ϕ(−v)(1− (1− γ)ϕ(−v))
((1− γ)ϕ(−v))kn`ev(1−ε)mxkn`+1 .

Proceeding as above we finally conclude after somewhat simpler calculations than the
previous one, that for large enough n, ξ(Sj,∞) ≥ kn implies ξ(Sj + x,∞) ≥ (1− ε)mxkn.

This, combined with (3.1) completes the proof of Theorem 1.2.

4. Proof of Theorem 1.1
Lemma 4.1. Let d ≥ 5, 2

d−2
< α < 1, j ≤ n−nα, |x| ≤ log n. Then with probability 1 there

exists an n0(ω) such that for n ≥ n0 we have

ξ(Sj + x, n) = ξ(Sj + x,∞).
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Proof. The proof is essentially the same as that of Theorem 1 (iii) in Erdős and Taylor [5].
Let

nk+1 = nk +

[
1

2
nα

k

]
.

Ak =
⋃

j≤nk

⋃

`≥nk+[ 1
2
nα

k−1]

⋃

x∈B(log(2nk+1))

{S` − Sj = x}.

For aperiodic random walk we have (cf. Jain and Pruitt [6])

P(Sn = x) ≤ C8n
−d/2 (4.1)

for all x ∈ Zd and n ≥ 1 with some constant C8.
Using the fact that B(log(2nk+1)) contains less than C9(log nk+1)

d points,

P(Ak) ≤ C9(log nk+1)
d

nk∑
j=0

∞∑

`=nk+[ 1
2
nα

k−1]

C8

(`− j)d/2

≤
nk∑
j=0

C10(log nk+1)
d

(nk + [1
2
nα

k−1]− j)d/2−1
≤ C10(log nk+1)

d

n
α(d/2−2)
k−1

≤ C11(log nk−1)
d

n
α(d−4)/2
k−1

. (4.2)

We will show now that
∑

k P(Ak) converges.

∞∑
n=1

(log n)d

nα(d−2)/2
≥

∑

k

nk+1∑
n=nk+1

(log n)d

nα(d−2)/2
≥ C12

∑

k

nk+1 − nk

n
α(d−2)/2
k+1

(log nk+1)
d

≥ C12

∑

k

1
2
nα

k

n
α(d−2)/2
k+1

(log nk+1)
d = C13

∑

k

(log nk+1)
d

n
α(d−4)/2
k+1

(
nk

nk+1

)α

. (4.3)

Observe that (
nk

nk+1

)α

=

(
nk

nk + [1
2
nα

k ]

)α

→ 1, k →∞.

Since ∞∑
n=1

(log n)d

nα(d−2)/2

converges, (4.2) and (4.3) imply the convergence of
∑

k P(Ak). By Borel-Cantelli lemma,
if k is big enough, the tube of radius log(2nk+1) around the path {Sj, j = 1, 2, . . . , nk} is
disjoint from the path {S`, ` = nk + [1

2
nα

k−1], . . .}.
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To finish the proof, let
nk−1 < n− nα ≤ nk.

Then
nk−1 + 2

[
nα

k−1

2

]
< nk−1 + nα < n,

hence
nk +

[
nα

k−1

2

]
< n.

Furthermore for n large enough

n

2
≤ n− nα ≤ nk

hence
log n ≤ log(2nk) ≤ log(2nk+1)

Thus with probability 1 for large n the tube of radius log n around the path {Sj, j =
1, 2, . . . , n− [nα]} is disjoint from the path {S`, ` = n, . . .}, i.e. Lemma 4.1 follows.

To prove Theorem 1.1 observe that it suffices to consider points visited before time n−nα,
(2/(d−2) < α < 1), since in the time interval (n−nα, n) the maximal local time is less than
α(1 + ε)λ log n, hence this point cannot be in An. Consequently, Theorem 1.1 follows from
Theorem 1.2 and Lemma 4.1.

5. Proof of Theorem 1.3
First we prove

Lemma 5.1. Let Ai, Bi be events such that
∑

i P(Ai) = ∞,

P(AiAk) ≤ c1P(Ai)P(Ak),

and
P(AiBi) ≥ c2P(Ai)

with some constants c1, c2 > 0. Then

P(AiBi i.o.) > 0.

14



Proof. ∑
i

P(AiBi) ≥ c2

∑
i

P(Ai) = ∞.

On the other hand,

P(AiBiAkBk) ≤ P(AiAk) ≤ c1

c2
2

P(AiBi)P(AkBk),

the Lemma follows by Borel-Cantelli lemma in Spitzer [9], pp. 317.

To prove the Theorem, define the stopping times Vj as in Révész [7]. Let

ρ0(t) = t,

ρ1(t) = min{τ : τ > t, S(τ) = S(t)},
ρ2(t) = min{τ : τ > ρ1(t), S(τ) = S(ρ1(t)) = S(t)},
. . . ,

where here and the sequel we denote S(k) = Sk.

U(L, t) =





t + L if ρ1(t)− t > L,
ρ1(t) + L if ρ1(t)− t ≤ L, ρ2(t)− ρ1(t) > L,
ρ2(t) + L if ρ1(t)− t ≤ L, ρ2(t)− ρ1(t) ≤ L, ρ3(t)− ρ2(t) > L,
. . . ,

Lk = (log(k + 2))α, (α >
2

d− 2
, k = 0, 1, 2, . . .)

V0 = 0, Vj+1 = U(Lj, Vj), (j = 0, 1, 2, . . .)

Vj+1 is the first time-point after Vj when the random walk has not visited S(Vj) during a
time-interval of length Lj.

Let {xn} be a sequence of points in Zd as in Theorem 1.3 and define the events

Aj = {ξ(S(Vj), Vj+1)−ξ(S(Vj), Vj) = ψj, ξ(S(Vj)+xVj
, Vj+1)−ξ(S(Vj)+xVj

, Vj) = 0}, (5.1)

Bj = {ξ(S(Vj) + xVj
, Vj) = ξ(S(Vj) + xVj

,∞)− ξ(S(Vj) + xVj
, Vj+1) = 0}, (5.2)

where ψj = [λ(log j + log log j)].

Lemma 5.2. The events Aj, j = 1, 2, . . . are independent and

P(Aj) ≥ C14

j log j
. (5.3)
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Proof. Since {Vj}∞j=1 is a sequence of stopping times and Aj depends only on the random
walk between Vj and Vj+1, independence follows. To show (5.3), let Uj := U(Lj, 0). Consider
the random walk starting from Vj as a new origin. Then the original random walk in the
interval (Vj, Vj+1) has the same distribution as the new random walk in (0, Uj). Hence

P(Aj | Vj = m) = P(ξ(0, Uj) = ψj, ξ(xm, Uj) = 0).

The event {ξ(0, Uj) = ψj, ξ(xm, Uj) = 0} means that there are exactly ψj excursions around
0, each of which has length less than Lj, none of them are visiting xm and in the last section
(Uj − Lj, Uj) the random walk starting from 0, does not visit 0 and xm. Hence applying
(2.14) of Lemma 2.2,

P(ξ(0, U) = ψj, ξ(xm, U) = 0)

=
(
qxm + O((log j)−α(d/2−1))

)ψj
P(ξ(0, Lj) = 0, ξ(xm, Lj) = 0).

Obviously

P(ξ(0, Lj) = 0, ξ(xm, Lj) = 0) ≥ P(ξ(0,∞) = 0, ξ(xm,∞) = 0) = 1− qxm − sxm .

From the inequalities (2.12) and (2.13) of Lemma 2.2 we can get by easy calculation that

P(ξ(0, Uj) = ψj, ξ(xm, Uj) = 0) ≥ C15(qxm)ψj ≥ C16(1− γ)ψj

(
1− (1− γxm)2

1− γ

)ψj

.

Since Lj ≥ 1, we obviously have Vj ≥ j, i.e. we can take m ≥ j. Since

(1− γ)ψj ≥ 1

j log j

and (cf. (1.9))
(1− γxm)2 ∼ C17(log m)−1,

we have
P(Aj | Vj = m) = P(ξ(0, Uj) = ψj, ξ(xm, Uj) = 0) ≥ C14

j log j
,

with C14 > 0 independent of m, the lemma follows.

Lemma 5.3. Let the events Aj, Bj be defined by (5.1) and (5.2). Then

P(AjBj) ≥ γ2P(Aj). (5.4)
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Proof.
P(AjBj) = EP(AjBj | S(Vj), S(Vj+1))

= E (P(Aj | S(Vj), S(Vj+1))P(Bj | S(Vj), S(Vj+1))) .

We show that
P(Bj | S(Vj), S(Vj+1)) ≥ γ2, j = 1, 2, . . . (5.5)

Consider the reversed random walk before S(Vj), as in the the proof of Theorem 1.2, i.e.
S ′i = S(Vj − i)−S(Vj), and its local time ξ′(x, n) and also the forward random walk starting
from S(Vj+1), i.e. Si” = S(Vj+1 + i) − S(Vj+1), i = 1, 2, . . . and its local time ξ”(x, n).
These two random walks are independent and the event Bj means that the first random
walk S ′ does not visit xVj

(up to time Vj) and the second random walk S” does not visit
S(Vj) + xVj

− S(Vj+1) (for infinite time). Hence

P(Bj | S(Vj), S(Vj+1))

= P(ξ′(xVj
, Vj) = 0, ξ”(S(Vj)− S(Vj+1) + xVj

,∞) = 0 | S(Vj), S(Vj+1))

≥ P(ξ′(xVj
,∞) = 0)P(ξ”(S(Vj)− S(Vj+1) + xVj

,∞) = 0 | S(Vj), S(Vj+1)).

From (2.11) of Lemma 2.2 it follows that

P(ξ′(xVj
,∞) = 0) ≥ γ

and similarly

P(ξ”(S(Vj)− S(Vj+1) + xVj
,∞) = 0 | S(Vj), S(Vj+1)) ≥ γ,

hence (5.5) follows, which, in turn, implies (5.4). This proves Lemma 5.3.
Lemma 5.2 and Lemma 5.3 together imply by Lemma 5.1 that

P(AjBj i.o.) > 0.

Since (cf. Révész [7])
Vj = nj ≤ O(1)j(log j)α a.s.,

assuming that AjBj occurs, we have

ξ(Snj
,∞) = ξ(S(Vj+1),∞) ≥ ξ(S(Vj), Vj+1)− ξ(S(Vj), Vj) ≥ ψj ≥

≥ λ log nj − λα log log nj + (1− ε)λ log log nj ≥
≥ λ log nj + λ

(
d− 4

d− 2
− ε

)
log log nj
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and also ξ(Snj
+ xnj

,∞) = 0. Thus we have P(Dn i.o.) > 0, where

Dn =

{
ξ(Sn,∞) ≥ λ

(
log n +

(
d− 4

d− 2
− ε

)
log log n

)
, ξ(Sn + xn,∞) = 0

}
.

Let

D̃n =
{

ξ(Sn,∞) ≥ λ

(
log n +

(
d− 4

d− 2
− ε

)
log log n

)
,

ξ(Sn + xn,∞)− ξ(Sn + xn, log n) = 0
}

.

Then we have also P(D̃n i.o.) > 0 and since D̃n is a tail event for the random walk, by 0-1
law we have P(D̃n i.o.) = 1.

To show that also P(Dn i.o.) = 1, we prove the following

Lemma 5.4. For any 0 < δ < 1/2 with probability 1 there exists n0 such that for n ≥ n0

we have
ξ(Sn + x, nδ) = 0 for all |x| ≤ log n.

Proof. By (4.1) we get

P


 ⋃

|x|≤log n

⋃

j≤nδ

{Sj = Sn + x}

 ≤

∑

|x|≤log n

∑

j≤nδ

P(Sj = Sn + x)

≤
∑

|x|≤log n

∑

j≤nδ

C8

(n− j)d/2
≤ C17(log n)d

nd/2−δ
,

and since this is summable, the lemma follows by Borel-Cantelli lemma. This implies
P(Dn i.o.) = 1, proving Theorem 1.3.
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